4.1.2无理数指数幂及其运算性质

合集下载

4.1.2无理数指数幂及其运算性质课件(人教版)

4.1.2无理数指数幂及其运算性质课件(人教版)

6 3
= 3
3
20
4.1.2无理数指数幂及其运算性质 课堂小结
1、无理数指数幂 2、实数指数幂的运算性质
21
谢谢您的凝听
5
4.1.2无理数指数幂及其运算性质 温故知新 知识点二 根式的性质 性质1 (n>1,且n∈N*):
( n a) n a
6
4.1.2无理数指数幂及其运算性质 温故知新 知识点二 根式的性质 性质2 (n>1,且n∈N*):
当n是奇数时,n an a 当n是偶数时,n an a
7
4.1.2无理数指数幂及其运算性质 温故知新
11
4.1.2无理数指数幂及其运算性质 研探新知 知识点一 无理数指数幂 一般地,无理数指数幂aα(a>0,α是无理数)是一个确定的 实数. 有理数指数幂的运算性质同样适用于无理数指数幂.
12
4.1.2无理数指数幂及其运算性质 研探新知 知识点二 实数指数幂的运算性质(适用于有理数、无理数) (1)aras=ar+s(a>0,r,s∈Q). (2)(ar)s=ars(a>0,r,s∈Q). (3)(ab)r=arbr(a>0,b>0,r∈Q).
第四章 指数函数与对数函数
4.1.2无理数指数幂及其运算性质 教学目标
1. 理解无理数指数幂的概念; 2. 掌握实数指数幂和根式之间的互化、化简、求值; 3. 掌握实数指数幂的运算性质; 4. 能利用已知条件求值.
2
4.1.2无理数指数幂及其运算性质 重点难点
重点: ①掌握并运用实数指数幂的运算性质; ②能利用已知条件求值. 难点: 能利用已知条件求值.
知识点三 分数指数幂的意义
正分数指 数幂
m
规定:a n n am (a>0, m, n∈ N *,且 n>1)

4.1.2 无理数 指数幂及其运算性质

4.1.2 无理数  指数幂及其运算性质

4.1.2 无理数 指数幂及其运算性质(一)教材梳理填空 (1)无理数指数幂一般地,无理数指数幂a α(a >0,α是无理数)是一个确定的实数.有理数指数幂的运算性质同样适用于无理数指数幂.(2)实数指数幂的运算性质 ①a r a s =a r +s (a >0,r ,s ∈R ). ②(a r )s =a rs (a >0,r ,s ∈R ). ③(ab )r =a r b _r (a >0,b >0,r ∈R ). (二)基本知能小试 1.判断正误(1)22是实数.( ) (2)2π>2 3.( ) 2.化简⎝⎛⎭⎫123·4π为( ) A .2π-3 B .22π-3 C .23+πD .22π+33.化简(3+2)3-2·(3-2)3-2.题型一 无理数指数幂的运算[学透用活][典例1] 已知2a,3b,5c .求103235+[对点练清]1.由下面的两串有理数指数幂逐渐逼近,可以得到的数为( )(1)21.7,21.73,21.732,21.732 0,21.732 05,… (2)21.8,21.74,21.733,21.732 1,21.732 06,… A .21.7 B .21.8 C .2 3D .42.计算:3π×⎝⎛⎭⎫13π+(2的值为( ) A .17 B .18 C .6 D .5题型二 指数幂的运算[学透用活][典例2] 计算下列各式: (1)⎝⎛⎭⎫2350+2-2·⎝⎛⎭⎫214-12-(0.01)0.5; (2)(0.064)-13-⎝⎛⎭⎫-780+[(-2)3] -43+16-0.75;(3)⎝⎛⎭⎫14-12·()4ab -130.1-2(a 3b -3)12(a >0,b >0).[对点练清]计算下列各式:(1)0.02713-⎝⎛⎭⎫61412+25634+(22)23-3-1+π0; (2)(a -2b -3)·(-4a -1b )÷(12a -4b -2c ); (3)23a ÷46a ·b ·3b 3.题型三 条件求值[学透用活][典例3]已知a 12+a-12=5,求下列各式的值:(1)a+a-1;(2)a2+a-2.[对点练清] 1.[变结论]在本例条件下,则a2-a-2=________.2.[变条件]已知a 12-a-12=m,求本例中(1)(2)的值.3.已知a2x=2+1,求a3x+a-3xa x+a-x的值.[课堂一刻钟巩固训练]一、基础经典题1.化简[3(-5)2]34的结果为()A.5B. 5 C.- 5 D.-52.计算(2a-3b -23)·(-3a-1b)÷(4a-4b-53)得()A.-32b2 B.32b2C.-32b73 D.32b733=________.4.若10x =3,10y =4,则102x -y =________.s 二、创新应用题5.计算(或化简)下列各式:(1)42+1·23-22·64-23; (2)a -ba 12+b12-a +b -2a 12·b 12a 12-b12.[课下双层级演练过关] A 级——学考水平达标练1.计算(2n +1)2·⎝⎛⎭⎫122n +14n ·8-2(n ∈N *)的结果为( ) A .164B .22n +5 C .2n 2-2n +6D .⎝⎛⎭⎫122n -72.在算式2大+2国+2精+2神=29中,“大、国、精、神”分别代表四个不同的数字,且依次从大到小,则“国”字所对应的数字为( )A .4B .3C .2D .13.若a >1,b >0,a b +a -b =22,则a b -a -b等于( )A .4B .2或-2C .-2D .24.设2a =5b =m ,且1a +1b =2,则m 等于( ) A.10 B .10 C .20D .1005.如果x =1+2b ,y =1+2-b ,那么用x 表示y 等于( ) A.x +1x -1 B.x +1x C.x -1x +1D.x x -16.设α,β是方程5x 2+10x +1=0的两个根,则2α·2β=________,(2α)β=________.7.如果a =3,b =384,那么a ⎣⎢⎡⎦⎥⎤⎝⎛⎭⎫b a 17n -3=________. 8.若a =2,b >0,则a 2b +a 12a 12b+(a 12-b-13)(a +a 12b-13+b-23)的值为________.9.计算下列各式: (1)(-x 13y -13)(3x-12y 23)(-2x 16y 23);(2)2x 14(-3x 14y -13)÷(-6x-32y-43).10.已知a ,b 分别为x 2-12x +9=0的两根,且a <b ,求a 12-b12a 12+b 12的值.B 级——高考水平高分练1.计算:12-1+(3-22)0-⎝⎛⎭⎫94-0.5+4(2-π)4=________. 2.已知a 2m +n =2-2,a m -n =28(a >0,且a ≠1),则a 4m+n的值为________.3.(1)设a >0,化简:3a 4a -33a 4a 4;(2)若x 12+x -12=6,求x +x -1-1x 2+x -2-2的值.4.根据已知条件求下列各式的值: (1)已知x =12,y =23,求x +y x -y -x -y x +y;(2)已知a ,b 是方程x 2-6x +4=0的两根,且a >b >0,求a -ba +b.5.对于正整数a ,b ,c (a ≤b ≤c )和非零实数x ,y ,z ,ω,有a x =b y =c z =70ω,1ω=1x +1y +1z ,求a ,b ,c 的值.。

4.1.2 无理数指数幂及其运算性质 课件(共21张PPT高一上学期数学 人教A版必修第一册

4.1.2 无理数指数幂及其运算性质 课件(共21张PPT高一上学期数学 人教A版必修第一册


.

自研教材107-108页,导学案177-179页,课时练85-86页,思考
以下问题:
2
1.类比无理数的发现和确定过程,如何理解5 的意义?
2.无理数指数幂的含义是什么?
3.实数指数幂的运算性质是什么?与有理数指数幂的
运算性质有何区别?
4. 如何用a m , an 表示am-2n ?a1/2+a-1/2和a+a-1有怎样的联
过用连分数近似表示的方法得到,如
3.14159265=3+
1
1
0.14159265
≈3+
1
7+0.0625135
1 22
≈3+ = ,舍去 0.0625135,得到逼近的一个
7
7
1 22
有理数为 3+ = ,类似地,把 2化为连分数形式:1+
7
7
1
+
1
+
1
+
到 1 之间的无理数),舍去 r 得到逼近 2的一个有理数为
系?
高一数学组
海阔凭鱼跃,天高任鸟飞
展评
无理数指数幂
类比无理数的发现和确定过程,如何理解5
2
的意义?
每一个无理数都是一个定值,能够用数轴上的一个点表示.
的值呢?
那么,如果不用计算器,我们如何来估算
.
海阔凭鱼跃,天高任鸟飞
展评
小数位数相同的 2的过剩近似值与不足近似值的差是有规律的:
.
海阔凭鱼跃,天高任鸟飞
7-9
2+2+3-2 2
-2
1
=4 =4 = .
16

新教材人教版高中数学必修1 第四章 4.1.2 无理数指数幂及其运算性质

新教材人教版高中数学必修1 第四章  4.1.2 无理数指数幂及其运算性质

所以
1
x2
1
x2
6,
所以
x2 x2
1
1
4
2.
x2 x 2
ax )(a2x 1 ax ax
a 2x
)
a 2x
1 a 2x
1
2 1
1 1 2 2 1. 2 1
【素养·探】 在指数式的化简求值中,经常利用核心素养中的数学
运算,通过对式子的等价变形,体现了良好的先化简后 求值的数学运算习惯. 将本例中的式子改为 a3x a3x ,试求值.
ax ax
【解析】
(1)底数相同时直接对指数上的无理数进行加减运算. (2)若式子中含有根式,则先化为指数式再进行运算,一 般指数中的根式可以保留.
【习练·破】
计算下列各式:
1( 3 )2 3.
3
2
(m
3
m
6
)12
.
【解析】(1)原式=
(
3
3
2 )2
3
(
3
2 )2
3
3.
(2)原式=
(m
3
6
)12
(m 6 )12
x的指数升高,再代入求值.
【解析】由已知可得:x+x-1=(
x
1 2
x -12 2) 2=(
)2-25 =3.
x2+x-2=(x+x-1)2-2=32-2=7.
原式= 7 6 1 .
35 2
【类题·通】 解决条件求值问题的步骤
【习练·破】
1.已知a+a-1=7(a>1),求
a
1 2
1
a2
所以 3 a b 1 .

高数数学必修一《4.1.2无理数指数幂及其运算性质》教学课件

高数数学必修一《4.1.2无理数指数幂及其运算性质》教学课件
例3 已知正实数a满足a+a-1=4,求下列各式的值;
1
2

1
2
1 a + a ;(2)a2+a-2.
1
2
1
1
a−2)2=a+2+a-1=4+2=6,所以a2
1
−2
解析:(1)因为(a +
+ a = 6.
(2)因为a+a-1=4,所以(a+a-1)2=a2+a-2+2=16,所以a2+a-2=14.
的联系,把条件及所求式化简,将条件整体代入求值.
2+2+3−2 2 =25=32.
2 3
=29×32=4 608.
学霸笔记:
无理数指数幂的运算方法
(1)无理数指数幂的运算性质与有理数指数幂的运算性质相同.
(2)在进行无理数指数幂的运算时,一定要注意按照运算性质进行变
形、计算,不能为了简化某一个数字而改用、错用公式.若式子中含
有根式,一般把底数中的根式化为指数式.
微点拨❶
r
a
(1)因为ar÷as= s =ar·a-s=ar-s,所以对于a>0,r,s∈R.有ar÷as=
a
ar-s成立.
(2)化简指数幂的几个常用技巧
b -p
a p
①( ) =( ) (ab≠0);
a
b
1 m
②a= am
n
m
1
m n
,a =(a ) (a使式子有意义);

1
2
1
2
1
2
③1的代换,如1=a-1·a,1=a ·a (a使式子有意义)等;
(2)指数幂ax(a>0)中x可以是任意实数.( √ )
3 5 3 是一个确定的实数.( √ )

高中数学必修一课件:第四章无理数指数幂及其运算性质

高中数学必修一课件:第四章无理数指数幂及其运算性质

课后巩固
1.212×3136等于( D ) A.8 C.17
B.9 D.72
2.化简[(- 3)2]-12的值等于( C )
A.-
3 3
B. 3
3 C. 3
D.- 3
3.(3-2x)-34中的x的取值范围是( C )
A.(-∞,+∞)
B.-∞,32∪32,+∞
C.-∞,32
D.32,+∞
2
2)3-3-1+π0;
(2)(a-2b-3)(-4a-1b)÷(12a-4b-2c);
3 (3)2
a÷46
ab·3
b3.
【解析】 (1)原式=(0.33)13-52212+(44)34+(232)23-13+1=0.3-52+43+2-13 +1=64175.
(2)原式=-4a-2-1b-3+1÷(12a-4b-2c) =-13a-3-(-4)b-2-(-2)c-1=-13ac-1=-3ac. (3)原式=2a13÷(4a16b16)·(3b32)=12a13-16b-16·3b32=32a16b43.
例2 化简: (1)(a2-2+a-2)÷(a2-a-2); (2)(x-2-y-2)÷(x2-y2). 【解析】 (1)原式=(a-(a-a1)-·a(-1a)+2 a-1)=aa-+aa--11=aa22- +11. (2)原式=x12-y12÷(x2-y2)=y2x-2y2x2÷(x2-y2)=-x21y2=-x-2y-2.
1.实数指数幂的运算性质与有理数指数幂的运算性质相同吗? 答:相同.
2.下列运算是否正确? (1)(3 2) 2=9;
πππ (2)a 3 ·a 6 =a 2 ; (3)(-2)2 2=(-2)2·(-2) 2. 答:(1)(2)正确,(3)不正确.

2020学年新教材高中数学4.1指数4.1.2无理数指数幂及其运算性质教学案新人教A版必修第一册

2020学年新教材高中数学4.1指数4.1.2无理数指数幂及其运算性质教学案新人教A版必修第一册

4.1.2 无理数指数幂及其运算性质(教师独具内容)课程标准:1.了解指数幂由有理数扩充到无理数的过程.2.理解指数幂的运算性质.3.能进行指数幂(实数幂)的运算.教学重点:1.指数幂由有理数扩充到无理数的过程.2.实数指数幂的运算. 教学难点:无理数指数幂的意义的理解.【知识导学】知识点一 无理数指数幂(1)对于无理数指数幂,我们只需要了解两点:①它是一个确定的实数;②它是有理数指数幂无限逼近的结果.(2)定义了无理数指数幂之后,幂的指数就由原来的有理数范围扩充到了实数范围. 知识点二 实数指数幂的运算性质(1)a r a s =□01a r +s (a >0,r ,s ∈R ). (2)(a r )s =□02a rs (a >0,r ,s ∈R ). (3)(ab )r =□03a r b r (a >0,b >0,r ∈R ). 【新知拓展】对于实数a >0,r ,s 有a r÷a s=ar -s成立.这是因为a r÷a s=a r as =a r ·a -s =a r -s.教材中没有给出此性质,但是它可以由已有公式推导出来.(1)在进行幂和根式的化简时,一般原则是:先将负指数幂化为正指数幂,将小数化为分数,将根式化为分数指数幂,将底数(较大的整数分解质因数)化成指数幂的形式,再利用幂的运算性质在系数、同底数幂间进行运算,达到化简和求值的目的.(2)化简指数幂的几个常用技巧如下: ①⎝ ⎛⎭⎪⎫b a -p =⎝ ⎛⎭⎪⎫a bp (ab ≠0); ②a =(a 1m)m,anm=(a 1m)n(a 使式子有意义);1.判一判(正确的打“√”,错误的打“×”) (1)α,β是实数,当a >0时,(a α)β=(a β)α.( )(2)当a >0,b >0时,(a 12 +b -12 )(a 12 -b -12 )=a -b -1.( ) (3)当a >0时,(a -a -1)2=(a +a -1)2-2.( ) (4)[(3)-2] 12 = 3.( ) (5)(3-2) 12 ×(3)-2=19.( )答案 (1)√ (2)√ (3)× (4)× (5)√ 2.做一做(请把正确的答案写在横线上) (1)化简:(3-3)3=________.(2)已知5α=3,5β=2,则 ①5α+β=________; ②5α-β=________;③5-3α=________;④5α2=________.答案 (1)127 (2)①6 ②32 ③127④3题型一 利用指数幂的运算性质化简与求值金版点睛指数幂的一般运算步骤有括号先算括号里的;无括号先做指数运算.负指数幂化为正指数幂的倒数.底数是负数,先确定符号,底数是小数,先要化成分数,底数是带分数,先要化成假分数,然后要尽可能用幂的形式表示,便于用指数幂的运算性质.题型二条件求值问题金版点睛解决条件求值问题的一般方法——整体代入法对于条件求值问题,一般先化简代数式,再将字母取值代入求值.但有时字母的取值不知道或不易求出,这时可将所求代数式恰当地变形,构造出与已知条件相同或相似的结构,从而通过“整体代入法”巧妙地求出代数式的值.利用“整体代入法”求值常用的变形公式如下(其中a>0,b>0):1.3a ·6-a 等于( ) A.--a B .-a C.-a D.a答案 A解析 3a ·6-a =a 13 ·(-a ) 16 =-(-a ) 13 ·(-a ) 16 =-(-a ) 12 =--a .2.⎝ ⎛⎭⎪⎫1681 -14的值是( ) A.23 B.32 C.481 D .-814 答案 B解析 ⎝ ⎛⎭⎪⎫1681-14 =⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫234-14 =⎝ ⎛⎭⎪⎫23-1=32.答案 A解析 原式=[2×(-3)÷4]×a -3-1+4·b -23+1+53 =-32a 0b 2=-32b 2.4.化简(3+2)2018·(3-2)2019=________.答案3- 2解析 (3+2)2018·(3-2)2019=[(3+2)(3-2)]2018·(3-2)=12018·(3-2)=3-2.。

课件1:4.1.1 n次方根与分数指数幂~ 4.1.2 无理数指数幂及其运算性质

课件1:4.1.1  n次方根与分数指数幂~ 4.1.2  无理数指数幂及其运算性质

(1)
a
a(a>0);(2)
3
1 (x>0);(3) 4
x x
5
22
b2 -3
-32
(b>0).
1
3
31
3
解 (1)原式= a·a2 = a2 =(a2 )2 =a4 .
(2)原式=
3
1=
2
3
x·(x5 )2
1
4
x·x5

3
1
9
x5
= 1 x
9 5
13

1
3
x5
3
=x-5
.
(3)原式= b =b =b .
(1)根指数 分数指数的分母,被开方数(式)的指数 分数指数的分子. (2)在具体计算时,通常会把根式转化成分数指数幂的形式,然后利用有理数 指数幂的运算性质运算. (3)当所求根式含有多重根号时,要搞清被开方数,由里向外用分数指数幂写 出,然后再用性质进行化简.
[跟踪训练 2] 将下列根式与分数指数幂进行互化. (1)a3·3 a2;(2) a-4b23 ab2(a>0,b>0).
第四章 指数函数与对数函数
4.1 指数
4.1.1 n次方根与分数指数幂 4.1.2 无理数指数幂及其运算性质
课程标准
核心素养
m
通过对有理数指数幂 an (a>0,且 a≠1;m,n 为整数,且 n>0)、实数 通过对有理数指数幂、实数指数幂 指数幂 ax(a>0,且 a≠1;x∈R)含义 的学习,提升“数学抽象”、“逻辑 的认识,了解指数幂的运算过程, 推理”、“数学运算”的核心素养.
[微体验] 1.下列运算结果中正确的是( ) A.a2·a3=a6 C.(a2)3=(-a3)2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档