线性低密度聚乙烯

合集下载

高密度、低密度和线性低密度聚乙烯的区别

高密度、低密度和线性低密度聚乙烯的区别

高密度、低密度和线性低密度聚乙烯的区别低密度聚乙烯(LDPE)相对密度为0.910-0.925的聚乙烯称为低密度聚乙烯(Low Density Polyethylene),而密度介于低密度与高密度之间的成为中密度聚乙烯.传统的低密度聚乙烯是用聚合级的乙烯用氧或过氧化物为引发剂,在高温高压下进行游离基聚合而制得的.因此低密度聚乙烯又称做高压聚乙烯.低密度聚乙烯是一种具有蜡感的白色树脂,其结构特点是非线形的.分子量一般在100000~500000.因此,与中密度,高密度聚乙烯相比,它具有较低的结晶度和软化点,有较好的柔软性,伸长率,电绝缘性,透明性,以及较高的耐冲击强度.低密度聚乙烯机械强度较差,耐热性差,此外另一个明显的弱点是耐环境应力开裂性较差.高密度聚乙烯(HDPE)密度在0.941~0.965的聚乙烯称为高密度聚乙烯(High Density Polyethylene).高密度聚乙烯用低压法生产,因此有称为低压聚乙烯.生产方式有液相法,气相法两种.液相法又包括了溶液法和淤浆法.高密度聚乙烯有均聚物和共聚物之别,所谓共聚就是在聚合是渗入少量的а-烯烃,这些少量的а-烯烃的加入可以降低聚乙烯的密度和结晶度,因而相对于均聚物来说有更优良的乃环境应力开裂性能,较高的表面硬度和较好的尺寸稳定性.高密度聚乙烯比低密度聚乙烯提高了耐热性和机械强度(如拉伸,弯曲,压缩和剪切强度)并且提高了对水蒸气和气体的阻隔性.LDPE、LLDPE和HDPE这三种PE的区别:LDPE(中文名:低密度高压聚乙烯):感官鉴别:手感柔软:白色透明,但透明度一般,燃烧鉴别:燃烧火焰上黄下蓝;燃烧时无烟,有石蜡的气味,熔融滴落,易拉丝LLDPE(线性低密度聚乙烯):线性低密度聚乙烯在结构上不同于一般的低密度聚乙烯,因为不存在长支链。

LLDPE的线性度取决于LLDPE和LDPE 的不同生产加工过程。

LLDPE通常在更低温度和压力下,由乙烯和高级的a烯烃如丁烯、己烯或辛烯共聚合而生成。

线性低密度聚乙烯

线性低密度聚乙烯

线性低密度聚乙烯LLDPE,是乙烯与少量高级α-烯烃如丁烯-1、己烯-1、辛烯-1、四甲基戊烯-1等在催化剂作用下,经高压或低压聚合而成的一种共聚物,密度处于~0.940克/立方厘米之间;但按ASTM 的D-1248-84规定,~0.940克/立方厘米的密度范围属中密度聚乙烯MDPE;新一代LLDPE将其密度扩大至塑性体~0.915克/立方厘米和弹性体<0.890克/立方厘米;但美国塑料工业协会SPI和美国塑料工业委员会APC只将LLDPE的范围扩大至塑性体,不包括弹性体;上世纪80年代,Union Carbide和Dow Chemical公司将其早期销售的塑性体和弹性体称之为非常低密度的聚乙烯VLDPE和超低密度聚乙烯ULDPE树脂;常规LLDPE的分子结构以其线性主链为特征,只有少量或没有长支链,但包含一些短支链;没有长支链使聚合物的结晶性较高;通常,LLDPE树脂用密度和熔体指数来表征;密度由聚合物链中共聚单体的浓度决定;共聚单体的浓度决定了聚合物中的短支链量;短支链的长度则取决于共聚单体的类型;共聚单体浓度越高,树脂的密度越低;此外,熔体指数是树脂平均分子量的反映,主要由反应温度溶液法和加入链转移剂气相法来决定;平均分子量与分子量分布无关,后者主要受催化剂类型影响;LLDPE在20世纪70年代由Union Carbide公司工业化,它代表了聚乙烯催化剂和工艺技术的重大变革,使聚乙烯的产品范围显着扩大;LLDPE用配位催化剂代替自由基引发剂,以及用较低成本的低压气相聚合取代成本较高的高压反应器,在比较短的时间内,便以其优异的性能和较低的成本,在许多领域已替代了LDPE;目前LLDPE几乎渗透到所有的传统聚乙烯市场,包括薄膜、模塑、管材和电线电缆;LLDPE产品无毒、无味、无臭,呈乳白色颗粒;与LDPE相比具有强度高、韧性好、刚性强、耐热、耐寒等优点,还具有良好的耐环境应力开裂、耐撕裂强度等性能,并可耐酸、碱、有机溶剂等;2005年,我国LLDPE产量为188万吨,约占PE总产量的%;消费量355万吨,约占PE总消费量的%;预计未来2~3年内,LLDPE消费量将保持8%左右的速度继续增长;按照当前市场价格12000元/吨计算,我国LLDPE的市场规模已经超过了400亿元;一、LLDPE的应用领域LLDPE的主要应用领域是农膜、包装膜、电线电缆、管材、涂层制品等;线形低密度聚乙烯由于较高的抗张强度、较好的抗穿刺和抗撕裂性能,主要用于制造薄膜;2005年世界LLDPE消费量为1617万吨,同比增长%;在消费结构中,薄膜制品仍占最大比例,消费量为1190万吨,占总消费量的%,其次为注塑,消费量为万吨,约占LLDPE总消费量的%;2005年,我国LLDPE和LDPE消费总量为598万吨,其中LLDPE消费量为355万吨,同比增长%,占LLDPE/LDPE消费总量的%;LDPE消费量为243万吨,同比增加%,占LLDPE/LDPE消费总量的%;从LLDPE/LDPE消费结构看,薄膜仍是消费的最大品种,消费量为485万吨,占LLDPE/LDPE总消费量的%,其中包装膜313万吨,占总消费量的50%;农膜万吨,占消费总量的%;特殊包装膜万吨,占消费总量的6%;其次为注塑制品,消费量为万吨,占消费总量的%;其后依次为涂层制品、管材和电线电缆,消费量分别为万吨、万吨和万吨,分别占总消费量的5%、3%和%;其它消费量为万吨,占总消费量的3%;从2003~2005年LLDPE/LDPE的消费情况看,薄膜的消费比例一直保持在77%左右,第二大品种注塑制品的消费比例也一直在9%上下徘徊;预计未来2~3年内,虽然各项品种的绝对消费量将继续增长,但其消费比例会基本维持目前态势;由于包装膜的需求相对增长较快,农膜的消费比例将会降至20%左右;由于LLDPE的性能不断改善,其应用领域也不断扩大,未来市场对LLDPE的需求增速将大大高于LDPE和HDPE;二、LLDPE的分类按共聚单体类型,LLDPE主要划分为3种共聚物:C4丁烯-1、C6己烯-1和C8辛烯-1;其中,丁烯共聚物是全球生产量最大的LLDPE树脂,而己烯共聚物则是目前增长最快的LLDPE品种;在LLDPE树脂中,共聚单体的典型用量为5%~10%重量分数,平均用量大约为7%;茂金属基的LLDPE塑性体mLLDPE具有传统LLDPE 3倍多的平均共聚单体含量;图表1显示的是引用自外刊的10年间世界3种共聚单体LLDPE的产量;在1984年末,当时的联碳公司引入了己烯共聚LLDPE的生产,紧随其后的是Exxon、Mobil等公司;Dow Chemical陶氏化学公司在其低压溶液工艺中几乎全部采用辛烯作为共聚单体,加拿大NOVA诺瓦化工也在其中压溶液工艺中大部分采用辛烯;辛烯共聚LLDPE树脂具有略好的强度、抗撕裂性能和加工性能,而己烯共聚和辛烯共聚树脂的性能差别不大;目前己烯LLDPE树脂的生产商主要有ExxonMobil Chemical埃克森美孚化工公司、Eastman Chemical伊士曼化学公司、Equistar等星公司和Chevron Phillips雪佛龙菲利普斯化学公司等;此外,Dow Chemical陶氏化学公司、Basell巴塞尔公司、Innovene亿诺公司、Samsung Total 三星道达尔公司等也生产己烯LLDPE;与通常使用的丁烯共聚单体相比,以己烯和辛烯作为共聚单体生产的LLDPE具有更为优良的性能;LLDPE树脂的最大用途在于薄膜的生产,以长链α-烯烃如己烯、辛烯作为共聚单体生产的LLDPE树脂制成的薄膜及制品在拉伸强度、冲击强度、撕裂强度、耐穿刺性、耐环境应力开裂性等许多方面均优于用丁烯作为共聚单体生产的LLDPE树脂;自20世纪90年代以来,国外的PE生产厂商及用户均趋向于用己烯及辛烯替代丁烯;据悉,用辛烯作共聚单体,树脂性能不一定能比己烯共聚有更进一步的改善,且价格反而贵些,因此目前国外主要LLDPE生产商使用己烯来替代丁烯的趋势更为明显;目前,由于国内尚无大规模生产己烯、辛烯,且进口价格较贵,因此,现今国内生产的LLDPE树脂主要用丁烯作为共聚单体;国内有些企业在引进LLDPE生产装置时虽有用己烯作共聚单体的牌号,但终因国内无己烯生产而不得不放弃,仅在开车考核时进口少量己烯;我国进口的高档LLDPE多为此类产品;预计今后对以1-己烯为单体的LLDPE需求将有较大增长;。

线性低密度聚乙烯简介

线性低密度聚乙烯简介

要点二
减排措施
生产LLDPE时,可以采用一些减排措施,如使用可再生原 料、优化生产工艺、提高能源利用效率等,以进一步降低 生产过程中的环境污染。
可循环利用性

可循环利用性
LLDPE是一种可回收再利用的材料。通过回收再利用, 可以减少废弃物对环境的压力,同时节约资源和能源。
回收再利用方法
LLDPE的回收再利用方法包括物理回收和化学回收。物 理回收主要是将LLDPE废料进行清洗、破碎、熔融等处 理,再制成新的制品。化学回收则是将LLDPE废料进行 高温裂解或化学分解,获得单体或燃料,进一步用于生 产或其他用途。
全球经济形势对LLDPE市场也有很大的影响 。经济增长加速可能会提高LLDPE的需求量 ,从而推高市场价格;而经济衰退则可能导 致需求减少,价格下跌。
05
线性低密度聚乙烯的环保与可 持续发展问题
环保性能及减排措施
要点一
环保性能
线性低密度聚乙烯(LLDPE)是一种轻质、易加工的材料 ,具有优良的韧性和耐冲击性,适用于各种包装领域。在 生产过程中,LLDPE产生的废气、废水和固体废弃物较少 ,因此被认为是一种相对环保的材料。
06
线性低密度聚乙烯的未来发展 与研究方向
新产品研发与技术进步
聚合物合金
利用线性低密度聚乙烯与其它聚合物的混合,提高其性能 ,拓宽其应用领域。
01
高性能化
通过改变聚合条件,提高线性低密度聚 乙烯的力学性能、热稳定性和耐候性。
02
03
加工性能改进
研究加工过程中线性低密度聚乙烯的 流变性能,优化加工条件,提高制品 质量。
LLDPE还可以用于制造医用管材和容器,由于其良好 的耐化学腐蚀性和生物相容性,可以满足医疗器械的 高标准要求。

高密度、低密度和线性低密度聚乙烯的区别

高密度、低密度和线性低密度聚乙烯的区别

高密度、低密度和线性低密度聚乙烯的区别低密度聚乙烯(LDPE)相对密度为0.910-0.925的聚乙烯称为低密度聚乙烯(Low Density Polyethylene),而密度介于低密度与高密度之间的成为中密度聚乙烯.传统的低密度聚乙烯是用聚合级的乙烯用氧或过氧化物为引发剂,在高温高压下进行游离基聚合而制得的.因此低密度聚乙烯又称做高压聚乙烯.低密度聚乙烯是一种具有蜡感的白色树脂,其结构特点是非线形的.分子量一般在100000~500000.因此,与中密度,高密度聚乙烯相比,它具有较低的结晶度和软化点,有较好的柔软性,伸长率,电绝缘性,透明性,以及较高的耐冲击强度.低密度聚乙烯机械强度较差,耐热性差,此外另一个明显的弱点是耐环境应力开裂性较差.高密度聚乙烯(HDPE)密度在0.941~0.965的聚乙烯称为高密度聚乙烯(High Density Polyethylene).高密度聚乙烯用低压法生产,因此有称为低压聚乙烯.生产方式有液相法,气相法两种.液相法又包括了溶液法和淤浆法.高密度聚乙烯有均聚物和共聚物之别,所谓共聚就是在聚合是渗入少量的а-烯烃,这些少量的а-烯烃的加入可以降低聚乙烯的密度和结晶度,因而相对于均聚物来说有更优良的乃环境应力开裂性能,较高的表面硬度和较好的尺寸稳定性.高密度聚乙烯比低密度聚乙烯提高了耐热性和机械强度(如拉伸,弯曲,压缩和剪切强度)并且提高了对水蒸气和气体的阻隔性.LDPE、LLDPE和HDPE这三种PE的区别:LDPE(中文名:低密度高压聚乙烯):感官鉴别:手感柔软:白色透明,但透明度一般,燃烧鉴别:燃烧火焰上黄下蓝;燃烧时无烟,有石蜡的气味,熔融滴落,易拉丝LLDPE(线性低密度聚乙烯):线性低密度聚乙烯在结构上不同于一般的低密度聚乙烯,因为不存在长支链。

LLDPE的线性度取决于LLDPE和LDPE 的不同生产加工过程。

LLDPE通常在更低温度和压力下,由乙烯和高级的a烯烃如丁烯、己烯或辛烯共聚合而生成。

线性低密度聚乙烯

线性低密度聚乙烯

线性低密度聚乙烯 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT线性低密度聚乙烯(LLDPE),是乙烯与少量高级α-烯烃(如丁烯-1、己烯-1、辛烯-1、四甲基戊烯-1等)在催化剂作用下,经高压或低压聚合而成的一种共聚物,密度处于~0.940克/立方厘米之间。

但按ASTM 的D-1248-84规定,~0.940克/立方厘米的密度范围属中密度聚乙烯(MDPE)。

新一代LLDPE将其密度扩大至塑性体~0.915克/立方厘米)和弹性体(<0.890克/立方厘米)。

但美国塑料工业协会(SPI)和美国塑料工业委员会(APC)只将LLDPE的范围扩大至塑性体,不包括弹性体。

上世纪80年代,Union Carbide和Dow Chemical公司将其早期销售的塑性体和弹性体称之为非常低密度的聚乙烯(VLDPE)和超低密度聚乙烯(ULDPE)树脂。

常规LLDPE的分子结构以其线性主链为特征,只有少量或没有长支链,但包含一些短支链。

没有长支链使聚合物的结晶性较高。

通常,LLDPE树脂用密度和熔体指数来表征。

密度由聚合物链中共聚单体的浓度决定。

共聚单体的浓度决定了聚合物中的短支链量。

短支链的长度则取决于共聚单体的类型。

共聚单体浓度越高,树脂的密度越低。

此外,熔体指数是树脂平均分子量的反映,主要由反应温度(溶液法)和加入链转移剂(气相法)来决定。

平均分子量与分子量分布无关,后者主要受催化剂类型影响。

LLDPE在20世纪70年代由Union Carbide公司工业化,它代表了聚乙烯催化剂和工艺技术的重大变革,使聚乙烯的产品范围显着扩大。

LLDPE用配位催化剂代替自由基引发剂,以及用较低成本的低压气相聚合取代成本较高的高压反应器,在比较短的时间内,便以其优异的性能和较低的成本,在许多领域已替代了LDPE。

目前LLDPE几乎渗透到所有的传统聚乙烯市场,包括薄膜、模塑、管材和电线电缆。

线性低密度聚乙烯行业痛点与解决措施

线性低密度聚乙烯行业痛点与解决措施

线性低密度聚乙烯主要 用于包装、农业、电线 电缆、管道等领域。
在包装领域,线性低密 度聚乙烯可以用于制造 高透明度、高阻隔性的 包装材料,提高食品和 日用品的保存性能。
在农业领域,线性低密 度聚乙烯可以用于制造 农用薄膜、灌溉管道等 ,提高农作物的产量和 质量。
在电线电缆领域,线性 低密度聚乙烯可以用于 制造高绝缘、高耐候性 的电线电缆绝缘层,提 高电器的性能和使用寿 命。
加强国际贸易合作,为企业提供政策支持与法律保障
加强国际贸易合作与交流,推动线性低密度 聚乙烯行业的国际化发展。
建立健全国际贸易法律法规,为企业提供法律保 障和公平的贸易环境。
鼓励企业拓展海外市场,提高品牌影响力和 国际竞争力。
06
下一步工作计划
深入调研线性低密度聚乙烯行业的发展状况与痛点
调研国内线性低密度聚乙烯的生产、消费、进出口情况,以及产业链上下游行业的现状和趋势。 了解国内外行业技术发展状况,包括生产工艺、新产品开发和应用场景等。 分析行业面临的主要痛点,如产能过剩、技术创新不足、环保压力等。
总结词:可持续发展
02
线性低密度聚乙烯行业需积极推动绿色生产,采用环保设备和
工艺,降低企业环保成本。
加强企业环保意识,提高环保管理水平,实现可持续发展。
03
加强国际合作,应对贸易摩擦
01
总结词:拓展市场
02
加强国际合作,拓展海外市场,应对国际贸易摩擦带来的挑战。
03
参加国际会展、学术交流等活动,增进国际间的了解与合作,拓宽企业视野和 信息渠道。
02
引导企业加大科研力度,提升核心技术能力和自主创新能力。
加强产学研合作,构建科技创新体系,推动行业技术进步。

线性低密度聚乙烯行业发展趋势

线性低密度聚乙烯行业发展趋势
新兴应用领域一
医疗器械领域对线性低密度聚乙烯的需求将不断增加,尤其是高 精度医疗器械如人工关节、心脏起搏器等。
新兴应用领域二
电子电器领域对线性低密度聚乙烯的需求将不断增加,如用于制造 电线电缆、电子元件等。
新兴应用领域三
汽车领域对线性低密度聚乙烯的需求将不断增加,如用于制造汽车 零部件、密封件等。
06
技术创新与人才培养
技术创新
线性低密度聚乙烯的生产技术和产品性能需要不断升级和 创新,以满足市场对高性能、绿色环保型产品的需求。
人才培养
加强专业人才的培养和引进,提高企业和研究机构的研发 能力,推动产学研一体化发展。
策略建议
鼓励企业加大研发投入,与高校和研究机构合作培养人才 ,同时积极引进国外先进技术和管理经验,提升行业整体 技术水平。来自02全球市场概况
Chapter
市场规模与增长
线性低密度聚乙烯(LLDPE)是一种重要的塑料材料,被广泛应用于包装、农业和其他领域 。近年来,随着全球经济的复苏和需求的增长,LLDPE的市场规模也在不断扩大。
根据市场研究机构的统计,全球LLDPE市场规模从2016年的约XX亿美元增长到了2020年的 约XX亿美元。
共聚改性
通过共聚反应,开发具有优异性 能的共聚聚合物,以满足不同应
用领域的需求。
合金化改性
将线性低密度聚乙烯与其他塑料进 行合金化改性,以提高其性能和用 途。
新产品开发
针对不同应用领域,开发具有优异 性能的线性低密度聚乙烯新产品。
环保与可持续发展要求
环保法规
各国政府对环保法规的日益严格 ,对线性低密度聚乙烯的生产和
进出口情况
中国LLDPE的进口量大于出口量,主要原因是国内生产成本较高,部分高端产品仍需进口。同时,国外厂商在中 国市场上也有一定的销售份额。这种进出口格局有望在未来几年内发生变化,随着国内生产技术的进步和成本的 降低,预计出口量将逐渐增加。

LDPE、LLDPE和HDPE三种PE的区别

LDPE、LLDPE和HDPE三种PE的区别

LDPE、LLDPE和HDPE三种PE的区别LDPE、LLDPE和HDPE三种PE的区别LDPE(中文名:低密度高压聚乙烯):感官鉴别:手感柔软:白色透明,但透明度一般,燃烧鉴别:燃烧火焰上黄下蓝;燃烧时无烟,有石蜡的气味,熔融滴落,易拉丝LLDPE(线性低密度聚乙烯)线性低密度聚乙烯在结构上不同于一般的低密度聚乙烯,因为不存在长支链。

LLDPE的线性度取决于LLDPE 和LDPE的不同生产加工过程。

LLDPE通常在更低温度和压力下,由乙烯和高级的a烯烃如丁烯、己烯或辛烯共聚合而生成。

共聚过程生成的LLDPE聚合物具有比一般LDPE更窄的分子量分布,同时具有线性结构使其有着不同的流变特性。

LLDPE的熔融流动特性适l应新工艺的要求,特别是用薄膜挤出工艺,可产出高质的LLDPE产品。

LLDPE应用于聚乙烯所有的传统市常增强了抗伸、抗穿透、抗冲击和抗撕裂的性能使LLDPE适于作薄膜。

它的优异的抗环境应力开裂性,抗低温冲击性和抗翘曲性使LLDPE对管材、板材挤塑和所有模塑应用都有吸引力。

LLDPE最新的应用是作为地膜用于废渣填埋和废液池的衬层。

更高的抗伸强度、抗穿透性、抗撕裂性和伸长率增加是LLDPE的特性,使其特别适用于制薄膜。

如果用己烯或辛烯代替丁烯作共聚单体甚至连抗冲击力和抗撕裂性也可得到较大的改进。

对于相同熔体指数和密度下的给定树脂,己烯和辛烯LLDPE树脂在冲击和撕裂性能上提高到300%。

己烯和辛烯树脂更长的侧链在链之间起到象“绳结”分子一样的作用,改进了化合物的韧性。

HDPE(高密度聚乙烯):HDPE是一种结晶度高、非极性的热塑性树脂。

原态HDPE的外表呈乳白色,在微薄截面呈一定程度的半透明状。

PE具有优良的耐大多数生活和工业用化学品的特性。

某些种类的化学品会产生化学腐蚀,例如腐蚀性氧化剂(浓硝酸),芳香烃(二甲苯)和卤化烃(四氯化碳)。

该聚合物不吸湿并具有好的防水蒸汽性,可用于包装用途。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

线性低密度聚乙烯 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】
线性低密度聚乙烯(LLDPE),是乙烯与少量高级α-烯烃(如丁烯-1、己烯-1、辛烯-1、四甲基戊烯-1等)在催化剂作用下,经高压或低压聚合而成的一种共聚物,密度处于~0.940克/立方厘米之间。

但按ASTM 的D-1248-84规定,~0.940克/立方厘米的密度范围属中密度聚乙烯(MDPE)。

新一代LLDPE将其密度扩大至塑性体~0.915克/立方厘米)和弹性体(<0.890克/立方厘米)。

但美国塑料工业协会(SPI)和美国塑料工业委员会(APC)只将LLDPE的范围扩大至塑性体,不包括弹性体。

上世纪80年代,Union Carbide和Dow Chemical公司将其早期销售的塑性体和弹性体称之为非常低密度的聚乙烯(VLDPE)和超低密度聚乙烯(U L D P E)树脂。

常规LLDPE的分子结构以其线性主链为特征,只有少量或没有长支链,但包含一些短支链。

没有长支链使聚合物的结晶性较高。

通常,LLDPE树脂用密度和熔体指数来表征。

密度由聚合物链中共聚单体的浓度决定。

共聚单体的浓度决定了聚合物中的短支链量。

短支链的长度则取决于共聚单体的类型。

共聚单体浓度越高,树脂的
密度越低。

此外,熔体指数是树脂平均分子量的反映,主要由反应温度(溶液法)和加入链转移剂(气相法)来决定。

平均分子量与分子量分布无关,后者主要受催化剂类型影响。

LLDPE在20世纪70年代由Union Carbide公司工业化,它代表了聚乙烯催化剂和工艺技术的重大变革,使聚乙烯的产品范围显着扩大。

LLDPE用配位催化剂代替自由基引发剂,以及用较低成本的低压气相聚合取代成本较高的高压反应器,在比较短的时间内,便以其优异的性能和较低的成本,在许多领
域已替代了LDPE。

目前LLDPE几乎渗透到所有的传统聚乙烯市场,包括薄膜、模塑、管材和电线电缆。

LLDPE产品无毒、无味、无臭,呈乳白色颗粒。

与LDPE相比具有强度高、韧性好、刚性强、耐热、耐寒等优点,还具有良好的耐环境应力开裂、耐撕裂强度等性能,并可耐酸、碱、有机溶剂等。

2005年,我国LLDPE产量为188万吨,约占PE总产量的%;消费量355万吨,约占PE总消费量的%。

预计未来2~3年内,LLDPE消费量将保持8%左右的速度继续增长。

按照当前市场价格12000元/吨计算,我国LLDPE的市场规模已经超过了400亿元。

(一)、LLDPE的应用领域
LLDPE的主要应用领域是农膜、包装膜、电线电缆、管材、涂层制品等。

线形低密度聚乙烯由于较高的抗张强度、较好的抗穿刺和抗撕裂性能,主要用于制造薄膜。

2005年世界LLDPE消费量为1617万吨,同比增长%。

在消费结构中,薄膜制品仍占最大比例,消费量为1190万吨,占总消费量的%,其次为注塑,消费量为万吨,约占LLDPE总消费量的%。

2005年,我国LLDPE和LDPE消费总量为598万吨,其中LLDPE消费量为355万吨,同比增长%,占LLDPE/LDPE消费总量的%;LDPE消费量为243万吨,同比增加%,占LLDPE/LDPE消费总量的%。

从LLDPE/LDPE消费结构看,薄膜仍是消费的最大品种,消费量为485万吨,占LLDPE/LDPE总消费量的%,其中包装膜313万吨,占总消费量的50%;农膜万吨,占消费总量的%;特殊包装膜万吨,占消费总量的6%。

其次为注塑制品,消费量为万吨,占消费总量的%。

其后依次为涂层制品、管材和电线电缆,消费量分别为万吨、万吨和万吨,分别占总消费量的5%、3%和%;其它消费量为万吨,占总消费量的3%。

从2003~2005年LLDPE/LDPE的消费情况看,薄膜的消费比例一直保持在77%左右,第二大品种注塑制品的消费比例也一直在9%上下徘徊。

预计未来2~3年内,虽然各项品种的绝对消费量将继续增长,但其消费比例会基本维持目前态势;由于包装膜的需求相对增长较快,农膜的消费比例将会降至20%左右。

由于LLDPE的性能不断改善,其应用领域也不断扩大,未来市场对LLDPE的需求增速将大大高于LDPE和HDPE。

(二)、LLDPE的分类
按共聚单体类型,LLDPE主要划分为3种共聚物:C4(丁烯-1)、C6(己烯-1)和C8(辛烯-1)。

其中,丁烯共聚物是全球生产量最大的LLDPE树脂,而己烯共聚物则是目前增长最快的LLDPE品种。

在LLDPE树脂中,共聚单体的典型用量为5%~10%重量分数,平均用量大约为7%。

茂金属基的LLDPE 塑性体(mLLDPE)具有传统LLDPE 3倍多的平均共聚单体含量。

图表1显示的是引用自外刊的10年间世界3种共聚单体LLDPE的产量。

在1984年末,当时的联碳公司引入了己烯共聚LLDPE的生产,紧随其后的是Exxon、Mobil等公司。

Dow Chemical(陶氏化学公司)在其低压溶液工艺中几乎全部采用辛烯作为共聚单体,加拿大
NOVA(诺瓦化工)也在其中压溶液工艺中大部分采用辛烯。

辛烯共聚LLDPE树脂具有略好的强度、抗撕裂性能和加工性能,而己烯共聚和辛烯共聚树脂的性能差别不大。

目前己烯LLDPE树脂的生产商主要有ExxonMobil Chemical(埃克森美孚化工公司)、Eastman Chemical(伊士曼化学公司)、Equistar(等星公司)和Chevron Phillips(雪佛龙菲利普斯化学公司)等。

此外,Dow Chemical(陶氏化学公司)、Basell(巴塞尔公司)、Innovene(亿诺公司)、Samsung Total(三星道达尔公司)等也生产己烯LLDPE。

与通常使用的丁烯共聚单体相比,以己烯和辛烯作为共聚单体生产的LLDPE具有更为优良的性能。

LLDPE树脂的最大用途在于薄膜的生产,以长链α-烯烃(如己烯、辛烯)作为共聚单体生产的LLDPE树脂制成的薄膜及制品在拉伸强度、冲击强度、撕裂强度、耐穿刺性、耐环境应力开裂性等许多方面均优于用丁烯作为共聚单体生产的LLDPE树脂。

自20世纪90年代以来,国外的PE生产厂商及用户均趋向于用己烯及辛烯替代丁烯。

据悉,用辛烯作共聚单体,树脂性能不一定能比己烯共聚有更进一步的改善,且价格反而贵些,因此目前国外主要LLDPE生产商使用己烯来替代丁烯的趋势更为明显。

目前,由于国内尚无大规模生产己烯、辛烯,且进口价格较贵,因此,现今国内生产的LLDPE树脂主要用丁烯作为共聚单体。

国内有些企业在引进LLDPE生产装置时虽有用己烯作共聚单体的牌号,但终因国内无己烯生产而不得不放弃,仅在开车考核时进口少量己烯。

我国进口的高档LLDPE多为此类产品。

预计今后对以1-己烯为单体的LLDPE需求将有较大增长。

相关文档
最新文档