新人教版八年级数学下册二次根式的知识点汇总

合集下载

人教版八年级下册数学知识点汇总

人教版八年级下册数学知识点汇总

人教版八年级下册数学知识点汇总第十六章二次根式。

1. 二次根式的概念。

- 形如√(a)(a≥slant0)的式子叫做二次根式。

其中“√()”称为二次根号,a叫做被开方数。

- 注意:被开方数a必须是非负数,否则√(a)无意义。

例如√(-2)就不是二次根式。

2. 二次根式的性质。

- √(a)(a≥slant0)是一个非负数,即√(a)≥slant0。

- (√(a))^2=a(a≥slant0)。

例如(√(5))^2 = 5。

- √(a^2)=| a|=a(a≥sl ant0) -a(a<0)。

如√(3^2) = 3,√((-3)^2)=| - 3|=3。

3. 二次根式的乘除。

- 二次根式的乘法法则:√(a)·√(b)=√(ab)(a≥slant0,b≥slant0)。

例如√(2)×√(3)=√(2×3)=√(6)。

- 二次根式的除法法则:√(a)÷√(b)=√(frac{a){b}}(a≥slant0,b>0)。

如√(8)÷√(2)=√(frac{8){2}}=√(4) = 2。

4. 二次根式的加减。

- 最简二次根式:被开方数不含分母,被开方数中不含能开得尽方的因数或因式的二次根式。

例如√(8)不是最简二次根式,化简为2√(2)后是最简二次根式。

- 二次根式加减时,先将二次根式化为最简二次根式,然后合并同类二次根式(同类二次根式是指被开方数相同的二次根式)。

例如√(12)+√(27)=2√(3)+3√(3)=5√(3)。

第十七章勾股定理。

1. 勾股定理。

- 直角三角形两直角边a、b的平方和等于斜边c的平方,即a^2+b^2=c^2。

- 例如在直角三角形中,两直角边分别为3和4,则斜边c=√(3^2)+4^{2}=√(9 + 16)=√(25)=5。

2. 勾股定理的逆定理。

- 如果三角形的三边长a、b、c满足a^2+b^2=c^2,那么这个三角形是直角三角形。

八年级下册数学二次根式笔记

八年级下册数学二次根式笔记

八年级下册数学二次根式笔记
一、二次根式的定义
1. 二次根式:形如√a(a≥0)的式子叫做二次根式。

2. 二次根式的性质:非负性,即被开方数是非负数。

二、二次根式的性质和运算法则
1. 二次根式的乘法运算法则:√a × √b = √(a×b)(a≥0,b≥0)。

2. 二次根式的除法运算法则:√a ÷ √b = √(a÷b)(a≥0,b>0)。

3. 二次根式的乘方运算法则:√a^n = a^(n/2)(a≥0,n是正整数)。

4. 二次根式的加减运算法则:同类二次根式可以进行加减运算。

三、二次根式的化简
1. 完全平方公式:a^2+2ab+b^2=(a+b)^2;a^2-2ab+b^2=(a-b)^2。

2. 平方差公式:a^2-b^2=(a+b)(a-b)。

3. 完全立方公式:a^3+3a^2b+3ab^2+b^3=(a+b)^3。

4. 立方差公式:a^3-b^3=(a-b)(a^2+ab+b^2)。

5. 二次根式化简的一般步骤:去括号、合并同类项、化简。

四、二次根式的应用
1. 在实际问题中,经常需要求解一些与二次根式有关的数学问题,如长度、面积、体积等。

2. 在数学证明中,二次根式也经常被用来证明一些重要的数学定理,如勾股定理、毕达哥拉斯定理等。

五、练习与巩固
为了更好地掌握二次根式的知识,需要多做一些练习题,通过练习巩固所学知识。

可以参考教材上的练习题或找一些相关的练习册进行练习。

在练习过程中,要注意解题的思路和方法,掌握各种运算法则和公式的应用,提高解题的速度和准确性。

(完整版)八年级下册数学--二次根式知识点整理

(完整版)八年级下册数学--二次根式知识点整理

二次根式1、算术平方根的定义:一般地,如果一个正数x的平方等于a,那么这个正数x叫做a的算术平方根。

2、解不等式(组):尤其注意当不等式两边乘(除以)同一个负数,不等号方向改变。

如:-2x>4,不等式两边同除以-2得x<-2。

不等式组的解集是两个不等式解集的公共部分。

如{3、分式有意义的条件:分母≠04、绝对值:|a|=a (a≥0);|a|= - a (a<0)一、二次根式的概念一般地,我们把形如 a (a≥0)的式子叫做二次根式,“”称为二次根号。

★正确理解二次根式的概念,要把握以下五点:(1)二次根式的概念是从形式上界定的,必须含有二次根号“”,“”的根指数为2,即“2”,我们一般省略根指数2,写作“”。

如25 可以写作 5 。

(2)二次根式中的被开方数既可以是一个数,也可以是一个含有字母的式子。

(3)式子 a 表示非负数a的算术平方根,因此a≥0, a ≥0。

其中a≥0是 a 有意义的前提条件。

(4)在具体问题中,如果已知二次根式 a ,就意味着给出了a≥0这一隐含条件。

(5)形如b a (a≥0)的式子也是二次根式,b与 a 是相乘的关系。

要注意当b是分数时不能写成带分数,例如832 可写成8 23,但不能写成 2232 。

练习:一、判断下列各式,哪些是二次根式?(1) 6 ;(2)-18 ;(3)x2+1 ;(4)3-8 ;(5)x2+2x+1 ;(6)3|x|;(7)1+2x (x<-12)X≥-2X<5的解集为-2≤x<5。

二、当x 取什么实数时,下列各式有意义?(1)2-5x ;(2)4x 2+4x+1二、二次根式的性质:二次根式的性质符号语言文字语言应用与拓展注意a (a ≥0)的性质a ≥0 (a ≥0)一个非负数的算术平方根是非负数。

(1)二次根式的非负性(a ≥0,a ≥0)应用较多,如:a+1 +b-3 =0,则a+1=0,b-3=0,即a= -1,b=3;又如x-a +a-x ,则x 的取值范围是x-a ≥0,a-x ≥0,解得x=a 。

八年级数学二次根式常考必考知识点总结

八年级数学二次根式常考必考知识点总结

二次根式是指形如√a的表示形式,其中a为一个非负实数。

在八年级数学中,二次根式是一个非常重要且常考的知识点。

下面是对八年级数学二次根式常考必考知识点的总结:1.二次根式的定义:√a表示一个非负实数x,使得x的平方等于a。

其中,a被称为被开方数,x被称为开方根。

2.二次根式的性质:-非负实数的二次根式是唯一确定的。

-如果a≥0,则√a≥0。

-如果a≥0,则(√a)²=a。

3.二次根式的化简:-如果被开方数是一个完全平方数,则可以直接得出其简化形式,如√4=2-如果被开方数可以分解为两个完全平方数的乘积,则可以使用分解法简化,如√12=√(4×3)=2√3-如果被开方数是一个分数,则可以使用有理化方法简化,如√(1/4)=1/√4=1/24.二次根式的运算:-二次根式可以进行加减运算,只要被开方数相同,可以直接相加或相减。

如√2+√2=2√2-二次根式可以进行乘法运算,使用分配律进行展开相乘,然后根据二次根式的性质进行简化。

如(√2+√3)(√2-√3)=2-3=-1-二次根式可以进行除法运算,使用有理化方法进行化简,然后根据二次根式的性质进行简化。

如(√5)/(√2)=(√5)/(√2)×(√2)/(√2)=(√10)/25.二次根式的混合运算:-二次根式可以与整数、分数和其他二次根式进行混合运算。

-混合运算的步骤是先进行内部运算(例如,括号中的运算),然后进行外部运算(例如,开方)。

-在混合运算中,注意运算顺序和运算法则的正确应用,避免出错。

6.二次根式的应用:-二次根式经常出现在几何问题中,如计算边长、面积和体积。

-二次根式也经常出现在实际生活中的计算中,如物体的质量和长度的计算。

以上是八年级数学中关于二次根式的常考必考知识点的总结。

掌握这些知识点,可以帮助学生正确理解和运用二次根式,提高解题能力和数学思维能力。

同时,通过反复练习相关题目,也能够加深对二次根式的理解和掌握。

人教版八年级下册数学知识点归纳:第十六章二次根式

人教版八年级下册数学知识点归纳:第十六章二次根式

人教版八年级下册数学知识点归纳第十六章 二次根式1.二次根式:一般地,式子)0a (,a ≥叫做二次根式.注意:(1)若0a ≥这个条件不成立,则 a 不是二次根式;(2)a 是一个重要的非负数,即;a ≥0.2.最简二次根式:必须同时满足下列条件:⑴被开方数中不含开方开的尽的因数或因式;⑵被开方数中不含分母;⑶分母中不含根式。

3.重要公式:(1))0a (a )a (2≥=,(2)⎩⎨⎧<-≥==)0a (a )0a (a a a 2 ;注意使用)0a ()a (a 2≥=. (3)积的算术平方根:)0b ,0a (b a ab ≥≥⋅=,积的算术平方根等于积中各因式的算术平方根的积;注意:本章中的公式,对字母的取值范围一般都有要求.4.二次根式的乘法法则: )0b ,0a (ab b a ≥≥=⋅.5.二次根式比较大小的方法:(1)利用近似值比大小;(2)把二次根式的系数移入二次根号内,然后比大小;(3)分别平方,然后比大小.6.商的算术平方根:)0b ,0a (b a b a >≥=,商的算术平方根等于被除式的算术平方根除以除式的算术平方根.7.二次根式的除法法则:(1))0b ,0a (ba b a>≥=;(2))0b ,0a (b a b a >≥÷=÷;(3)分母有理化:化去分母中的根号叫做分母有理化;具体方法是:分式的分子与分母同乘分母的有理化因式,使分母变为整式.8.常用分母有理化因式:a a 与,b a b a +-与, b n a m b n a m -+与,它们也叫互为有理化因式.9.最简二次根式:(1)满足下列两个条件的二次根式,叫做最简二次根式,① 被开方数的因数是整数,因式是整式,② 被开方数中不含能开的尽的因数或因式;(2)最简二次根式中,被开方数不能含有小数、分数,字母因式次数低于2,且不含分母;(3)化简二次根式时,往往需要把被开方数先分解因数或分解因式;(4)二次根式计算的最后结果必须化为最简二次根式.10.二次根式化简题的几种类型:(1)明显条件题;(2)隐含条件题;(3)讨论条件题.11.同类二次根式:几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式叫做同类二次根式.12.二次根式的混合运算:(1)二次根式的混合运算包括加、减、乘、除、乘方、开方六种代数运算,以前学过的,在有理数范围内的一切公式和运算律在二次根式的混合运算中都适用;(2)二次根式的运算一般要先把二次根式进行适当化简,例如:化为同类二次根式才能合并;除法运算有时转化为分母有理化或约分更为简便;使用乘法公式等.。

八年级数学下册知识点归纳非常全面

八年级数学下册知识点归纳非常全面

八年级下册知识点归纳第十六章 二次根式1、二次根式: 形如)0(≥a a 的式子。

①二次根式必须满足:含有二次根号“”;被开方数a必须是非负数。

②非负性考点:几个非负数相加为0,那么这几个数都为0.如:-+++=2310a b c 则:30,10,0a b c -=+==2、最简二次根式:满足:①被开方数不含分母;②被开方数中不含能开得尽方的因数或因式的二次根式。

3、化最简二次根式的方法和步骤:(1)如果被开方数含分母,先利用商的算数平方根的性质把它写成分式的形式,然后利用分母有理化进行化简。

(2)如果被开方数是小数就化成分数,带分数化成假分数,是多项式就先分解因式。

4.同类二次根式:二次根式化成最简二次根式后,被开方数相同的几个二次根式就是同类二次根式。

5、二次根式有关公式 (1))0()(2≥=a a a (2)⎩⎨⎧<-≥==)0a (a )0a (aa a 2(3)乘法公式)0,0(≥≥∙=b a b a ab (4)除法公式(0,0)a aa b b b=≥> (5)完全平方公式222()2a b a ab b ±=++ 平方差公式:22()()a b a b a b -=+- (6)01(0)a a =≠ 1-=nn aa6、二次根式的加减法则:先将二次根式化为最简,再将被开方数相同的二次根式进行合并。

7、二次根式混合运算顺序:先乘方,再乘除,最后加减,有括号的先算括号里的。

二次根式计算的最后结果必须化为最简二次根式.第十七章 勾股定理1.勾股定理:如果直角三角形的两直角边长分别为a ,b ,斜边长为c ,那么a 2+b 2=c 2。

①已知a ,b ,求c ,则c=22a b + ②已知a ,c ,求b,则b=22c a -③已知b ,c 求a ,则a=22c b - 没有指明直角边和斜边时要分类讨论2.勾股定理逆定理:如果一个三角形三边长a,b,c 满足a 2+b 2=c 2。

新人教版八年级下册数学期末知识点复习提纲

新人教版八年级下册数学期末知识点复习提纲

八年级数学下册知识点总结第十六章 二次根式1.二次根式:式子a (a ≥0)叫做二次根式。

2.二次根式有意义的条件: 大于或等于0。

3.二次根式的双重非负性:a :①0≥a ,②0≥a 附:具有非负性的式子:①0≥a ;②0≥a ;③02≥a4.最简二次根式:必须同时满足下列条件:⑴被开方数中不含开方开的尽的因数或因式; ⑵被开方数中不含分母; ⑶分母中不含根式。

5.同类二次根式:二次根式化成最简二次根式后,若被 相同,则这几个二次根式就是同类二次根式。

6.二次根式的性质:(1)(a )2=a (a ≥0); (2)==a a 2 7.二次根式的运算:(1)二次根式的加减法:先把二次根式化成最简二次根式再合并同类二次根式. (2)二次根式的乘除法:二次根式相乘(除),将被开方数相乘(除),所得的积(商)仍作积(商)的被开方数并将运算结果化为最简二次根式.=·(a≥0,b ≥0);(b ≥0,a>0). (3)有理数的加法交换律、结合律,乘法交换律及结合律,•乘法对加法的分配律以及多项式的乘法公式,都适用于二次根式的运算.【典型例题】1、概念与性质 例1下列各式1), 其中是二次根式的是_________(填序号).例2、求下列二次根式中字母的取值范围(1)x x --+315; (2)22)-(xab a b b ba a=22211,2)5,3)2,4)4,5)(),6)1,7)2153x a a a --+---+(>0)(<0)0 (=0);例3、 在根式1) ,最简二次根式是( ) A.1) 2) B .3) 4) C.1) 3) D.1) 4) 例4、已知:的值。

求代数式22,211881-+-+++-+-=x yy x xy y x x x y例5、 (2009龙岩)已知数a ,b ,若=b -a,则 ( )A. a >bB. a <bC. a≥bD. a≤b 2、二次根式的化简与计算 例1. 将根号外的a移到根号内,得 ( ) A.; B. -; C . -; D.例2. 把(a-b)错误!未定义书签。

人教版八年级数学下册第16章二次根式重难点详解

人教版八年级数学下册第16章二次根式重难点详解

点拨:观察发现已知条件 x, y中的 5 与2
5 2 是一对相反数,而所求式子是这
两个数的平方和与这两个数的乘积的差,故可由已知转变条件,运用完全平方式
简化求值.
栏目名:错题集
解二次根式常见错误分类解析
一、审题不清导致错误 例 1 16 的平方根是______ .
错解: 16 的平方根是 4.
诊断:错把 16 的平方根当成 16 的平方根。

栏目名:期末练兵
综合练习题
一、选择题(每小题 3 分,共 30 分)
1.下列各式正确的是(

A. 4 2; B. (6)2 6; C. 7 5 7 5; .
D. 52 5
2.下列各式中属于最简二次根式的是( )
A. 27
B. 5
C. 12
3.在下列各组根式中,是同类二次根式的是(
剖析:二次根式 a 中 a 的取值范围为 a 0 ,从而 a 0 。
解:∵ x3 2x2 0; ∴ x x 2 0
而 x 2 0,x 0 即 x 0. 又 x 2 0, x 2
∴ x 的取值范围是 2 x 0 。
例 2 数 a、 b 在 数 轴 上 的 位 置 如 图 所
正解: 5 2 3 5 2 3 15 2 3
3
3
十、乱用运算律导致错误
例 11 计算 6 3 2 .
错解:原式= 6 ÷ 3 + 6 ÷ 2 = 2 3 。
诊断:除法没有分配律,本题应分母有理化。
正解: 6 3 2 =
6
6 3 2
诊断:当一个式子与一个多项式相乘时,多项式应注意添括号.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次根式的知识点汇总
知识点一: 二次根式的概念
形如()的式子叫做二次根式。

注:在二次根式中,被开放数可以是数,也可以是单项式、多项式、分式等代数式,但必须注意:因为负数没有平方根,所以

为二次根式的前提条件,如


等是二次根式,而


都不是二次根式。

例1.下列式子,哪些是二次根式,哪些不是二次根式:2、33、
1
x
、x (x>0)、0、42、-2、1x y +、
x y +(x ≥0,y•≥0)
. 分析:二次根式应满足两个条件:第一,有二次根号“”;第二,被开方数是正数或0.
知识点二:取值范围
1、 二次根式有意义的条件:由二次根式的意义可知,当a ≧0时,
有意义,是二次根式,所以要使二次根式
有意义,只要使被开方数大于或等于零即可。

2、 二次根式无意义的条件:因负数没有算术平方根,所以当a ﹤0时,没有意义。

例2.当x 是多少时,31x -在实数范围内有意义?
例3.当x 是多少时,23x ++1
1
x +在实数范围内有意义? 知识点三:二次根式

)的非负性

)表示a 的算术平方根,也就是说,

)是一个非负数,即
0()。

注:因为二次根式()表示a 的算术平方根,而正数的算术平方根是正数,0的算术平方根是0,所以非负
数(
)的算术平方根是非负数,即
0(
),这个性质也就是非负数的算术平方根的性质,和绝对值、
偶次方类似。

这个性质在解答题目时应用较多,如若
,则a=0,b=0;若
,则a=0,b=0;若
,则a=0,b=0。

例4(1)已知y=2x -2x -,求
x
y
的值.(2)1a +1b -=0,求a 2004+b 2004的值
知识点四:二次根式()的性质
()
文字语言叙述为:一个非负数的算术平方根的平方等于这个非负数。

注:二次根式的性质公式()是逆用平方根的定义得出的结论。

上面的公式也可以反过来应用:若,
则,如:,.
例1 计算 1.(
32)2 2.(35)2 3.(56)2 4.(72
)2
例2在实数范围内分解下列因式:
(1)x 2-3 (2)x 4-4 (3) 2x 2-3 知识点五:二次根式的性质
文字语言叙述为:一个数的平方的算术平方根等于这个数的绝对值。

注:
1、化简时,一定要弄明白被开方数的底数a 是正数还是负数,若是正数或0,则等于a 本身,
即;若a 是负数,则等于a 的相反数-a,即;
2、中的a 的取值范围可以是任意实数,即不论a 取何值,一定有意义;
3、化简时,先将它化成,再根据绝对值的意义来进行化简。

例1 化简
(19 (22(4)- (325 (42
(3)-例2 填空:当a ≥02a ;当a<02a ,•并根据这一性质回答下列问题. (12a ,则a 可以是什么数?(22a ,则a 是什么数? (32a ,则a 是什么数?
例3当x>2,化简2(2)x --2(12)x -.
知识点六:与的异同点
1、不同点:与表示的意义是不同的,
表示一个正数a 的算术平方根的平方,而表示一个实数a 的平方的算术平方根;在

,而
中a 可以是正实数,0,负实数。



都是非负数,
即,。

因而它的运算的结果是有差别的, ,而
2、相同点:当被开方数都是非负数,即时,=;时,无意义,而.
知识点七:二次根式的乘除
1、 a b =ab (a ≥0,b ≥0) ab =a ·b (a ≥0,b ≥0)
2a b =a
b (a ≥0,b>0) a
b =a b (a ≥0,b>0)
(思考:b 的取值与a 相同吗?为什么?不相同,因为b 在分母,所以不能为0) 例1.计算
(1)57 (2139 (3927 (412
6 例2 化简
(1916⨯ (21681⨯ (3229x y (454 例3.判断下列各式是否正确,不正确的请予以改正: (1(4)(9)49-⨯-=-- (2124
2525=412252512
25
25123 例4.计算:(112
3
(23128 (311416 (4648 例5.化简:
(1364 (22
2
649b a
(32964x y (425169x y 例6.9966
x x
x x --=--,且x 为偶数,求(1+x 22
541x x x -+-的值.
3、最简二次根式应满足的条件:
(1)被开方数不含分母或分母中不含二次根式;
(2)被开方数中不含开得尽方的因数或因式
(熟记20以内数的平方;因数或因式间是乘积的关系,当被开方数是整式时要先判断是否能够分解因式,然后再观察各个因式的指数是否是2(或2的倍数),若是则说明含有能开方的因式,则不满足条件,就不是最简二次根式)
例1.把下列二次根式化为最简二次根式(1)
5
3
12
; (2) 2442
x y x y
; (3) 23
8x y
4、化简最简二次根式的方法:
(1) 把被开方数(或根号下的代数式)化成积的形式,即分解因式;
(2) 化去根号内的分母(或分母中的根号),即分母有理化;
(3) 将根号内能开得尽方的因数(或因式)开出来.(此步需要特别注意的是:开到根号外的时候要带绝对值,注意符
号问题)
5.有理化因式:一般常见的互为有理化因式有如下几类:
①与;②与;
③与;④与.
说明:利用有理化因式的特点可以将分母有理化.
13、同类二次根式:被开方数相同的(最简)二次根式叫同类二次根式。

判断是否是同类二次根式时务必将各个根式都化为最简二次根式。

如8与18
知识点八:二次根式的加减
1、二次根式的加减法:先把各个二次根式化为最简二次根式,再把被开方数相同的二次根式(即同类二次根式)进行合并。

(合并方法为:将系数相加减,二次根式部分不变),不能合并的直接抄下来。

例1.计算(1)8+18(2)16x+64x
分析:第一步,将不是最简二次根式的项化为最简二次根式;第二步,将相同的最简二次根式进行合并.
解:(1)8+18=22+32=(2+3)2=52
(2)16x+64x=4x+8x=(4+8)x=12x
例2.计算
(1)348-91
3
+312(2)(48+20)+(12-5)
例3.已知4x2+y2-4x-6y+10=0,求(2
9
3
x x+y2
3
x
y
)-(x2
1
x
-5x
y
x
)的值.
2、二次根式的混合运算:先计算括号内,再乘方(开方),再乘除,再加减
3、二次根式的比较:(1)若,则有;(2)若,则有.
(3)将两个根式都平方,比较平方后的大小,对应平方前的大小
例4.比较125的大小。

相关文档
最新文档