2020 新高考 数学 开放性试题题型专练(解析版110页)
2020年全国统一考试高考数学试卷及其详细解析(理科)(新课标ⅲ)

2020年全国统一高考数学试卷(理科)(新课标Ⅲ)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合{(,)|A x y x=,*y N∈,}y x,{(,)|8}B x y x y=+=,则A B中元素的个数为()A.2 B.3 C.4 D.62.复数113i-的虚部是()A.310-B.110-C.110D.3103.在一组样本数据中,1,2,3,4出现的频率分别为1p,2p,3p,4p,且411iip==∑,则下面四种情形中,对应样本的标准差最大的一组是()A.140.1p p==,230.4p p==B.140.4p p==,230.1p p==C.140.2p p==,230.3p p==D.140.3p p==,230.2p p==4.Logistic模型是常用数学模型之一,可应用于流行病学领域.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数()(I t t的单位:天)的Logistic模型:0.23(53)()1tKI te--=+,其中K为最大确诊病例数.当*()0.95I t K=时,标志着已初步遏制疫情,则*t约为( )(193)ln≈A.60 B.63 C.66 D.695.设O为坐标原点,直线2x=与抛物线2:2(0)C y px p=>交于D,E两点,若OD OE⊥,则C的焦点坐标为()A.1(4,0)B.1(2,0)C.(1,0)D.(2,0)6.已知向量a,b满足||5a=,||6b=,6a b=-,则cos a<,(a b+>=) A.3135-B.1935-C.1735D.19357.在ABC∆中,2cos3C=,4AC=,3BC=,则cos(B=)A.19B.13C.12D.238.如图为某几何体的三视图,则该几何体的表面积是()A.642+B.442+C.63+D.43+初高中数学学习资料的店初高中数学学习资料的店11.设双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点分别为1F ,2F ,.P 是C上一点,且12F P F P ⊥.若△12PF F 的面积为4,则(a = )A .1B .2C .4D .8 12.已知5458<,45138<.设5log 3a =,8log 5b =,13log 8c =,则( ) A .a b c <<B .b a c <<C .b c a <<D .c a b <<9.已知2tan tan()74πθθ-+=,则tan (θ= )A .2-B .1-C .1D .210.若直线l与曲线y =和圆2215x y +=都相切,则l 的方程为( )A .21y x =+B .122y x =+C .112y x =+D .1122y x =+二、填空题:本题共4小题,每小题5分,共20分。
2024年高考数学复习大题全题型专练:专题02 裂项相消求和(解析版)

专题2裂项相消求和1.(2022·湖北·大冶市第一中学模拟预测)已知数列 n a 的前n 项和为n S ,111a ,29a ,且 11222n n n S S S n .(1)求数列 n a 的通项公式;(2)已知11n n n b a a,求数列 n b 的前n 项和n T .【答案】(1)213n a n (2)12122n n【解析】【分析】(1)根据1n n n a S S 以及 11222n n n S S S n 可得该数列是等差数列,然后根据等差数列的1a 、d 写出数列的通项公式即可.(2)有题意可知1213211n b n n,然后根据裂项求和即可求得n T .(1)由题意得:由题意知 112n n n n S S S S ,则 122n n a a n 又212a a ,所以 n a 是公差为2的等差数列,则 11213n a a n d n ;(2)由题知11112132112213211n b n n n n则1111111111211997213211211211n T n n n 12122n n2.(2022·青海·海东市第一中学模拟预测(文))已知正项数列 n a 满足2123232n a a a na n n ,且 211nn n n a b n n.(1)求数列 n a 的通项公式;(2)求数列 n b 的前n 项和n S .【答案】(1)21n n a n(2)(3)21n n n nS n【解析】【分析】(1)根据2123232n a a a na n n ,即可得到2123123(1)(1)2(1)n a a a n a n n (2n ),两式作差即可得解;(2)依题意可得1111n b n n n,利用分组求和及裂项相消法求和即可;(1)解:因为2123232n a a a na n n ,①当2n 时,2123123(1)(1)2(1)n a a a n a n n .②① ②得21n na n ,所以21n n a n.当1n 时,13a ,也满足上式,所以21n n a n.(2)解:因为(2)(1)1n n a n n b n n,则221211111111(1)(1)1n n a n b n n n n n n n n n n n n n,则11111(3)2311223121n n n n S n n n n.3.(2022·山东·德州市教育科学研究院三模)已知数列 n a 的前n 项和为n S ,13a ,*112n n S n a n N .(1)求数列 n a 的通项公式n a 和前n 项和n S ;(2)设*22111k k k b k S SN ,数列 n b 的前n 项和记为n T ,证明:*16n T n N .【答案】(1)3,21,N 1,2n n k a k n k,2,21,N ,2n n n k S k n n k(2)证明见解析【解析】【分析】(1)根据11n n n S S a 代入整理得12n n a a ,结合13a 理解处理;(2)代入整理得11122123n b n n,利用裂项相消进行求和.(1)由 112n n S n a,得*111(1)12n n S n a n N 两式相减可得12n n a a ,因为13a ,得21a 数列 n a 为3,1 ,3,1 ,3,1 ,3,即3,21,N 1,2n n k a k n k,当n 为偶数时,[3(1)]2n nS n ;当n 为奇数时,1[3(1)]322n n S n;2,21,N ,2n n n k S k n n k(2)由*22111k k k b k S S N 则有 221111111(21)(23)22123n n n b S S n n n n所以1111111235572123n T n n,111123236n n T4.(2022·河南·平顶山市第一高级中学模拟预测(文))已知数列 n a 的前n 项和为n S ,且 222n n S n a .(1)求数列 n a 的通项公式;(2)若数列21n a的前n 项和为n T ,求证:23n T .【答案】(1)*1n a n n N(2)证明见解析【解析】【分析】(1)先根据 222n n S n a 和an =Sn -Sn -1(n ≥2),推出数列{an }的递推公式,再求an .(2)根据21n a的通项公式的结构形式,结合裂项求和法进行适当放缩,再求和,即可证得结果.(1)当1n 时, 112122S a ,即12a .当2n 时, 222n n S n a ①,111212212n n n S n a n a ②,由①-②,得 1221n n n a n a n a ,即 11n n na n a .所以11n n a a n n ,且112a ,所以数列1n a n为常数列,所以11n a n ,即*1n a n n N .(2)证明:由(1)得*1n a n n N ,所以 22221144411221232123141411n a n n n n n n n,所以2222111111111111222223435577921231n T n n n111111111122235577921233233n n n.5.(2022·辽宁·渤海大学附属高级中学模拟预测)等比数列 n a 中,首项11a ,前n 项和为n S ,且满足 1344a a S .(1)求数列 n a 的通项公式;(2)若31(1)log n n b n a ,求数列242n n b的前n 项和n T .【答案】(1)13n (2)222(1)n【解析】【分析】(1)根据等比数列求解公比即可;(2)根据题意得22242112(1)n n b n n,再裂项求和即可.(1)设数列 n a 公比为q ,由11a , 1344a a S ,可得32330q q q ,化简得2130q q ,即3q ,所以13 n n a .(2)由(1)得3(1)log 3(1)n n b n n n ,所以222224242112(1)(1)n n n b n n n n所以22222111112122223(1)n T n n22222211111221222311n n n..6.(2022·江苏无锡·模拟预测)已知数列{}n a 满足:12(1),=,2n n a n n a n n为奇数为偶数*()N n (1)求1a 、3a 、5a ;(2)将数列{}n a 中下标为奇数的项依次取出,构成新数列{}m b ()m *N ,①证明:m b m是等差数列;②设数列+11m b的前m 项和为m S ,求证:12m S .【答案】(1)10a ;34a ;512a (2)①证明见解析;②证明见解析【解析】【分析】(1)根据12(1),=,2n n a n n a n n为奇数为偶数求解;(2)①利用等差数列的定义证明;②利用裂项相消法求解.(1)由题意知:21222202a a ,23444442a a ,256666122a a ;(2)①当n 为奇数时,n +1为偶数,221111122n n n n a a n n,221211212m m m b a m m,2122m m m b m m m,当2m 时,1(22)[2(1)2]21m m b bm m m m ,m b m是以11011b a 为首项,2为公差的等差数列.②由①知12(1)(N )m b m m m,111111(2(1)21m b m m m m,11111111[(1)()((1)2223121m S m m m ,11122(1)2m .7.(2022·河南·模拟预测(文))已知数列{an }对任意的n ∈N *都满足312233333n n a a a a n .(1)求数列{an }的通项公式;(2)令bn =3413431log log n n a a ,求数列{bn }的前n 项和为Tn .【答案】(1)3n n a (2)1114343n T n【解析】【分析】(1)根据题干中的已知条件可得当1n 时,13a ,当2n 时,13nna ,即可求解数列 n a 的通项公式;(2)代入3n n a 化简数列 nb ,利用裂项相消法即可求解数列 n b 的前n 项和n T .(1)解:∵312233333n n a a a a n ,∴当1n 时,13a ,当2n 时,3-11223-113333n n a a a a n ,从而有13n na ,即当2n 时,3nna ,又13a 满足上式,故数列 n a 的通项公式为3n n a .(2)解:由题可知, 414334134333111=log log log 3log 34143n n n n n b a a n n ,所以1111=414344143n b n n n n,111111111437471144143n T n n,所以1114343n T n.8.(2022·青海·海东市第一中学模拟预测(理))设数列 n a 的前n 项和为n S ,24n n S a n .(1)证明:数列 1n a 是等比数列.(2)若数列12n n n a a的前m 项和170513m T,求m 的值.【答案】(1)证明见解析(2)8【解析】【分析】(1)根据n S 与n a 的关系式化简证明;(2)由(1)得数列 n a 的通项公式为21nn a .所以112112121n n n n n a a ,继而求和计算.(1)当1n 时,1123a a ,13a .当2n 时, 11214n n S a n ,两式相减得121n n a a ,即 1121n n a a ,112a ,则数列 1n a 是首项为2,公比为2的等比数列.(2)由(1)得12n n a ,21n n a ,当1n 时,1213a ,数列 n a 的通项公式为21n n a .111221121212121n n n n n n n n a a ,11111111111135599172121321m m m m T ,令111170321513m ,得121513m ,解得8m .9.(2022·青海·大通回族土族自治县教学研究室三模(理))若n S 为数列 n a 的前n 项和,12a ,且*121n n S S n N .(1)求数列 n a 的通项公式;(2)若*221log n n b a n N ,求数列11n n b b的前n 项和n T .【答案】(1)2n n a (2)n T 21nn【解析】【分析】(1)由 121n n S S ,利用数列通项和前n 项和的关系结合等比数列的定义求解;(2)由(1)得到111(21)(21)n n b b n n 11122121n n,再利用裂项相消法求解.(1)解:因为 121n n S S ①,*n N ,当2n 时, 121n n S S ②,由①②可得 112121n n n n S S S S ,即12(2)n n a a n .1n 时,122a a S 112222S a ,又12a ,所以24a ,所以*12n n a a n N ,所以12n na a ,所以数列 n a 是等比数列,且首项为2,公比为2.所以2n n a .(2)由(1)知221log 21n n b a n ,所以111(21)(21)n n b b n n 11122121n n,所以12233411111n n n T b b b b b b b b ,1111111112335572121n n,111221n ,21n n .10.(2022·重庆·模拟预测)已知数列 n a 的前n 项和为Sn ,111a ,29a =-,且11222n n n S S S n ()(1)求数列{an }的通项公式;(2)设11n n n b a a,数列{bn }的前n 项和为Tn ,求使得Tn >0的n 的最大值.【答案】(1)an =2n ﹣13(2)5【解析】【分析】(1)消去Sn 得到an +1﹣an =2,即可判断出{an }是公差为2的等差数列,求出通项公式;(2)利用裂项相消法求出111211211n T n,列不等式即可求解.(1)由题意知(Sn +1﹣Sn )﹣(Sn ﹣Sn ﹣1)=2,解得an +1﹣an =2(n ≥2),又a 2﹣a 1=2,所以{an }是公差为2的等差数列,则an =a 1+(n ﹣1)d =2n ﹣13;(2)由题知1111((213)(211)2213211n b n n n n,则121111111211997213211111211211111211211n nT b b b n n n n由0n T 得11201121111(211)n n n ,解得1102n ,所以n 的最大值为5.11.(2022·广东·模拟预测)定义:对于任意一个有穷数列,第一次在其每相邻的两项间都插人这两项的和,得到的新数列称之为一阶和数列,如果在一阶和数列的基础上再在其相邻的两项间插入这两项的和称之为二阶和数列,以此类推可以得到n 阶和数列,如{1,5}的一阶和数列是{1,6,5},设它的n 阶和数列各项和为n S .(1)试求{1,5}的二阶和数列各项和2S 与三阶和数列各项和3S ,并猜想n S 的通项公式(无需证明);(2)若 311log 3log 33n n n c S S,求 n c 的前n 项和n T ,并证明:1126n T .【答案】(1)21263 S ,12312633 S ,133n n S (2)1122n T n ,证明见解析【解析】【分析】(1)根据定义求出{1,5}的二阶和数列各项和2S 与三阶和数列各项和3S ,由此归纳出n S ,(2)由(1)化简n c ,再由裂项相消法求其前n 项和,并完成证明.(1)由题意得,116512S ,217611512181263S ,2123187136171116512185412636312633S ,41981572013196231728112716215S 1218541622312636363 123126333 ,…12311263333(1)n n S n ,由等比数列的前n 项和公式可得, 113131263313n n n S ,所以 n S 的通项公式133n n S .(2)由于133n n S ,所以 33111111log 3log 31221n n n c S S n n n n,则1111111132432122n T n n n,因为n N ,所以102n ,所以111222n ,又n T 随n 的增大而减小,所以当1n 时,n T 取得最大值16,故1126n T .12.(2022·四川·绵阳中学实验学校模拟预测(文))已知n S 是数列 n a 的前n 项和,且21n S n n .(1)求 n a 的通项公式.(2)若11n n n b a a,n T 是 n b 的前n 项和,求5T .【答案】(1)3,12,2n n a n n(2)16【解析】【分析】(1)由1(2)n n n a S S n 求通项公式,注意11a S ;(2)从第2项向后用裂项相消法求和.(1)2n 时,2211(1)(1)12n n n a S S n n n n n ,113a S ,所以3,12,2n n a n n ;(2)2n 时,1111()4(1)41n b n n n n,1121113412b a a ,所以11111111[()()(12423341n T n n11128(1)n n ,所以514112866T .13.(2022·江苏·扬州中学模拟预测)已知正项递增的等比数列 n a 满足1330a a ,29a .(1)求 n a 的通项公式;(2)设12311nn n n b a a , n b 的前n 项和为n T ,求n T .【答案】(1)3nn a (2)111431n n T 【解析】【分析】(1)根据已知条件及等比数列通项公式即可求解;(2)根据(1)知3n n a ,得出数列n b ,利用裂项相消法即可求解.(1)设等比数列 n a 的公比为q ,则因为数列 n a 为正项递增等比数列,所以1q ,又1330a a ∵,29a ,∴ 2111309a q a q ,解得133a q ,或12713a q(舍);所以等比数列 n a 的通项公式为111333n n n n a a q .(2)由(1)知3n n a ,所以 1112323111131313131n n n n n n n n n b a a ,所以122231111111313131313131n n n n T b b b111431n .所以 n b 的前n 项和为111431n .14.(2022·天津市滨海新区塘沽第一中学三模)已知数列 n a , n b ,已知对于任意*n N ,都有1n n a ,数列{}n b 是等差数列,11b ,且25b ,41b ,63b 成等比数列.(1)求数列 n a 和 n b 的通项公式;(2)记 *2,21,2n n n a n k c k N b n k .(ⅰ)求13213212log log n i i i c c ;(ⅱ)求211nk k k cc .【答案】(1)3n n a ;21n b n (2)(ⅰ)1121n ;(ⅱ)175402591648n n【解析】【分析】(1)利用等差数列的通项公式及等比中项的性质即可求解;(2)(ⅰ)利用裂项相消法求和即可,(ⅱ)将相邻两项合并成一项,再利用错位相减法求和即可.(1)设数列 n b 的公差为d ,∵25b ,41b ,63b 成等比数列,且11b ,∴ 2426153b b b ,即 223625d d d ,解得2d ,则 12121n b n n ,即13n n n n a ,(2)(ⅰ)由(1)可知,*3,211,2n n n k c k N n n k ,则335212113213213333332222=log log log 3log 3log 3log 3log 3log 3nn n i i i c c 22213352121n n 1111113352121n n1121n ;(ⅱ)由题意,对*n N ,21221212121211222213310213n n n n n n n n n n c c c c n n c c c 102193n n ,设219n n 的前n 项为 n R ,所以 2939219n n R n ,则 2319939219n n R n ,则 212311998929992199221919n n n n n R n n 14558944n n ,所以1458593232n n n R,即211110754025931648nn k k n k n c c R.15.(2022·浙江省杭州学军中学模拟预测)已知数列 n a 的前n 项和为n S ,114a ,且2*1,21n n n S a n n N .(1)求2a 的值,并证明:数列21n a n是一个常数列;(2)设数列 n b满足n bn b 的前n 项和为n T,若2 k T ,求正整数k 的值.【答案】(1)234a,证明见解析.(2)1,2,3k .【解析】【分析】(1)利用1n n n a S S 得到n a 与1n a 的关系,构造数列21n a n即可.(2)先求出n S ,得到8(1)n b n n,裂项求和得到n T ,代入解不等式.(1)当1n 时,1213S a 得:234a .当2n 时,21(1)21 n n n S a n ,则221(1)2121n n n n n a a a n n ,得121212134n n a a a n n ,又1114a 符合上式,即数列21n a n是一个常数列.(2)由(1)可知:2121,44 n n n n a S ,即8118(1)1n b n n n n .12188111k k k T b b b k k ,则8(1)21 k k T k k ,得:13k .即1,2,3k .16.(2022·江苏·南京市江宁高级中学模拟预测)已知数列{}n a 满足11a ,1|121|n n n a a a ,*n N .(1)求4a 的值并求数列{}n a 的通项公式;(2)若333432log log ...log n n b a a a ,求数列1{}nb 的前n 项和.【答案】(1)49a ,21,13,2n n n n a ;(2)21n n .【解析】【分析】(1)根据已知条件及数列的递推公式,取项数n 可得出数列的各项,再利用等比数列的通项公式即可求解;(2)根据对数的运算性质,再利用裂项相消法即可求解.(1)因为1|121|n n n a a a ,又11a ,所以2111211a a a -++,3221213a a a -++,4331219a a a -++.当2n 时,12211n n a a a ,所以1n a ,从而11211213n n n n n n a a a a a a +-,所以数列{}n a 是以首项为21a ,公比为3的等比数列,于是有 221332n n n a n ,又因为11a ,不满足上式,所以数列{}n a 的通项公式为21,13,2n n n n a .(2)由(1)知, 221332n n n a n ,334323lo l 1og g 2n n b a a a n +++l og +=(1)2n n ,故1n b =22n n =1121n n.所以121111112212211113n n b n b b n n 所以数列1n b的前n 项和为21n n .17.(2022·全国·高考真题)记n S 为数列 n a 的前n 项和,已知11,n n S a a 是公差为13的等差数列.(1)求 n a 的通项公式;(2)证明:121112na a a .【答案】(1) 12n n n a(2)见解析【解析】【分析】(1)利用等差数列的通项公式求得 121133n n S n n a ,得到 23n n n a S ,利用和与项的关系得到当2n 时, 112133n n n n n n a n a a S S ,进而得:111n n a n a n ,利用累乘法求得 12n n n a ,检验对于1n 也成立,得到 n a 的通项公式 12n n n a ;(2)由(1)的结论,利用裂项求和法得到121111211n a a a n,进而证得.(1)∵11a ,∴111S a ,∴111S a ,又∵n n S a 是公差为13的等差数列,∴ 121133n n S n n a ,∴ 23n n n a S ,∴当2n 时, 1113n n n a S,∴ 112133n n n n n n a n a a S S ,整理得: 111n n n a n a ,即111n n a n a n ,∴31211221n n n n n a a a a a a a a a a1341123212n n n n n n ,显然对于1n 也成立,∴ n a 的通项公式 12n n n a;(2)12112,11n a n n n n ∴12111n a a a 1111112121222311n n n18.(2022·天津·耀华中学二模)已知 n a 为等差数列,前n 项和为n S , *n N , n b 是首项为2的等比数列,且公比大于0,2312b b ,335b a a ,6112b S .(1)求 n a 和 n b 的通项公式;(2)设10c ,11ln 1n n c c n,*n N ,求n c ;(3)设1113,21ln ,2n n n n n nc n k bd a a n k b ,其中*k N .求 n d 的前2n 项和2n T .【答案】(1)n a n ,2n n b ;(2)ln n c n ;(3)ln(21)4nn .【解析】【分析】(1)根据等差数列的通项公式、前n 项和公式,结合等比数列的通项公式进行求解即可;(2)运用累和法,结合对数的运算性质进行求解即可;(3)根据(1)(2)的结论,结合裂项相消法进行求解即可.(1)设等差数列的公差为d ,等比数列的公比为(0)q q ,由2231222122b b q q q ,或3q 舍去,所以1222n n n b ;35413428434a a b a d a a ,6111121111102642b S a d ,解得:11a d ,即1(1)1n a n n ,所以有n a n ,2n n b ;(2)因为111ln 1ln n n n c c n n,所以当*2,n n N 时,有112211()()()n n n n n c c c c c c c c 12(1)2ln ln ln ln ln 121(1)(2)1n n n n n n n n n ,显然当1n 时也适合,即ln n c n ;(3)由(1)(2)可知:n a n ,2n n b ,ln n c n .当21n k ,*k N 时,2123ln(21)2k k k d,当2n k ,*k N 时,2221ln 212k k k k d ,122221ln 3ln(21)4ln(21)ln(21)21224k k k k k k k k k k d d,21234ln1ln 34ln 3ln 54ln 5ln 74ln(21)ln(21)4444n n n n T112231ln 3ln 3ln 5ln 54ln 7ln(21)ln(21)04444444n n n nln(21)4nn .【点睛】关键点睛:运用裂项相消法是解题的关键.19.(2022·湖北省仙桃中学模拟预测)已知数列{}n a 为等比数列,且6431316,32a a a a (1)求{}n a 的通项公式;(2)若(1)(1)n n n a b n n ,{}n b 的前n 项和为n T ,求满足8n T 的最小正整数n 【答案】(1)2nn a (2)5(1)列方程组求得等比数列{}n a 首项、公比,进而求得其通项公式;(2)先化简{}n b 的通项公式,利用裂项相消法求得{}n b 的前n 项和为n T ,再解8n T ,即可求得满足不等式的最小正整数n .(1)设等比数列{}n a 首项为1a ,公比为q ,则531121131632a q a q a q a ,解之得122a q ,则等比数列{}n a 的通项公式2nn a (2)由2nn a ,可得1(1)2121222(1)111n n n n n n n a b a n n n n n n n n 则{}n b 的前n 项和232435411222222222222232435411n n n n T n n n由12281n n T n ,可得1210100n n 令 1()210101N x f x x x x ,,则1()2ln 2101N x f x x x ,由1()2ln 2100x f x ,可得210log 1 2.85ln 2x由1()2ln 2100x f x ,可得210log 1 2.85ln 2x则有()f x 在 1,2.85单调递减,在 2.85, 单调递增又2(1)21010160f ,5(4)24010180f ,6(5)2501040f 则0(1)(2)f f ,(3)(4)0(5)()f f f f n 即由不等式1210100n n ,可得5,Nn n 则满足8n T 的最小正整数为520.(2022·全国·高考真题)已知函数()e e ax x f x x .(1)当1a 时,讨论()f x 的单调性;(2)当0x 时,()1f x ,求a 的取值范围;(3)设n Nln(1)n .【答案】(1) f x 的减区间为 ,0 ,增区间为 0, .(2)12a【分析】(1)求出()f x ¢,讨论其符号后可得 f x 的单调性.(2)设 e e 1ax x h x x ,求出 h x ,先讨论12a 时题设中的不等式不成立,再就102a 结合放缩法讨论 h x 符号,最后就0a 结合放缩法讨论 h x 的范围后可得参数的取值范围.(3)由(2)可得12ln t tt 对任意的1t 恒成立,从而可得 ln 1ln n n*n N 恒成立,结合裂项相消法可证题设中的不等式.(1)当1a 时, 1e x f x x ,则 e x f x x ,当0x 时,()0f x ¢<,当0x 时,()0f x ¢>,故 f x 的减区间为 ,0 ,增区间为 0, .(2)设 e e 1ax x h x x ,则 00h ,又 1e e ax x h x ax ,设 1e e ax x g x ax ,则22e e ax x g x a a x ,若12a ,则 0210g a ,因为 g x 为连续不间断函数,故存在 00,x ,使得 00,x x ,总有()0g x ¢>,故 g x 在 00,x 为增函数,故 00g x g ,故 h x 在 00,x 为增函数,故 01h x h ,与题设矛盾.若102a ,则 ln 11e e e e ax ax ax x x h x ax ,下证:对任意0x ,总有 ln 1x x 成立,证明:设 ln 1S x x x ,故 11011x S x x x,故 S x 在 0, 上为减函数,故 00S x S 即 ln 1x x 成立.由上述不等式有 ln 12e e e e e e 0ax ax x ax ax x ax x ,故 0h x 总成立,即 h x 在 0, 上为减函数,所以 01h x h .当0a 时,有 e e e 1100ax x ax h x ax ,所以 h x 在 0, 上为减函数,所以 01h x h .综上,12a.(3)取12a ,则0x ,总有12e e 10x x x 成立,令12e x t ,则21,e ,2ln x t t x t ,故22ln 1t t t 即12ln t t t 对任意的1t 恒成立.所以对任意的*n N ,有 整理得到:ln 1ln n nln 2ln1ln 3ln 2ln 1ln n n ln 1n ,故不等式成立.【点睛】思路点睛:函数参数的不等式的恒成立问题,应该利用导数讨论函数的单调性,注意结合端点处导数的符号合理分类讨论,导数背景下数列不等式的证明,应根据已有的函数不等式合理构建数列不等式.。
2020年普通高等学校招生全国统一考试数学试题(全国卷)(试做解析版)(1)

2020年普通高等学校招生全国统一考试理科数学(必修+选修II)一、选择题(1)复数1z i =+,z 为z 的共轭复数,则1zz z --= (A )2i - (B )i - (C )i (D )2i解:z =1i -,1zz z --=(1)i +(1)i --(1)1i +-=1+1-1-i -1=i - 故选B (2)函数2(0)y x x =≥的反函数为(A )2()4x y x R =∈ (B )2(0)4x y x =≥ (C )24y x =()x R ∈ (D )24(0)y x x =≥解:Q 2y x =得24y x = ∴24y x =故反函数为2(0)4x y x =≥ 故选B 。
(3)下面四个条件中,使a b >成立的充分而不必要的条件是 (A )1a b +> (B )1a b -> (C )22a b > (D )33a b >解:1a b +⇒>10a b a b ->⇒-> ,1a b a b a b ∴>>->反之不能推出故选A 。
(4)设n S 为等差数列{}n a 的前n 项和,若11a =,公差2d =,224A n S S +-=,则k =(A )8 (B )7 (C )6 (D )5解:221111(21)(11)2(21)k k k k S S a a a k d a k d a k d +++-=+=++-+++-=++21(21)244245k k k =⨯++⨯=+=⇒=故选D 。
(5)设函数()cos (0)f x x ωω=>,将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,则ω的最小值等于 (A )13(B )3 (C )6 (D )9解:()cos[()]cos 33f x x x ππωω-=-=即cos()cos 3x x ωπωω-= 22()663k k Z k ωπππω∴-=+∈⇒=--z 则1k =-时min 6ω=故选C(6)已知直二面角α− ι−β,点A ∈α,AC ⊥ι,C 为垂足,B ∈β, BD ⊥ι,D 为垂足.若AB=2,AC=BD=1,则D 到平面ABC 的距离等于 (A)2 (B)3 (C)6 (D) 1 (7)某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4位朋友每位朋友1本,则不同的赠送方法共有(A)4种 (B)10种 (C)18种 (D)20种解:选画册2本,集邮册2本,共有赠送方法246c =,选画册1本,集邮册3本,共有赠送方法144c =,故共有赠送方法4+6=10种,故选B(8)曲线y=2xe -+1在点(0,2)处的切线与直线y=0和y=x 围成的三角形的面积为(A)13 (B)12 (C)23(D)1 解:2'2xy e -=-Q ,2k =-Q ,切线方程为22y x -=-由232223x y x y x y ⎧=⎪=⎧⎪⎨⎨=-+⎩⎪=⎪⎩得 1222233s =⨯⨯= 故选C(9)设()f x 是周期为2的奇函数,当0≤x ≤1时,()f x =2(1)x x -,则5()2f -=(A) -12 (B)1 4- (C)14 (D)12解:5511()(2)()()2222f f f f -=-+=-=-Q 1112()(1)222=-⨯-=- 故选A(10)已知抛物线C :24y x =的焦点为F ,直线24y x =-与C 交于A ,B 两点.则cos AFB ∠=(A)45 (B)35 (C)35- (D)45-解:222421223OM OM =-=⇒=,在030Rt ONM OMN ∠=V中, 213,3132ON OM Rt ONB ∴==-=V 2在中,NB=4 213N S NB ππ∴==圆故选D(12)设向量a ,b ,c 满足a =b =1,a b g =12-,,a c b c --=060,则c 的最大值等于 (A)2 (B)3 (c)2 (D)1二、填空题:本大题共4小题,每小题5分,共20分把答案填在题中横线上 (注意:在.试卷上作答无效.......) (13)(1-x )20的二项展开式中,x 的系数与x 9的系数之差为: 0 .2y 2解:212020(1)()(1)r rr r rr r T c x c x +=-=-,令12,91822r rr r ====得得所以x 的系数为2222020(1)c c -=,91822020x c c =18的系数为(-1)故x 的系数与9x 的系数之差为220c -220c =0 (14)已知a ∈(2π,π),sin α5tan2α=43-解:Q a ∈(2π,π),sin α=55 2525cos 1sin 1()55a a =--=--=-Q 则tan α=5sin 15cos 2255a a ==--故tan2α=2212()2tan 142121tan 31()24a a ⨯--===---- (15)已知F 1、F 2分别为双曲线C : 29x - 227y =1的左、右焦点,点A ∈C ,点M 的坐标为(2,0),AM 为∠F 1AF 2∠的平分线.则|AF 2| = 6 .解:延长CB 、FE 交于M ,连结AM ,过B 作BN ⊥AM 于N ,连结EN ,则∠ENB 为平面AEF 与平面ABC 所成的二面角,AM=2AB ,1223,,tan 232ABEB BN AB Rt EBN ENB BN AB ∴=∠===V 在中 三.解答题:本大题共6小题,共70分解答应写出文字说明,证明过程或演算步骤 (17)(本小题满分l0分)(注意:在试题卷上作答无效.........) △ABC 的内角A 、B 、C 的对边分别为a 、b 、c.己知A —C =90°,a+c=2b ,求C. 解:由正弦定理得2sin ,2sin ,2sin a R A b R B c R C ===,由22sin 2sin 22sin a c b R A R C R B +=+=得,即sin sin 2A C B +=A+B+C=1800 ,0[180()]B A C ∴=-+,0sin sin 2()]A C A C ∴+=-+即sin sin 2)A C A C ∴+=+,由A-C=900 得A=900+C00sin(90)sin 2sin(902)c c c ∴++=+ 即00cos sin 22sin(45)cos(45)c c c c +=++00022sin(45)22sin(45)cos(45)c c c +=++ 01cos(45)2c ∴+=0456015c c ∴+=∴=(18)(本小题满分12分)(注意:在试题卷上作答无效.........) 根据以往统计资料,某地车主购买甲种保险的概率为0.5,购买乙种保险但不购买甲种保险的概率为0.3,设各车主购买保险相互独立(I)求该地1位车主至少购买甲、乙两种保险中的l 种的概率;(Ⅱ)X 表示该地的l00位车主中,甲、乙两种保险都不购买的车主数。
2020年高考数学多选一开放型综合解答题(详解答案)

已知 为虚数单位,复数 满足______,设 , , 在复平面上的对应点分别为 , , ,求 的面积.
10.在锐角△ABC中, ,________,
(1)求角A;
(2)求△ABC的周长l的范围.
注:在① ,且 ,② ,③ 这三个条件中任选一个,补充在上面问题中并对其进行求解.
平面PBD的一个法向量为 ;
二面角 为钝角:二面角 的余弦值为 .
选择③:(下面给出关键点供参考,若与上面建系相同,)
平面ABCD的法向量 ;
平面PBC的法向量 ;
二面角 为锐角;二面角 的余弦值为 .
(Ⅲ)假设棱BC上存在点F, .设 .
依题意,可知 , ,
, ,
, ,设 ,
则 ,而此方程组无解,
(1)求a的值;
(2)若D为BC上一点,且,求 的值.
从① ,② 这两个条件中任选一个,补充在上面问题中并作答.
7.在锐角△ABC中,a=2 ,_______,求△ABC的周长l的范围.
在① (﹣cos ,sin ), (cos ,sin ),且 • ,②cosA(2b﹣c)=acosC,③f(x)=cosxcos(x ) ,f(A)
3.△ABC的内角 的对边分别为 .已知 △ABC的面② 这两个条件中任选一个,补充在上面问题中并作答.如果选择多个条件分别解答,按第一个解答计分.
4.在△ABC中,a ,c ,________.(补充条件)
(1)求△ABC的面积;
如图,以D为原点, 所在直线分别为x,y,z轴,建立空间直角坐标系 ,
则 .
因为 平面 ,所以平面 的一个法向量为 .
而 , ,
设平面 的一个法向量为
则由 ,得 ,
2020年北京市高考数学试卷-解析版

2020年北京市高考数学试卷-解析版2020年北京市高考数学试卷一、选择题(本大题共10小题,共40.0分)1.已知集合A={−1,1,2},A={A|0<A<3},则A∩A=()A.{−1,1}B.{0,1}C.{−1,1,2}D.{1,2}2.在复平面内,复数z对应的点的坐标是(1,2),则A⋅A=()A.1+2AB.−2+AC.1−2AD.−2−A3.在(√A−2)的5的展开式中,A²的系数为()A.−5B.5C.−10D.104.某三棱柱的底面为正三角形,其三视图如图所示,该三棱柱的表面积为()A.6+√3B.6+2√3C.12+√3D.12+2√35.已知半径为1的圆经过点(3,4),则其圆心到原点的距离的最小值为()A.4B.5C.6D.76.已知函数A(A)=2A−A−1,则不等式A(A)>的解集是()A.(−1,1)B.(−∞,−1)∪(1,+∞)C.(0,1)D.(−∞,0)∪(1,+∞)7.设抛物线的顶点为O,焦点为F,准线为A。
A是抛物线上异于O的一点,过P作AA⊥A于Q,则线段FQ的垂直平分线()A.经过点OB.经过点PC.平行于直线OPD.垂直于直线OP8.在等差数列{AA}中,A1=−9,A5=−1.记AA=A1A2…AA(A=1,2,…),则数列{AA}()A.有最大项,有最小项B.有最大项,无最小项C.无最大项,有最小项D.无最大项,无最小项9.已知A,A∈A,则“存在A∈A使得A=AA+(−1)AA”是“AAAA=AAAA”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件10.2020年3月14日是全球首个国际圆周率日(AAAA)。
历史上,求圆周率A的方法有多种,与中国传统数学中的“割圆术”相似,数学家___的方法是:当正整数n充分大时,计算单位圆的内接正6n边形的周长和外切正6n边形(各边均与圆相切的正6n边形)的周长,将它们的算术平均数作为2A的近似值。
2020届新高考数学模拟试卷及答案解析(11)

2020届新高考数学模拟试题(11)一、单项选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{|11}A x x =-,则(A N = )A .{1}B .{0,1}C .{1-,1}D .{1-,0,1}2.已知i 是虚数单位,1(1)0()a i a R +->∈,复数2z a i =-,则1||(z=)A .15B .5C .5D 3.函数()y f x =是R 上的奇函数,当0x <时,()2x f x =,则当0x >时,()(f x =)A .2x-B .2x-C .2x--D .2x4.已知a R ∈,则“01a <<”是“x R ∀∈,2210ax ax ++>”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件5.已知向量(1,1)a = ,(1,3)b =- ,(2,1)c =,且()//a b c λ- ,则(λ=)A .3B .3-C .17D .17-6.将曲线()cos 2y f x x =上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移4π个单位长度,得到曲线cos 2y x =,则((6f π=)A .1B .1-C D .7.已知,1()(2),1lnx x f x f x k x ⎧=⎨-+<⎩,若函数()1y f x =-恰有一个零点,则实数k 的取值范围是()A .(1,)+∞B .[1,)+∞C .(,1)-∞D .(-∞,1]8.已知直线1:0()l kx y k R +=∈与直线2:220l x ky k -+-=相交于点A ,点B 是圆22(2)(3)2x y +++=上的动点,则||AB 的最大值为()A .B .C .5+D .3+二、多项选择题:本大题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分.9.某特长班有男生和女生各10人,统计他们的身高,其数据(单位:)cm 如下面的茎叶图所示,则下列结论正确的是()A .女生身高的极差为12B .男生身高的均值较大C .女生身高的中位数为165D .男生身高的方差较小10.在平面直角坐标系xOy 中,抛物线2:2(0)C y px p =>的焦点为F ,准线为l .设l 与x 轴的交点为K ,P 为C 上异于O 的任意一点,P 在l 上的射影为E ,EPF ∠的外角平分线交x 轴于点Q ,过Q 作QM PE ⊥于M ,过Q 作QN PE ⊥交线段EP 的延长线于点N ,则()A .||||PE PF =B .||||PF QF =C .||||PN MF =D .||||PN KF =11.在正方体1111ABCD A B C D -中,N 为底面ABCD 的中心,P 为线段11A D 上的动点(不包括两个端点),M 为线段AP 的中点,则()A .CM 与PN 是异面直线B .CM PN>C .平面PAN ⊥平面11BDD B D .过P ,A ,C 三点的正方体的截面一定是等腰梯形12.如图所示,一座小岛距离海岸线上最近的P 点的距离是2km ,从P 点沿海岸正东12km 处有一个城镇.假设一个人驾驶的小船的平均速度为3/km h ,步行的速度为5/km h ,时间t (单位:)h 表示他从小岛到城镇的时间,x (单位:)km 表示此人将船停在海岸处距P 点的距离.设24u x x =++,24v x x =+-,则()A .函数()v f u =为减函数B .15432t u v --=C .当 1.5x =时,此人从小岛到城镇花费的时间最少D .当4x =时,此人从小岛到城镇花费的时间不超过3h 三、填空题:本题共4小题,每小题5分,共20分.13.谈祥柏先生是我国著名的数学科普作家,他写的《数学百草园》、《好玩的数学》、《故事中的数学》等书,题材广泛、妙趣横生,深受广大读者喜爱.下面我们一起来看《好玩的数学》中谈老的一篇文章《五分钟内挑出埃及分数》:文章首先告诉我们,古埃及人喜欢使用分子为1的分数(称为埃及分数).如用两个埃及分数13与115的和表示25等.从11111,,,,,234100101⋯这100个埃及分数中挑出不同的3个,使得它们的和为1,这三个分数是.(按照从大到小的顺序排列)14.在平面直角坐标系xOy 中,角α的顶点是O ,始边是x 轴的非负半轴,02απ<<,点(1tan,1tan )1212P ππ+-是α终边上一点,则α的值是.15.已知F 为双曲线2222:1(0,0)x y C a b a b-=>>的右焦点,过F 作C 的渐近线的垂线FD ,D为垂足,且3||||(2FD OF O =为坐标原点),则C 的离心率为.16.如图,在三棱锥P ABC -中,PA AB ⊥,PC BC ⊥,AB BC ⊥,22AB BC ==,5PC =,则PA 与平面ABC 所成角的大小为;三棱锥P ABC -外接球的表面积是.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)在①cos )sin b C a c B -=;②22cos a c b C +=;③sin sin2A Cb A +=这三个条件中任选一个,补充在下面问题中的横线上,并解答相应的问题.在ABC ∆中,内角A ,B ,C 的对边分别为a ,b ,c ,且满足,b =4a c +=,求ABC ∆的面积.注:如果选择多个条件分别解答,按第一个解答计分.18.(12分)已知等比数列{}n a 满足1a ,2a ,31a a -成等差数列,且134a a a =;等差数列{}n b 的前n 项和2(1)log 2nn n a S +=.求:(1)n a ,n b ;(2)数列{}n n a b 的前项和n T .19.(12分)如图,在四棱锥P ABCD -中,AD =3AB =,AP =,//AD BC ,AD ⊥平面PAB ,90APB ∠=︒,点E 满足2133PE PA PB =+ .(1)证明:PE DC ⊥;(2)求二面角A PD E --的余弦值.20.(12分)2017年11月河南省三门峡市成功入围“十佳魅力中国城市”,吸引了大批投资商的目光,一些投资商积极准备投入到“魅力城市”的建设之中.某投资公司准备在2018年年初将四百万元投资到三门峡下列两个项目中的一个之中.项目一:天坑院是黄土高原地域独具特色的民居形式,是人类“穴居”发展史演变的实物见证.现准备投资建设20个天坑院,每个天坑院投资0.2百万元,假设每个天坑院是否盈利是相互独立的,据市场调研,到2020年底每个天坑院盈利的概率为(01)p p <<,若盈利则盈利投资额的40%,否则盈利额为0.项目二:天鹅湖国家湿地公园是一处融生态、文化和人文地理于一体的自然山水景区.据市场调研,投资到该项目上,到2020年底可能盈利投资额的50%,也可能亏损投资额的30%,且这两种情况发生的概率分别为p 和1p -.(1)若投资项目一,记1X 为盈利的天坑院的个数,求1()E X (用p 表示);(2)若投资项目二,记投资项目二的盈利为2X 百万元,求2()E X (用p 表示);(3)在(1)(2)两个条件下,针对以上两个投资项目,请你为投资公司选择一个项目,并说明理由.21.(12分)设中心在原点O ,焦点在x 轴上的椭圆C 过点12A ,F 为C 的右焦点,F的方程为221104x y +-+=.(1)求C 的方程;(2)若直线:(0)l y k x k =->与O 相切,与F 交于M 、N 两点,与C 交于P 、Q 两点,其中M 、P 在第一象限,记O 的面积为()S k ,求(||||)()NQ MP S k - 取最大值时,直线l 的方程.22.(12分)已知函数()(2)(0f x ln x a x =+>,0)a >,曲线()y f x =在点(1,f (1))处的切线在y 轴上的截距为233ln -.(1)求a ;(2)讨论函数()()2(0)g x f x x x =->和2()()(0)21xh x f x x x =->+的单调性;(3)设125a =,1()n n a f a +=,求证:152120(2)2n n n n a +-<-<.2020届新高考数学模拟试题(11)答案解析一、单项选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{|11}A x x =-,则(A N = )A .{1}B .{0,1}C .{1-,1}D .{1-,0,1}【解析】 集合{|11}A x x =-,{0A N ∴= ,1}.故选:B .2.已知i 是虚数单位,1(1)0()a i a R +->∈,复数2z a i =-,则1||(z=)A .15B .5C .55D 【解析】因为:i 是虚数单位,1(1)0()a i a R +->∈,所以:101a a -=⇒=;12z i ∴=-,则1112||||||12(12)(12)5i z i i i +===--+;故选:C .3.函数()y f x =是R 上的奇函数,当0x <时,()2x f x =,则当0x >时,()(f x =)A .2x-B .2x-C .2x--D .2x【解析】0x >时,0x -<,0x < 时,()2x f x =,∴当0x >时()2x f x --=-,()f x 是R 上的奇函数,∴当0x >时,())()2x f x f x -=--=-.故选:C .4.已知a R ∈,则“01a <<”是“x R ∀∈,2210ax ax ++>”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【解析】“x R ∀∈,2210ax ax ++>”⇔2440a a a >⎧⎨=-<⎩ ,或0a =,10>,解得01a <.∴“01a <<”是“x R ∀∈,2210ax ax ++>”的充分不必要条件.故选:A .5.已知向量(1,1)a = ,(1,3)b =- ,(2,1)c =,且()//a b c λ- ,则(λ=)A .3B .3-C .17D .17-【解析】因为(1,13)a b λλλ-=+- ,又因为()//a b c λ-,所以1(1)2(13)710λλλ⨯+-⨯-=-=,解得17λ=,故选:C .6.将曲线()cos 2y f x x =上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移4π个单位长度,得到曲线cos 2y x =,则((6f π=)A .1B .1-CD.【解析】曲线()cos 2y f x x =上各点的横坐标伸长到原来的2倍,纵坐标不变,得到:1()cos 2y f x x =,再把得到的曲线向右平移4π个单位长度,得到:1()cos()cos 2284y f x x x ππ=--=,所以221()sin )2cos(284f x x x x ππ--=+.设128x t π-=,解得24x t π=+,所以()2cos(2)2cos(2)2sin 2442f t t t t πππ=++=+=-.所以()2sin 2f x x =-.所以3()2()62f π=⨯-=故选:D .7.已知,1()(2),1lnx x f x f x k x ⎧=⎨-+<⎩,若函数()1y f x =-恰有一个零点,则实数k 的取值范围是()A .(1,)+∞B .[1,)+∞C .(,1)-∞D .(-∞,1]【解析】由,1()(2),1lnx x f x f x k x ⎧=⎨-+<⎩,可得()(2)f x f x =-为关于1x =对称,画出1x 的图象,单调递增的,由对称得(2)f x -的图象单调递减,而(2)f x k -+是(2)f x -的图象上下平行移动得到,()1y f x =-恰有一个零点即是()1f x =的根,所以可得1k ,故选:B .8.已知直线1:0()l kx y k R +=∈与直线2:220l x ky k -+-=相交于点A ,点B 是圆22(2)(3)2x y +++=上的动点,则||AB 的最大值为()A .B .C .5+D .3+【解析】因为线1:0l kx y +=恒过定点(0,0)O ,直线2:220l x ky k -+-=恒过定点(2,2)C 且12l l ⊥,故两直线的交点A 在以OC 为直径的圆上,且圆的方程22:(1)(1)2D x y -+-=,要求||AB 的最大值,转化为在22:(1)(1)2D x y -+-=上找一点A ,在22:(2)(3)2E x y +++=上找一点B ,使AB 最大,5=,则||5max AB =+故选:C .二、多项选择题:本大题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分.9.某特长班有男生和女生各10人,统计他们的身高,其数据(单位:)cm 如下面的茎叶图所示,则下列结论正确的是()A .女生身高的极差为12B .男生身高的均值较大C .女生身高的中位数为165D .男生身高的方差较小【解析】A 、找出所求数据中最大的值173,最小值161,再代入公式求值极差17316112=-=,故本选项符合题意;B 、男生身高的数据在167~192之间,女生身高数据在161~173之间,所以男生身高的均值较大,故本选项符合题意;C 、抽取的10名女生中,身高数据从小到大排列后,排在中间的两个数为165和167,所以中位数是166,故本选项不符合题意;D 、抽取的学生中,男生身高的数据在167~192之间,女生身高数据在161~173之间,男生身高数据波动性大,所以方差较大,故本选项不符合题意.故选:AB .10.在平面直角坐标系xOy 中,抛物线2:2(0)C y px p =>的焦点为F ,准线为l .设l 与x 轴的交点为K ,P 为C 上异于O 的任意一点,P 在l 上的射影为E ,EPF ∠的外角平分线交x 轴于点Q ,过Q 作QM PE ⊥于M ,过Q 作QN PE ⊥交线段EP 的延长线于点N ,则()A .||||PE PF =B .||||PF QF =C .||||PN MF =D .||||PN KF =【解析】由抛物线的性质到焦点的距离等于到准线的距离,所以由题意可得||||PF PE =,即A 正确;PQ 为EPF ∠的外角平分线,所以FPQ NPQ ∠=∠,又//EP FQ ,所以NPQ PQF ∠=∠,所以FPQ PQF ∠=∠,所以||||PF QF =,所以B 正确;连接EF ,由上面可得:PE PF QF ==,//PE FQ ,所以四边形EFQP 为平行四边形,所以EF PQ =,//EF PQ所以EFK PQF QPN ∠=∠=∠,在EFK ∆中,cos KF EF EFK =∠ ,PQN ∆中,cos PN PQ QPN =∠ ,所以FK PN =;所以D 正确;C 中,若PN MF =,而PM PN =,所以M 是PF 的中点,PM PF ⊥,所以PQ FQ =,由上面可知PQF ∆为等边三角形,即60PFQ ∠=︒,而P 为抛物线上任意一点,所以PFQ ∠不一定为60︒,所以C 不正确;故选:ABD .11.在正方体1111ABCD A B C D -中,N 为底面ABCD 的中心,P 为线段11A D 上的动点(不包括两个端点),M 为线段AP 的中点,则()A .CM 与PN 是异面直线B .CM PN>C .平面PAN ⊥平面11BDD B D .过P ,A ,C 三点的正方体的截面一定是等腰梯形【解析】A .ANCPM 共面,因此CM 与PN 不是异面直线,不正确;B .CM AC = ,11PN A N AA AB <===<,因此CM PN >,因此正确.C .AN BD ⊥ ,1AN BB ⊥,1BD BB B = ,AN ∴⊥平面11BDD B ,∴平面PAN ⊥平面11BDD B ,因此正确;D .过P ,A ,C 三点的正方体的截面与11C D 相交于点Q ,则//AC PQ ,且PQ AC <,因此一定是等腰梯形,正确.故选:BCD .12.如图所示,一座小岛距离海岸线上最近的P 点的距离是2km ,从P 点沿海岸正东12km 处有一个城镇.假设一个人驾驶的小船的平均速度为3/km h ,步行的速度为5/km h ,时间t (单位:)h 表示他从小岛到城镇的时间,x (单位:)km 表示此人将船停在海岸处距P 点的距离.设u x +,v x ,则()A .函数()v f u =为减函数B .15432t u v --=C .当 1.5x =时,此人从小岛到城镇花费的时间最少D .当4x =时,此人从小岛到城镇花费的时间不超过3h【解析】 u x =+,v x ,∴)4uv x x =+=,∴4v u=,是减函数,故选项A 正确,由题意可知:1235xt -=+,012x ,∴153(12)336)4)36436t x x x x u v =+-=-+=++-+=+-,15436t u v ∴--,故选项B 错误,1235x t -=+,012x ,∴1135t '=-=,令0t '=得,32x =,当30,2x ⎛⎫∈ ⎪⎝⎭时,0t '<,()t x 单调递减;当3(,12)2x ∈时,0t '>,()t x 单调递增,∴当32x =时,()t x 最小,且最短时间为4415h ,故选项C 正确,当4x =时,8335t =+>,故选项D 错误,故选:AC .三、填空题:本题共4小题,每小题5分,共20分.13.谈祥柏先生是我国著名的数学科普作家,他写的《数学百草园》、《好玩的数学》、《故事中的数学》等书,题材广泛、妙趣横生,深受广大读者喜爱.下面我们一起来看《好玩的数学》中谈老的一篇文章《五分钟内挑出埃及分数》:文章首先告诉我们,古埃及人喜欢使用分子为1的分数(称为埃及分数).如用两个埃及分数13与115的和表示25等.从11111,,,,,234100101⋯这100个埃及分数中挑出不同的3个,使得它们的和为1,这三个分数是12,13,16.(按照从大到小的顺序排列)【解析】1111236++=,∴这三个分数是:111,,236,故答案为:111,,236.14.在平面直角坐标系xOy 中,角α的顶点是O ,始边是x 轴的非负半轴,02απ<<,点(1tan,1tan )1212P ππ+-是α终边上一点,则α的值是6π.【解析】 点(1tan,1tan 1212P ππ+-是α终边上一点,21sin 1tancos sin (cos sin )361212121212tan 31tan cos sin (cos sin sin )cos 121212*********ππππππαππππππππ----∴=====+++-,0126ππ<<,可得tan tan 126ππ<=,可得1tan 1012π->->,又02απ<< ,可得012πα<<,6πα∴=.故答案为:6π.15.已知F 为双曲线2222:1(0,0)x y C a b a b-=>>的右焦点,过F 作C 的渐近线的垂线FD ,D为垂足,且|||(FD OF O =为坐标原点),则C 的离心率为2.【解析】如图,F 为双曲线2222:1(0,0)x y C a b a b-=>>的右焦点,FD 与直线by x a =垂直,垂足为D ,3||||2FD OF =,则60DOF ∠=︒,可得tan 60ba=︒=,得223b a=,2c e a∴==.故答案是:2.16.如图,在三棱锥P ABC -中,PA AB ⊥,PC BC ⊥,AB BC ⊥,22AB BC ==,PC =,则PA 与平面ABC 所成角的大小为45︒;三棱锥P ABC -外接球的表面积是.【解析】取PB 的中点O ,AC 的中点D ,连接BD 并延长至点E ,使得BD DE =,连接AE ,PE ,OD ,如图所示:PAB ∆ 和PCB ∆是同斜边的直角三角形,∴三棱锥P ABC -外接球的球心为PB 的中点,又 PB ==,∴三棱锥P ABC -外接球的半径1622R PB ==,∴三棱锥P ABC -外接球的表面积为:24()62ππ⨯=,AB BC ⊥ ,∴点D 为ABC ∆的外接圆圆心,OD ∴⊥平面ABC ,又 点D 是BE 的中点,点O 是PB 的中点,PE OD ∴⊥,PE ∴⊥平面ABC ,PAE ∴∠为PA 与平面ABC 所成角的平面角,在Rt OBD ∆中,12OD ==,21PE OD ∴==,在Rt PAB ∆中,PA =,∴在Rt PAE ∆中,2sin2PE PAE PA ∠===,45PAE ∴∠=︒,故答案为:045,6π.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)在①cos )sin b C a c B -=;②22cos a c b C +=;③sin sin2A Cb A +=这三个条件中任选一个,补充在下面问题中的横线上,并解答相应的问题.在ABC ∆中,内角A ,B ,C 的对边分别为a ,b ,c ,且满足①,b =4a c +=,求ABC ∆的面积.注:如果选择多个条件分别解答,按第一个解答计分.【解析】①cos )sin b C a c B -=”,则由正弦定理,得cos sin )sin sin B C A C B -=.由sin sin()sin cos cos sin A B C B C B C =+=+,得sin sin sin B C C B =.由0C π<<,得sin 0C ≠.所以sin B B =.又cos 0B ≠(若cos 0B =,则sin 0B =,22sin cos 0B B +=这与22sin cos 1B B +=矛盾),所以tan B =.又0B π<<,得23B π=.由余弦定理及b =22222cos3a c ac π=+-,即212()a c ac =+-.将4a c +=代入,解得4ac =,所以11sin 4222ABC S ac B ∆==⨯⨯=;②若在横线上填写“22cos a c b C +=”,则由正弦定理,得2sin sin 2sin cos A C B C +=,由2sin 2sin()2sin cos 2cos sin A B C B C B C =+=+,得2cos sin sin 0B C C +=,由0C π<<,得sin 0C ≠,所以1cos 2B =-,又(0,)B π∈,所以23B π=,由余弦定理及b =22222cos3a c ac π=+-,即212()a c ac =+-.将4a c +=代入,解得4ac =,所以11sin 422ABC S ac B ∆==⨯⨯;③若在横线上填写“sin sin 2A Cb A +=”,则由正弦定理,得sin sin sin 2A CB A A +=,又(0,)A π∈,所以sin 0A ≠,所以sin 22B BB π-==,所以2sincos 222B B B=,又0B π<<,所以022B π<<,所以cos 02B≠,所以3sin22B =,所以23B π=,即23B π=,由余弦定理及b =22222cos3a c ac π=+-,即212()a c ac =+-.将4a c +=代入,解得4ac =,所以11sin 422ABC S ac B ∆==⨯⨯;18.(12分)已知等比数列{}n a 满足1a ,2a ,31a a -成等差数列,且134a a a =;等差数列{}n b 的前n 项和2(1)log 2nn n a S +=.求:(1)n a ,n b ;(2)数列{}n n a b 的前项和n T .【解析】(1)设{}n a 的公比为q .因为1a ,2a ,31a a -成等差数列,所以21312()a a a a =+-,即232a a =.因为20a ≠,所以222a q a ==.因为134a a a =,所以4132a a q a ===.因此112n n n a a q -==.由题意,2(1)log (1)22n n n a n nS ++==.所以111b S ==,1223b b S +==,从而22b =.所以{}n b 的公差21211d b b =-=-=.所以1(1)1(1)1n b b n d n n =+-=+-= .(2)令n n n c a b =,则2n n c n = .因此123112122232(1)22n n n n T c c c n n -=++⋯+=⨯+⨯+⨯+⋯+-+ .又23412122232(1)22n n n T n n +=⨯+⨯+⨯+⋯+-+ 两式相减得2311111222222222222(1)2212n nn n n n n n T n n n n +++++--=+++⋯+-=-=--=--- .所以1(1)22n n T n +=-+ .19.(12分)如图,在四棱锥P ABCD -中,AD =3AB =,AP =,//AD BC ,AD ⊥平面PAB ,90APB ∠=︒,点E 满足2133PE PA PB =+ .(1)证明:PE DC ⊥;(2)求二面角A PD E --的余弦值.【解答】(1)证明:在Rt PAB ∆中,由勾股定理,得PB =.因为2133PE PA PB =+,AB PB PA =- ,所以222221211211()()0033333333PE AB PA PB PB PA PA PB PA PB =+-=-++=-⨯+⨯+⨯= ,所以PE AB ⊥,因为AD ⊥平面PAB ,PE ⊂平面PAB ,所以PE AD ⊥,又因为PE AB ⊥,AB AD A = ,所以PE ⊥平面ABCD ,又因为DC ⊂平面ABCD ,所以PE DC ⊥;(2)由2133PE PA PB =+,得2EB AE = .所以点E 是靠近点A 的线段AB 的三等分点.所以113AE AB ==.分别以AB ,AD所在方向为y 轴,z 轴的正方向,建立如图所示的空间直角坐标系A xyz -.则(0A ,0,0),D ,(0E ,1,0),P ,设平面PDE 的法向量为(m a =,b ,)c,(0,EP ED ==- 由00m EP m ED ⎧=⎪⎨=⎪⎩,得00b =-+=⎪⎩令1c =,则(0,m =-,设平面APD 的法向量为(n x =,y ,)z,AP =,AD = ,由00n AP n AD ⎧=⎪⎨=⎪⎩,得00y +==⎪⎩,令1x =,则(1,n =,设向量夹角为θ,则cos ||||m nm n θ==-所以二面角A PD E --20.(12分)2017年11月河南省三门峡市成功入围“十佳魅力中国城市”,吸引了大批投资商的目光,一些投资商积极准备投入到“魅力城市”的建设之中.某投资公司准备在2018年年初将四百万元投资到三门峡下列两个项目中的一个之中.项目一:天坑院是黄土高原地域独具特色的民居形式,是人类“穴居”发展史演变的实物见证.现准备投资建设20个天坑院,每个天坑院投资0.2百万元,假设每个天坑院是否盈利是相互独立的,据市场调研,到2020年底每个天坑院盈利的概率为(01)p p <<,若盈利则盈利投资额的40%,否则盈利额为0.项目二:天鹅湖国家湿地公园是一处融生态、文化和人文地理于一体的自然山水景区.据市场调研,投资到该项目上,到2020年底可能盈利投资额的50%,也可能亏损投资额的30%,且这两种情况发生的概率分别为p 和1p -.(1)若投资项目一,记1X 为盈利的天坑院的个数,求1()E X (用p 表示);(2)若投资项目二,记投资项目二的盈利为2X 百万元,求2()E X (用p 表示);(3)在(1)(2)两个条件下,针对以上两个投资项目,请你为投资公司选择一个项目,并说明理由.【解析】(1)由题意1~(20,)X B p ,则盈利的天坑院数的均值1()20E X p =.(2)若投资项目二,则2X 的分布列为:2X 2 1.2-PP1p-盈利的均值2()2 1.2(1) 3.2 1.2E X p p p =--=-.(3)若盈利,则每个天坑院盈利0.240%0.08⨯=(百万元),所以投资建设20个天坑院,盈利的均值为11(0.08)0.08()0.0820 1.6E X E X p p ==⨯=(百万元).2211(0.08)0.08()0.0820(1)0.128(1)D X D X p p p p ==⨯-=-,222()(2 3.2 1.2)(1.2 3.2 1.2)(1)10.24(1)D X p p p p p p =-++--+-=-,①当12(0.08)()E X E X =时,1.6 3.2 1.2p p =-,解得34p =.12(0.08)()D X D X <.故选择项目一.②当12(0.08)()E X E X >时,1.6 3.2 1.2p p >-,解得304p <<.此时选择项一.③当12(0.08)()E X E X <时,1.6 3.2 1.2p p <-,解得34p >.此时选择项二.21.(12分)设中心在原点O ,焦点在x 轴上的椭圆C过点12A ,F 为C 的右焦点,F的方程为221104x y +-+=.(1)求C 的方程;(2)若直线:(0)l y k x k =->与O 相切,与F 交于M 、N 两点,与C 交于P 、Q 两点,其中M 、P 在第一象限,记O 的面积为()S k ,求(||||)()NQ MP S k - 取最大值时,直线l 的方程.【解析】(1)解:设C 的方程为22221(0)x y a b a b+=>>.由题设知223114a b+=①因为F的标准方程为221(4x y +=,所以F的坐标为,半径12r =.设左焦点为1F ,则1F的坐标为(.由椭圆定义,可得12||||a AF AF =+=由①②解得2a =,1b =.所以C 的方程为2214x y +=.(2)由题设可知,M 在C 外,N 在C 内,P 在F 内,Q 在F 外,在直线l 上的四点满足||||||MP MN NP =-,||||||NQ PQ NP =-.由22(14y k x x y ⎧=-⎪⎨+=⎪⎩消去y得2222(14)1240k x x k +-+-=因为直线l 过椭圆C 内的右焦点F ,所以该方程的判别式△0>恒成立.设1(P x ,1)y ,2(Q x ,2)y 由韦达定理,得21228314x x k +=+,212212414k x x k -=+.2244||41kPQk+=+又因为F的直径||1MN=,所以23 ||||||||(||||)||||||141 NQ MP PQ NP MN NP PQ MN PQk-=---=-=-=+.(y k x=-可化为0kx y--=.因为l与O相切,所以O的半径R=,所以2223()1kS k Rkππ==+.所以22224222999(||||)()1(41)(1)45145k kNQ MP S kk k k k kkππππ-===++++++.当且仅当2214kk=,即2k=时等号成立.因此,直线l的方程为y x=-.22.(12分)已知函数()(2)(0f x ln x a x=+>,0)a>,曲线()y f x=在点(1,f(1))处的切线在y轴上的截距为233ln-.(1)求a;(2)讨论函数()()2(0)g x f x x x=->和2()()(0)21xh x f x xx=->+的单调性;(3)设125a =,1()n n a f a +=,求证:152120(2)2n n n n a +-<-<.【解析】(1)对()(2)f x ln x a =+求导,得2()2f x x a'=+.因此2(1)2f a'=+.又因为f (1)(2)ln a =+,所以曲线()y f x =在点(1,f (1)处的切线方程为2(2)(1)2y ln a x a-+=-+,即22(2)22y x ln a a a=++-++.由题意,22(2)323ln a ln a +-=-+.显然1a =,适合上式.令2()(2)(0)2a ln a a a ϕ=+->+,求导得212()02(2)a a a ϕ'=+>++,因此ϕ(a )为增函数:故1a =是唯一解.(2)由(1)可知,()(21)2(0)g x ln x x x =+->,2()(21)(0)21xh x ln x x x =+->+,因为24()202121xg x x x '=-=-<++,所以()()2(0)g x f x x x =->为减函数.因为22224()021(21)(21)xh x x x x '=-=>+++,所以2()()(0)12xh x f x x x=->+为增函数.(3)证明:由125a =,1()(21)n n n a f a ln a +==+,易得152120.225n n n n n n a a a +-><-⇔<由(2)可知,()()2(21)2g x f x x ln x x =-=+-在(0,)+∞上为减函数.因此,当0x >时,()(0)0g x g <=,即()2f x x <.令1(2)n x a n -=,得11()2n n f a a --<,即12n n a a -<.因此,当2n 时,2112122225nn n n n a a a a ---<<<⋯<=.所以152122n n na +-<-成立.下面证明:120na -<.方法一:由(2)可知,22()()(21)2121x xh x f x ln x x x =-=+-++在(0,)+∞上为增函数.因此,当0x >时,()(0)0h x h >=,即2()021xf x x >>+.因此111()2f x x<+,即1112(2)()2f x x-<-.令1(2)n x a n -=,得111112(2)()2n n f a a ---<-,即11112(2)2n n a a --<-.当2n =时,2111111222222() 1.8()5n a a f a ln f -=-=-=-=-.因为11.82ln >>=,所以1201.8ln -<,所以2120a -<.所以,当3n 时,2212211111112(2)(2)(2)0222n n n n a a a a ----<-<-<⋯<-<.所以,当2n 时,120na -<成立.综上所述,当2n 时,1521202n n na +-<-<成立.方法二:2n 时,因为0n a >,所以1112022n n n a a a -<⇔<⇔>.下面用数学归纳法证明:2n 时,12n a >.①当2n =时,2112()(21)(21) 1.85a f a ln a ln ln ==+=⨯+=.而2211.8 1.8 1.8 1.82 3.2422a ln ln =>⇔>⇔>⇔>⇔>,因为3.242>,所以212a >.可见2n =,不等式成立.②假设当(2)n k k =时不等式成立,即12k a >.当1n k =+时,1()(21)n k k k a a f a ln a +===+.因为12k a >,()(21)f x ln x =+是增函数,所以11(21)(21)22k k a ln a ln ln +=+>⨯+=.要证112k a +>,只需证明122ln >.而2212222422ln ln >⇔>⇔>⇔>⇔>,因为42>,所以122ln >.所以112k a +>.可见,1n k =+时不等式成立.由①②可知,当2n 时,12n a >成立.。
2020年普通高等学校招生全国统一考试全国卷3文科数学试题解析(word版)
C.
D.
,
,
即
,
时,标志着已初步遏 ,
得
,
即
,
得
.
故选:B.
6.在平面内, , 是两个定点, 是动点,若
A. 圆
B. 椭圆
C. 抛物线
【答案】A
【解析】在平面内, , 是两个定点, 是动点,
不妨设
,
,设
,
因为
,
,则点 的轨迹为( ) D. 直线
所以
,
解得
,
所以点 的轨迹为圆.
故选:A.
7.设 为坐标原点,直线 与抛物线 :
则
.
故选:C.
12.已知函数
,则( )
A.
的最小值为
B.
的图象关于 轴对称
C.
的图象关于直线 对称
D.
的图象关于直线
对称
【答案】D 【解析】由
可得函数的定义域为
,故定义域关于原点对称;
设
,则
,
,由双勾函数的图象和性质得,
或
,故 A 错误;
又有
,故
义域关于原点对称,故图象关于原点中心对称;故 B 错误;
所以
平面
,
而
平面
,
. 是长方体,
所以
,
因为
是长方体,且
,
所以
是正方形,
所以
,
又
.
所以 平面
,
又因为点 , 分别在棱 , 上,
所以
平面
,
所以
.
(2)点 在平面 内.
【答案】见解析
【解析】取 上靠近 的三等分点 ,连接 , , .
2020年海南省新高考数学试卷-解析版
2020年海南省新高考数学试卷一、选择题(本大题共8小题,共40.0分)1. (5分)设集合A ={2,3,5,7},B ={1,2,3,5,8},则A ∩B =( )A. {1,3,5,7}B. {2,3}C. {2,3,5}D. {1,2,3,5,7,8} 2. (5分)(1+2i)(2+i)=( )A. 4+5iB. 5iC. −5iD. 2+3i3. (5分)在△ABC 中,D 是AB 边上的中点,则CB⃗⃗⃗⃗⃗ =( ) A. 2CD ⃗⃗⃗⃗⃗ +CA ⃗⃗⃗⃗⃗ B. CD ⃗⃗⃗⃗⃗ −2CA ⃗⃗⃗⃗⃗ C. 2CD ⃗⃗⃗⃗⃗ −CA ⃗⃗⃗⃗⃗ D. CD ⃗⃗⃗⃗⃗ +2CA ⃗⃗⃗⃗⃗ 4. (5分)日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O),地球上一点A 的纬度是指OA 与地球赤道所在平面所成角,点A 处的水平面是指过点A 且与OA 垂直的平面.在点A 处放置一个日晷,若晷面与赤道所在平面平行,点A 处的纬度为北纬40°,则晷针与点A 处的水平面所成角为( )A. 20°B. 40°C. 50°D. 90°5. (5分)某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是( ) A. 62% B. 56% C. 46% D. 42%6. (5分)要安排3名学生到2个乡村做志愿者,每名学生只能选择去一个村,每个村里至少有一名志愿者,则不同的安排方法共有( ) A. 2种 B. 3种 C. 6种 D. 8种7. (5分)已知函数f(x)=lg(x 2−4x −5)在(a,+∞)上单调递增,则a 的取值范围是( )A. (2,+∞)B. [2,+∞)C. (5,+∞)D. [5,+∞) 8. (5分)若定义在R 的奇函数f(x)在(−∞,0)单调递减,且f(2)=0,则满足xf(x −1)≥0的x 的取值范围是( )A. [−1,1]∪[3,+∞)B. [−3,−1]∪[0,1]C. [−1,0]∪[1,+∞)D. [−1,0]∪[1,3]二、不定项选择题(本大题共4小题,共20.0分)9. (5分)我国新冠肺炎疫情进入常态化,各地有序推进复工复产,下面是某地连续11天复工复产指数折线图,下列说法正确的是( )A. 这11天复工指数和复产指数均逐日增加;B. 这11天期间,复产指数增量大于复工指数的增量;C. 第3天至第11天复工复产指数均超过80%;D. 第9天至第11天复产指数增量大于复工指数的增量;10.(5分)已知曲线C:mx2+ny2=1.()A. 若m>n>0,则C是椭圆,其焦点在y轴上B. 若m=n>0,则C是圆,其半径为√nC. 若mn<0,则C是双曲线,其渐近线方程为y=±√−mnxD. 若m=0,n>0,则C是两条直线11.(5分)如图是函数y=sin(ωx+φ)的部分图象,则sin(ωx+φ)=()A. B. C. D.12.(5分)已知a>0,b>0,且a+b=1,则()A. a2+b2≥12B. 2a−b>12C. log2a+log2b≥−2D. √a+√b⩽√2三、填空题(本大题共4小题,共20.0分)13.(5分)已知正方体ABCD−A1B1C1D1的棱长为2,M、N分别为BB1、AB的中点,则三棱锥A−NMD1的体积为.14.(5分)斜率为的直线过抛物线C:y2=4x的焦点,且与C交于A,B两点,则|AB|=.15.(5分)将数列{2n−1}与{3n−2}的公共项从小到大排列得到数列{a n},则{a n}的前n项和为16.(5分)某中学开展劳动实习,学生加工制作零件,零件的截面如图所示.O为圆孔及轮廓圆弧AB所在圆的圆心,A是圆弧AB与直线AG的切点,B是圆弧AB与直线BC的切点,四边形DEFG为矩形,BC⊥DG,垂足为C,tan∠ODC=,BH//DG,EF=12cm,DE=2cm,A到直线DE和EF的距离均为7cm,圆孔半径为1cm,则图中阴影部分的面积为.四、解答题(本大题共6小题,共70.0分)17.(10分)在①ac=√3,②csinA=3,③c=√3b这三个条件中任选一个,补充在下面问题中,若问题中的三角形存在,求c的值;若问题中的三角形不存在,说明理由.问题:是否存在△ABC,它的内角A,B,C的对边分别为a,b,c,且sinA=√3sinB,,_______?注:如果选择多个条件分别解答,按第一个解答计分.18.(12分)已知公比大于1的等比数列{a n}满足a2+a4=20,a3=8.(1)求{a n}的通项公式;(2)求a1a2−a2a3+⋯+(−1)n−1a n a n+1.19. (12分)为加强环境保护,治理空气污染,环境监测部门对某市空气质量进行调研,随机抽查了100天空气中的PM2.5和SO 2浓度(单位:μg/m 3),得下表:(1)估计事件“该市一天空气中PM2.5浓度不超过75,且SO 2浓度不超过150”的概率;(2)根据所给数据,完成下面的2×2列联表:(3)根据(2)中的列联表,判断是否有99%的把握认为该市一天空气中PM2.5浓度与SO 2浓度有关?附:K 2=n(ad−bc)2(a+b )(c+d )(a+c )(b+d )20.(12分)如图,四棱锥P−ABCD的底面为正方形,PD⊥底面ABCD.设平面PAD与平面PBC的交线为l.(1)证明:l⊥平面PDC;(2)已知PD=AD=1,Q为l上的点,QB=√2,求PB与平面QCD所成角的正弦值.21.(12分)已知椭圆C:x2a2+y2b2=1(a>b>0)过点M(2,3),点A为其左顶点,且AM的斜率为12.(1)求C的方程;(2)点N为椭圆上任意一点,求△AMN的面积的最大值.22.(12分)已知函数f(x)=ae x−1−lnx+lna.(1)当a=e时,求曲线y=f(x)在点(1,f(1))处的切线与两坐标轴围成的三角形的面积;(2)若f(x)≥1,求a的取值范围.答案和解析1.【答案】C【解析】 【分析】本题考查了集合的交集运算,属于基础题. 根据两集合的公共元素得出答案. 【解答】解:因为集合A ,B 的公共元素为:2,3,5 故A ∩B ={2,3,5}. 故选:C .2.【答案】B【解析】【分析】本题考查了复数运算,属于基础题. 根据复数的乘法公式计算.【解答】解:(1+2i)(2+i)=2+i +4i +2i 2=5i , 故选:B .3.【答案】C【解析】【分析】本题考查向量的表示,考查向量加法法则等基础知识,考查运算求解能力,是基础题. 利用向量加法法则直接求解. 【解答】解:在△ABC 中,D 是AB 边上的中点, 则CB ⃗⃗⃗⃗⃗ =CD ⃗⃗⃗⃗⃗ +DB ⃗⃗⃗⃗⃗⃗ =CD ⃗⃗⃗⃗⃗ +AD⃗⃗⃗⃗⃗⃗ =CD⃗⃗⃗⃗⃗ +(AC ⃗⃗⃗⃗⃗ +CD ⃗⃗⃗⃗⃗ ) =2CD ⃗⃗⃗⃗⃗ −CA ⃗⃗⃗⃗⃗ . 故选:C .4.【答案】B【解析】【分析】本题是立体几何在生活中的运用,考查空间线面角的定义和求法,属于基础题.由纬度的定义和线面角的定义,结合直角三角形的性质,可得晷针与点A处的水平面所成角.【解答】解:可设A所在的纬线圈的圆心为Oˈ,OOˈ垂直于纬线所在的圆面,由图可得∠OHA为晷针与点A处的水平面所成角,又∠OAOˈ为40°且OA⊥AH,在Rt△OHA中,OˈA⊥OH,∴∠OHA=∠OAOˈ=40°,故选:B.5.【答案】C【解析】【分析】本题考查集合的应用,子集与交集、并集运算的转换,韦恩图的应用,是基本知识的考查.设只喜欢足球的百分比为x,只喜欢游泳的百分比为y,两个项目都喜欢的百分比为z,画出图形,列出方程求解即可.【解答】解:设只喜欢足球的百分比为x,只喜欢游泳的百分比为y,两个项目都喜欢的百分比为z,由题意,可得x+z=60,x+y+z=96,y+z=82,解得z=46.∴该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是46%.故选:C6.【答案】C【解析】【分析】本题考查不同的安排方法种数的求法,考查排列组合等基础知识,考查运算求解能力,是基础题.先把三名学生分成2组,再把2组学生分到两个村,利用排列组合知识直接求解.【解答】解:要安排3名学生到2个乡村做志愿者,每名学生只能选择去一个村,每个村里至少有一名志愿者,则不同的安排方法共有:C32C11A22=6.故选:C.7.【答案】D【解析】【分析】本题考查复合函数单调性的求法,考查数学转化思想方法,是中档题.由对数式的真数大于0求得函数的定义域,令t=x2−4x−5,由外层函数y=lgt是其定义域内的增函数,结合复合函数的单调性可知,要使函数f(x)=lg(x2−4x−5)在(a,+∞)上单调递增,需内层函数t=x2−4x−5在(a,+∞)上单调递增且恒大于0,转化为(a,+∞)⊆(5,+∞),即可得到a的范围.【解答】解:由x2−4x−5>0,得x<−1或x>5.令t=x2−4x−5,∵外层函数y=lgt是其定义域内的增函数,∴要使函数f(x)=lg(x 2−4x −5)在(a,+∞)上单调递增, 则需内层函数t =x 2−4x −5在(a,+∞)上单调递增且恒大于0, 则(a,+∞)⊆(5,+∞),即a ≥5. ∴a 的取值范围是[5,+∞). 故选:D .8.【答案】D【解析】【分析】本题主要考查不等式的求解,结合函数奇偶性的性质,作出函数f(x)的草图,是解决本题的关键.难度中等.根据函数奇偶性的性质,然后判断函数的单调性,利用分类讨论思想进行求解即可. 【解答】解:∵定义在R 的奇函数f(x)在(−∞,0)单调递减,且f(2)=0,f(x)的大致图象如图:∴f(x)在(0,+∞)上单调递减,且f(−2)=0; 故f(−1)<0;当x =0时,不等式xf(x −1)≥0成立, 当x =1时,不等式xf(x −1)≥0成立,当x −1=2或x −1=−2时,即x =3或x =−1时,不等式xf(x −1)≥0成立, 当x >0时,不等式xf(x −1)≥0等价为f(x −1)≥0, 此时{x >00<x −1⩽2,此时1<x ≤3, 当x <0时,不等式xf(x −1)≥0等价为f(x −1)≤0, 即{x <0−2⩽x −1<0,得−1≤x <0,综上−1≤x≤0或1≤x≤3,即实数x的取值范围是[−1,0]∪[1,3],故选:D.9.【答案】CD【解析】【分析】本题考查折线图表示的函数的认知和理解,考查理解能力、识图能力、推理能力,难点在于指数增量的理解与观测,属于中档题.通过复工和折线图中都有递减的部分来判断A;根据第一天和第十一天两者指数差的大小来判断B;根据图象结合复工复产指数的意义和增量的意义可判断CD;【解答】解:由图可知,这11天的复工指数和复产指数有增有减,故A错;由折线的变化程度可见这11天期间,复产指数增量小于复工指数的增量,故B错误;第3天至第11天复工复产指数均超过80%,故C正确;第9天至第11天复产指数增量大于复工指数的增量,D正确;故选:CD.10.【答案】ACD【解析】【分析】本题考查圆锥曲线方程的定义,属于中档题.根据所给条件,逐一分析对应的方程形式,结合椭圆、圆、双曲线方程的定义进行判断即可.【解答】解:A.若m>n>0,则1m <1n,则根据椭圆定义,知x21m+y21n=1表示焦点在y轴上的椭圆,故A正确;B.若m=n>0,则方程为x2+y2=1n ,表示半径为√n的圆,故B错误;C.若m<0,n>0,则方程为x21m+y21n=1,表示焦点在y轴的双曲线,故此时渐近线方程为y=±√−mnx,若m>0,n<0,则方程为x21m+y21n=1,表示焦点在x轴的双曲线,故此时渐近线方程为y=±√−mnx,故C正确;D.当m=0,n>0时,则方程为y=±1√n表示两条直线,故D正确;故选:ACD.11.【答案】BC【解析】【分析】本题主要考查三角函数解析式的求解,结合函数图象求出函数的周期和ω,利用三角函数的诱导公式进行转化是解决本题的关键.比较基础.根据图象先求出函数的周期,和ω,利用五点法求出函数的φ的值,结合三角函数的诱导公式进行转化求解即可.【解答】解:由图象知函数的周期,即,即ω=2,由五点对应法得,得,则故选:BC.12.【答案】ABD【解析】【分析】本题考查的知识要点:不等式的性质的应用,基本不等式的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.直接利用不等式的性质的应用和基本不等式的应用求出结果.【解答】解:①已知a>0,b>0,且a+b=1,所以(a+b)2≤2a2+2b2,则a2+b2⩾12,故A正确.②利用分析法:要证2a−b>12,只需证明a−b>−1即可,即a>b−1,由于a>0,b>0,且a+b=1,所以:a>0,b−1<0,故B正确.③log2a+log2b=log2ab⩽log2(a+b2)2=−2,故C错误.④由于a>0,b>0,且a+b=1,利用分析法:要证√a+√b⩽√2成立,只需对关系式进行平方,整理得a+b+2√ab⩽2,即2√ab⩽1,故√ab⩽12=a+b2,当且仅当a=b=12时,等号成立.故D正确.故选:ABD.13.【答案】13【解析】【分析】本题考查利用等体积法求多面体的体积,是基础的计算题.由题意画出图形,再由等体积法求三棱锥A−NMD1的体积.【解答】解:如图,∵正方体ABCD−A1B1C1D1的棱长为2,M、N分别为BB1、AB的中点,∴S△ANM=12×1×1=12,∴V A−NMD1=V D1−AMN=13×12×2=13.故答案为:13.14.【答案】163【解析】【分析】本题考查了抛物线的简单几何性质,直线与抛物线的位置关系的应用,考查了学生的计算能力,是中档题.由题意求出直线AB的方程,联立直线和抛物线方程,利用抛物线的性质转化求解即可.【解答】解:由题意可得抛物线焦点F(1,0),直线l的方程为y=√3(x−1),代入y2=4x并化简得3x2−10x+3=0,设A(x1,y1),B(x2,y2),则x1+x2=103;x1x2=1,∴由抛物线的定义可得|AB|=x1+x2+p=103+2=163.故答案为:163.15.【答案】3n2−2n【解析】【分析】本题主要考查等差数列的性质以及求和公式,属于基础题.首先判断{a n}是以1为首项、以6为公差的等差数列,再利用求和公式,得出结论.【解答】解:将数列{2n−1}与{3n−2}的公共项从小到大排列得到数列{a n},则{a n}是以1为首项、以6为公差的等差数列,故它的前n项和为n×1+n(n−1)2×6=3n2−2n,故答案为:3n2−2n.16.【答案】【解析】【分析】本题考查直线与圆的位置关系,三角形的解法,考查分析问题解决问题的能力,是难题. 设大圆的半径为R ,利用已知条件求出OQ 、OD 的长,利用tan∠ODC =求出大圆的半径R ,再根据图中线段关系得出△AOH 为直角三角形,最后求解图中阴影部分的面积即可.【解答】解:作AM 垂直于EF ,交OH 、DG 于S 、N ,垂足为M ,过点O 作OQ 垂直于DQ ,垂足为Q ,∵A 到直线DE 和EF 的距离均为7cm ,∴EM =AM =7, 又∵EF =12,MN =DE =2,∴NG =MF =12−7=5,AN =AM −NM =7−2=5, ∴∠AGD =45°,∵BH // DG ,∴∠AHO =45°, 由于AG 是圆弧的切线,∴AG ⊥OA ,∠AOH =∠ACN =45°, 设大圆的半径为R ,则AS =OS =R√2, OQ =SN =5−R √2,DQ =DN −QN =7−R√2, ∵tan∠ODC =35,∴5−R√27−R √2=35,解得R =2√2,图中阴影部分面积分为扇形AOB 和直角△AOH 的面积减去小半圆的面积, 所以S 阴影=135360×π×(2√2)2+12×2√2×2√2−12×π×1=52π+4. 故答案为:52π+4.17.【答案】解:①ac=√3.△ABC中,sinA=√3sinB,即b=√33a,ac=√3,∴c=√3a,cosC=a2+b2−c22ab =a2+a23−3a22√3a23=√32,∴a=√3,b=1,c=1.②csinA=3.△ABC中,,∴a=6.∵sinA=√3sinB,即a=√3b,∴b=2√3.cosC=a2+b2−c22ab=36+12−c22×6×2√3=√32∴c=2√3.③c=√3b.∵sinA=√3sinB,即a=√3b,又∵c=√3b,与已知条件相矛盾,所以问题中的三角形不存在.【解析】本题主要考查解三角形中的正弦定理与余弦定理,熟练掌握余弦定理并灵活的应用是解本题的关键.①根据题意,结合正弦定理,可得b=√33a,c=√3a,结合,运用余弦定理cosC=a2+b2−c22ab,即可求得c=1.②根据题意,△ABC中,csinA=asinC,即可求得a=6,进而得到b=2√3.运用余弦定理cosC=a2+b2−c22ab,即可求得c=2√3.③根据c =√3b ,sinA =√3sinB 即a =√3b ,可列式求得cosC =√36,与已知条件矛盾,所以问题中的三角形不存在.18.【答案】解:(1)设等比数列{a n }的公比为q(q >1),则{a 2+a 4=a 1q +a 1q 3=20a 3=a 1q 2=8, ∵q >1,∴{a 1=2q =2, ∴a n =2·2n−1=2n .(2)a 1a 2−a 2a 3+⋯+(−1)n−1a n a n+1=23−25+27−29+⋯+(−1)n−1⋅22n+1, =23[1−(−22)n ]1−(−22)=85−(−1)n22n+35.【解析】本题考查等比数列的通项公式,前n 项求和公式,考查转化思想和方程思想,属于基础题.(1)根据题意,列方程组{a 2+a 4=a 1q +a 1q 3=20a 3=a 1q 2=8,解得a 1和q ,然后求出{a n }的通项公式;(2)根据条件,可知a 1a 2,−a 2a 3,…(−1)n−1a n a n+1,是以23为首项,−22为公比的等比数列,由等比数列求和公式,即可得出答案.19.【答案】解:(1)用频率估计概率,从而得到“该市一天空气中PM2.5浓度不超过75,且SO 2浓度不超过150”的概率 P =32+18+6+8100=0.64;SO 2 PM2.5 [0,150](150,475][0,75] 64 16 (75,115]1010由K 2=n(ad−bc)2(a+b )(c+d )(a+c )(b+d )=100×(64×10−16×10)280×20×74×26=7.484>6.635,P(K 2≥6.635)=0.01;故有99%的把握认为该市一天空气中PM2.5浓度与SO 2浓度有关,【解析】本题考查了独立性检验的应用,用频率估计概率,属于基础题.(1)用频率估计概率,从而得到“该市一天空气中PM2.5浓度不超过75,且SO 2浓度不超过150”的概率;(2)根据题目所给的数据填写2×2列联表即可;(3)计算K 的观测值K 2,对照题目中的表格,得出统计结论.20.【答案】解:(1)证明:过P 在平面PAD 内作直线l // AD ,由AD // BC ,可得l // BC ,即l 为平面PAD 和平面PBC 的交线, ∵PD ⊥平面ABCD ,BC ⊂平面ABCD ,∴PD ⊥BC , 又BC ⊥CD ,CD ∩PD =D ,∴BC ⊥平面PCD , ∵l // BC ,∴l ⊥平面PCD ;(2)如图,以D 为坐标原点,直线DA ,DC ,DP 所在的直线为x ,y ,z 轴,建立空间直角坐标系D −xyz ,∵PD =AD =1,Q 为l 上的点,QB =√2, ∴PB =√3,QP =1,则D(0,0,0),A(1,0,0),C(0,1,0),P(0,0,1),B(1,1,0), 设Q(1,0,1),则DQ ⃗⃗⃗⃗⃗⃗ =(1,0,1),PB ⃗⃗⃗⃗⃗ =(1,1,−1),DC ⃗⃗⃗⃗⃗ =(0,1,0), 设平面QCD 的法向量为n⃗ =(a,b ,c), 则{n ⃗ ⋅DC ⃗⃗⃗⃗⃗ =0n ⃗ ⋅DQ ⃗⃗⃗⃗⃗⃗ =0,∴{b =0a +c =0,取c =1,可得n⃗ =(−1,0,1), ∴cos <n ⃗ ,PB ⃗⃗⃗⃗⃗ >=n⃗⃗ ⋅PB ⃗⃗⃗⃗⃗⃗ |n ⃗⃗ ||PB⃗⃗⃗⃗⃗⃗ |=√3·√2=√63, ∴PB 与平面QCD 所成角的正弦值为√63.【解析】本题考查空间线面垂直的判定,以及线面角的求法,考查转化思想和向量法的运用,考查运算能力和推理能力,属于中档题.(1)过P在平面PAD内作直线l//AD,推得l为平面PAD和平面PBC的交线,由线面垂直的判定和性质,即可得证;(2)以D为坐标原点,直线DA,DC,DP所在的直线为x,y,z轴,建立空间直角坐标系D−xyz,求出Q(0,1,1),运用向量法,求得平面QCD的法向量,结合向量的夹角公式求解即可.21.【答案】解:(1)由题意可知直线AM的方程为:y−3=12(x−2),即x−2y=−4,当y=0时,解得x=−4,所以a=4,椭圆C:x2a2+y2b2=1(a>b>0)过点M(2,3),可得416+9b2=1,解得b2=12,所以C的方程:x216+y212=1.(2)设与直线AM平行的直线方程为:x−2y=m,当直线与椭圆相切时,与AM距离比较远的直线与椭圆的切点为N,此时△AMN的面积取得最大值.x−2y=m代入椭圆方程:x216+y212=1.化简可得:16y2+12my+3m2−48=0,所以△=144m2−4×16(3m2−48)=0,即m2=64,解得m=±8,与AM距离比较远的直线方程:x−2y=8,利用平行线之间的距离为:d=8+4√1+4=12√55,|AM|==3.所以△AMN的面积的最大值:12×3√5×12√55=18.【解析】本题考查直线与椭圆的位置关系的综合应用,椭圆方程的求法,椭圆的简单性质的应用,考查学生分析问题解决问题的数学素养,是偏难题.(1)利用已知条件求出A的坐标,然后求解b,得到椭圆方程.(2)设出与直线AM平行的直线方程,与椭圆联立,利用判别式为0,求出椭圆的切线方程,然后求解三角形的最大值.22.【答案】解:(1)当a=e时,f(x)=e x−lnx+1,∴f′(x)=e x−1x,∴f′(1)=e−1,∵f(1)=e+1,∴曲线y=f(x)在点(1,f(1))处的切线方程为y−(e+1)=(e−1)(x−1),当x=0时,y=2,当y=0时,x=−2e−1,∴曲线y=f(x)在点(1,f(1))处的切线与两坐标轴围成的三角形的面积S=12×2×2e−1=2e−1.(2)方法一:由f(x)≥1,可得ae x−1−lnx+lna≥1,即e x−1+lna−lnx+lna≥1,即e x−1+lna+lna+x−1≥lnx+x=e lnx+lnx,令g(t)=e t+t,则g′(t)=e t+1>0,∴g(t)在R上单调递增,∵g(lna+x−1)≥g(lnx)∴lna+x−1≥lnx,即lna≥lnx−x+1,令ℎ(x)=lnx−x+1,∴ℎ′(x)=1x −1=1−xx,当0<x<1时,ℎ′(x)>0,函数ℎ(x)单调递增,当x>1时,ℎ′(x)<0,函数ℎ(x)单调递减,∴ℎ(x)≤ℎ(1)=0,∴lna≥0,∴a≥1,故a的范围为[1,+∞).方法二:由f(x)≥1可得ae x−1−lnx+lna≥1,即ae x−1−1≥lnx−lna,设g(x)=e x−x−1,∴g′(x)=e x−1>0恒成立,∴g(x)在(0,+∞)单调递增,∴g(x)>g(0)=1−0−1=0,∴e x−x−1>0,即e x>x+1,再设ℎ(x)=x−1−lnx,∴ℎ′(x)=1−1x =x−1x,当0<x<1时,ℎ′(x)<0,函数ℎ(x)单调递减,当x>1时,ℎ′(x)>0,函数ℎ(x)单调递增,∴ℎ(x)≥ℎ(1)=0,∴x−1−lnx≥0,即x−1≥lnx∵a>0,∴e x−1≥x,则ae x−1≥ax,此时只需要证ax≥x−lna,即证x(a−1)≥−lna,当a≥1时,∴a≥1,x(a−1)>0>−lna恒成立,当0<a<1时,x(a−1)<0<−lna,此时x(a−1)≥−lna不成立,综上所述a的取值范围为[1,+∞).方法三:由题意可得x∈(0,+∞),a∈(0,+∞),∴f′(x)=ae x−1−1,x易知f′(x)在(0,+∞)上为增函数,①当0<a<1时,f′(1)=a−1<0,f′(1)=ae1a−1−a=a(e1a−1−1)>0,a)使得f′(x0)=0,∴存在x0∈(1,1a当x∈(1,x0)时,f′(x)<0,函数f(x)单调递减,∴f(x)<f(1)=a+lna<a<1,不满足题意,②当a≥1时,e x−1>0,lna>0,∴f(x)≥e x−1−lnx,令g(x)=e x−1−lnx,∴g′(x)=e x−1−1,x易知g′(x)在(0,+∞)上为增函数,∵g′(1)=0,∴当x∈(0,1)时,g′(x)<0,函数g(x)单调递减,当x∈(1,+∞)时,g′(x)>0,函数g(x)单调递增,∴g(x)≥g(1)=1,即f(x)≥1,综上所述a的取值范围为[1,+∞).方法四:∵f(x)=ae x−1−lnx+lna,x>0,a>0,∴f′(x)=ae x−1−1x,易知f′(x)在(0,+∞)上为增函数,∵存在x0∈(0,+∞),使得f′(x0)=ae x0−1−1x0=0,则ae x0−1=1x0,则lna+x0−1=−lnx0,即lna=1−x0−lnx0,当x∈(0,x0)时,f′(x)<0,函数f(x)单调递减,当x∈(x0,+∞)时,f′(x)>0,函数f(x)单调递增,∴f(x)≥f(x0)=ae x0−1−lnx0+lna=1x0−lnx0+1−x0−lnx0=1x0−2lnx0+1−x0≥1∴1x0−2lnx0−x0≥0设g(x)=1x−2lnx−x,易知函数g(x)在(0,+∞)上单调递减,且g(1)=1−0−1=0,∴当x∈(0,1]时,g(x)≥0,∴x0∈(0,1]时,1x0−2lnx0−x0≥0,设ℎ(x)=1−x−lnx,x∈(0,1],∴ℎ′(x)=−1−1x<0恒成立,∴ℎ(x)在(0,1]上单调递减,∴ℎ(x)≥ℎ(1)=1−1−ln1=0,当x→0时,ℎ(x)→+∞,∴lna≥0=ln1,∴a≥1.【解析】本题考查了导数的几何意义,以及导数和函数的最值的关系,考查了运算求解能力,转化与化归能力,属于难题.(1)根据导数的几何意义即可求出切线方程,可得三角形的面积;(2)方法一:不等式等价于e x−1+lna+lna+x−1≥lnx+x=e lnx+lnx,令g(t)=e t+ t,根据函数单调性可得lna>lnx−x+1,再构造函数ℎ(x)=lnx−x+1,利用导数求出函数的最值,即可求出a的范围;方法二:构造两个基本不等式e x>x−1,x−1≥lnx,则原不等式转化为x(a−1)≥−lna,再分类讨论即可求出a的取值范围,方法三:利用分类讨论的思想,当0<a<1,此时不符合题意,当a≥1时,f(x)≥e x−1−lnx,令g(x)=e x−1−lnx,再根据导数和函数最值的关系即可证明,−2lnx0+1−x0≥1,方法四:先根据导数和函数的最值的关系求出f(x)≥f(x0)=1xlna=1−x0−lnx0,再求出x0的范围,再利用导数求1−x0−lnx0的范围,即可求出a 的范围.。
普通高等学校招生全国统一考试新高考数学(带答案)(2020年九月整理).doc
2020年普通高等学校招生全国统一考试新高考理科数学(模拟试题卷)注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、单项选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中只有一项是符合题目要求的。
1.若512z i=+,则z 的共轭复数为( ) A .12i -B .12i +C .12i --D .12i -+2.集合{|}310Ax x ≤≤=,27{|}B x x =<<,A B =( )A .{|210}x x <B .{|210}x x <<C .{|37}x x <D .{|37}x x3.已知向量,a b ,满足2,2,1a b a b ==⋅=,则向量a 与b 的夹角的余弦值为( )A .25B .24 C .23D .224.,则a,b,c 的大小关系为( )A .a >b >cB .c >a >bC .b >a >cD .b >c >a5.已知直线3y kx =+和圆226450x y x y +--+=相交于,M N 两点,若23MN =,则k 的值为A .122或B .122--或 C .122或- D .122-或 6.设函数()cos23sin2f x x x =-,把()y f x =的图象向左平移()2πϕϕ<个单位后,得到的部分图象如图所示,则()f ϕ的值等于( )A .3-B .3C .1-D .17.某多面体的三视图如图所示,其中正视图和侧视图都是由长方形及其一条对角线组成,长方形的宽为3,俯视图为等腰直三角形,直角边长为4,则该多面体的体积是( ) A .8B .12C .16D .248.过抛物线:的焦点F作倾斜角为的直线,若直线与抛物线在第一象限的交点为A,并且点A也在双曲线:的一条渐近线上,则双曲线的离心率为()ABC D二、多项选择题:本题共4小题,每小题5分,共20分。
精品解析:2020年全国统一高考数学试卷(理科)(新课标Ⅰ)(解析版)
★绝密 启用前2020年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生一定将自己的姓名.考生号等填写在答题卡和试题指定位置上.2.回答选择题时,找出每个小题答案后,用铅笔把答题卡对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上。
写在本试卷上无效.3.考试结束后,将本试题和答题卡一并交回.一.选择题:本题共12小题,每个小题5分,共60分。
在每个小题给出的四个选择项中,仅有一项是符合题目要求的.1.若z=1+i ,则|z 2–2z |=()A. 0 B. 1C.2D. 2【答案】D 【分析】【分析】由题意首先求得 z 2 - 2z 的值,然后计算其模即可.2=(1 i +)2=2i ,则z 2- 2z = 2i - 2(1+ i )= -2【详解】由题意可得:- 2z = -2 = 2.故选:D.【点睛】本题主要考查复数的运算法则和复数的模的求解等知识,属于基础题.2.设集合A ={x |x 2–4≤0},B ={x |2x +a ≤0},且A ∩B ={x |–2≤x ≤1},则a =(z .z2故)A. –4B. –2C. 2D. 4【答案】B 【分析】【分析】由题意首先求得集合A ,B ,然后结合交集的结果得到关于a 的方程,求解方程即可确定实数a 的值.A = x | -2 ≤ x ≤ 2},{【详解】求解二次不等式 x 2 -4≤ 0 可得:⎧⎩a ⎫2⎭2x + a ≤ 0 B = ⎨x | x ≤ - ⎬求解一次不等式可得:.a A ⋂ B = x | -2 ≤ x ≤1{},故:- =1 a = -2,解得:由于.2故选:B.【点睛】本题主要考查交集的运算,不等式的解法等知识,意在考查学生的转化能力和计算求解能力.3.埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为()5 -15 -1 5 +1 5 +1A.B.C.D.4242【答案】C 【分析】【分析】1设CD = a ,PE = b ,利用PO 2 = CD ⋅ PE a ,b 得到关于的方程,解方程即可得到答案.22a 【详解】如图,设CD = a ,PE = b ,则 PO ,=PE OE 22-=b 2-41a 21b b PO 2= ab ,即b 2-= ab 4( )2 - 2⋅ -1 = 0由题意,化简得,242a ab 1+ 5=(负值舍去).解得a 4故选:C.【点晴】本题主要考查正四棱锥的概念及其有关计算,考查学生的数学计算能力,是一道容易题.4.已知A 为抛物线C :y 2=2px (p >0)上一点,点A 到C 的焦点的距离为12,到y 轴的距离为9,则p =()A. 2B. 3C. 6D. 9【答案】C 【分析】【分析】利用抛物线的定义建立方程即可得到答案.【详解】设抛物线的焦点为F ,由抛物线的定义知故选:C.pp | AF |= x A + =12 ,即12 = 9 +p =6 .,解得22【点晴】本题主要考查利用抛物线的定义计算焦半径,考查学生转化与化归思想,是一道容易题.5.某校一个课外学习小组为研究某作物种子的发芽率y 和温度x (单位:°C )的关系,在20个不同的温度条件下进行种子发芽实验,由实验数据 (x , y )(i =1,2, , 20) 得到下面的散点图:i i 据此散点图,在10°C 至40°C 之间,下面四个回归方程类型中最适宜作为发芽率y 和温度x 的回归方程类型的是(y = a + bx)y = a + bx 2B.A.y = a + b ln xD.C. y = a + b e x 【答案】D 【分析】【分析】根据散点图的分布可选择合适的函数模型.【详解】由散点图分布可知,散点图分布在一个对数函数的图象附近,y x y = a + b ln x 因此,最适合作为发芽率 和温度 的回归方程类型的是故选:D.【点睛】本题考查函数模型的选择,主要观察散点图的分布,属于基础题..6.函数 f (x ) = x 4 - 2x 3 的图像在点(1,f (1))处的切线方程为()y = -2x -1y = -2x +1A.C. B.D.y = 2x -3y = 2x +1【答案】B 【分析】【分析】y = f x ()的导数 f '(x ) f (1)和 f '(1)求得函数【详解】,计算出的值,可得出所求切线的点斜式方程,化简即可.f x = x 4 - 2x 3()∴ f ' x = 4x 3 - 6x 2 ,∴ f (1)= -1, f '(1)= -2,( ),y +1= -2 x -1),即 y = -2x+1.(因此,所求切线的方程为故选:B.【点睛】本题考查利用导数求解函图象的切线方程,考查计算能力,属于基础题πf (x ) = cos( x + ) 在[-π,π]7.设函数的图像大致如下图,则f (x )的最小正周期为()610π7πA.C.B.D.94π63π32【答案】C 【分析】【分析】⎛ 4π⎫⎭⎛ 4ππ ⎫6 ⎭⎛ 4π⎫⎭由图可得:函数图象过点- ,0⎪,即可得到cos - ⋅ω + ⎪ = 0,结合 - ,0⎪ f (x )是函数⎝9⎝9⎝94πππ3x图象与 轴负半轴的第一个交点即可得到-⋅ω + = - ,即可求得ω =9622,再利用三角函数周期公式即可得解.⎛ 4π⎫⎭【详解】由图可得:函数图象过点- ,0⎪,⎝9⎛ 4ππ ⎫6 ⎭将它代入函数( )可得:cos - ⋅ω + ⎪ = 0f x ⎝9⎛ 4π⎫⎭ -,0⎪ f x ( )图象与 轴负半轴的第一个交点,x 又是函数⎝94πππ3所以 -⋅ω + = - ,解得:ω =96222π 2π 4πT ===所以函数( )的最小正周期为f x ω323故选:C【点睛】本题主要考查了三角函数的性质及转化能力,还考查了三角函数周期公式,属于中档题.y 28. (x + )(x + y )5 的展开式中x 3y 3的系数为()xA. 5B. 10C. 15D. 20【答案】C 【分析】【分析】y 2⎫x5-ry rr ∈ N x +求得 (x + y )5展开式的通项公式为T r +1= C 5r(且r ≤ 5),即可求得⎛与(x + y )5x ⎭⎝展开式的乘积为C r 5x 6-r y r或C 5rx 4-r y r +2形式,对 分别赋值为3,1即可求得r x 3y 3的系数,问题得解.【详解】 (x + y )5展开式的通项公式为Tr +1= C 5r x 5-r y r (r∈ N 且 r ≤ 5)⎛2⎫y x +⎪(x + y )5展开式的乘积可表示为:所以与x ⎭⎝y 2y 2xT r +1 = xC 5x5-r r y r= C 5r x6-ry r=x 5-r = C 5x 4-r y r +2C 5r y r r 或T r +1x xxT r +1 = C 5r x 6-r y r r = 3,可得: xT 4 = C 53x 3y 333x y 的系数为10在在中,令,该项中,y 2y 2T r +1 = C 5r x 4-r y r +2r =1,可得: T 2 = C 51x 3y 3x 3y 3的系数为5中,令,该项中x xx 3y 3的系数为10 + 5 =15所以故选:C【点睛】本题主要考查了二项式定理及其展开式的通项公式,还考查了赋值法.转化能力及分析能力,属于中档题.9.已知α∈(0,π),且3cos2α -α = 5 ,则sin α =()8cos 52A.C. B.3315D.39【答案】A 【分析】【分析】cos αcos α的一元二次方程,求解得出用二倍角的余弦公式,将已知方程转化为关于,再用同角间的三角函数关系,即可得出结论.【详解】3cos 2α - 8cos α = 5,得 6cos 2 α -8cos α -8 = 0 ,2α - 4 cos α - 4 = 0 ,解得cos α = -cos α = 2(舍去),即 3cos 2或35又 α ∈(0,π ),∴sin α = 1- cos 2 α =.3故选:A.【点睛】本题考查三角恒等变换和同角间的三角函数关系求值,熟记公式是解题的关键,考查计算求解能力,属于基础题.A ,B ,C 为球O的球面上的三个点,⊙OABC 的外接圆,若⊙O的面积为4π10.已知为A ,11AB = BC = AC = OO 1 ,则球O的表面积为()A. 64πB.48πC.36πD. 32π【答案】A 【分析】【分析】由已知可得等边A ABC 的外接圆半径,进而求出其边长,得出OO1的值,根据球截面性质,求出球的半径,即可得出结论.【详解】设圆Or 半径为,球的半径为 R ,依题意,1得πr = 4π,∴r = 22,由正弦定理可得 AB = 2r sin 60︒ = 2 3 ,∴OO = AB = 2 3 ,根据圆截面性质OO ⊥平面 ABC ,11∴OO ⊥ O A ,R = OA = OO 2+ O 1A 2 = OO 12 + r 2 = 4,111∴球O 的表面积 = πS 4 R 2 64π .=故选:A【点睛】本题考查球的表面积,应用球的截面性质是解题的关键,考查计算求解能力,属于基础题.11.已知⊙M : x 2线PA , PB ,切点为 A , B ,当| PM | ⋅| AB |最小时,直线 AB 的方程为(2x - y -1= 0 2x + y -1= 02x - y +1= 0+y 2 −2x −2y −2 =0,直线 :l 2x +y +2 =0, P 为 上的动点,过点 P 作⊙M 的切l )2x + y +1= 0D.A. B. C.【答案】D 【分析】【分析】A , P ,B ,M ⊥由题意可判断直线与圆相离,根据圆的知识可知,四点共圆,且 AB MP ,根据PM ⋅ AB MP PM ⋅ AB = 2S △PAM = 2 PA MP ⊥ l时,可知,当直线最小,求出以为直径的圆的方程,根据圆系的知识即可求出直线 AB 的方程.2⨯1+1+ 2【详解】圆的方程可化为(x 1) (y 1)-2+-2= d == 5 > 24 ,点 M 到直线 的距离为l 22+12l,所以直线 与圆相离.A , P ,B ,M ⊥依圆的知识可知,四点四点共圆,且 AB MP ,所以1PM ⋅ AB = 2S △PAM = 2⨯ ⨯ PA ⨯ AM = 2 PA PA = MP 2- 4,而,2当直线 MP ⊥ l 时,MP = 5PA =1,此时 PM ⋅ AB ,最小.min min ⎧1212⎪ y = x +⎧x = -1⎩y = 01112MP : y 1-= ( - ) y = x +x 1⎨⎨∴即,由解得,.22⎪⎩2x + y + 2 = 0所以以 MP 为直径的圆的方程为(x -1 x +1 + y y -1 = 0)()(),即x 2+ y 2 - y -1= 0,2x + y +1= 0两圆的方程相减可得:,即为直线AB 的方程.故选:D.【点睛】本题主要考查直线与圆,圆与圆的位置关系的应用,以及圆的几何性质的应用,意在考查学生的转化能力和数学运算能力,属于中档题.2a+ log 2 a = 4b + 2 log 4 b,则(12.若)A. a > 2bB. a < 2bC. a > b 2D. a < b 2【答案】B 【分析】【分析】设 f (x ) = 2x + log 2 x ,利用作差法结合 f (x ) 的单调性即可得到答案.f (x ) 为增函数,因为2a+ l og 2 a = 4b+ 2 l og 4 b = 22b + l og 2 b【详解】设 f (x ) = 2x + log 2 x ,则1f (a ) - f (2b ) = 2a + log 2 a - (22b + log 2 2b ) = 22b + log 2 b - (22b + log 2 2b ) = log 2 = -1< 0所以所以,2f (a ) < f (2b ) a < 2b ,所以.f (a ) - f (b 2 ) = 2a log 2+ a -(2b 2+2= 22b + log 2 b - (2b 2 + log 2 b 2 ) = 22b - 2b 2 - log 2 b log 2b ),当b =1时, f (a ) - f (b 2 ) = 2 > 0,此时 f (a ) > f (b 2 )a >b 2,有当b = 2 时, f (a ) - f (b 2 ) = -1< 0,此时 f (a ) < f (b 2 )a <b 2,有,所以C .D 不正确.故选:B.【点晴】本题主要考查函数与方程的综合应用,涉及到构造函数,利用函数的单调性比较大小,是一道中档题.二.填空题:本题共4小题,每个小题5分,共20分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
( ) 对 D,斐波那契数列总有 an+2 = an+1 + an ,则 a12 = a2a1 , a22 = a2 a3 − a1 = a2a3 − a2a1 ,
( ) ( ) a32 = a3
a4 − a2
=
a3a4
−
a2a3 ,……,
a2 2018
=
a2018
a2019 − a2017
= a a 2018 2019 − a a 2017 2018 ,
因为 q + 0.4 + 0.1+ 0.2 + 0.2 = 1,所以 q = 0.1,故 A 正确;
又 EX = 0× 0.1+1× 0.4 + 2× 0.1+ 3× 0.2 + 4× 0.2 = 2 ,
DX = (0 − 2)2 × 0.1+ (1− 2)2 × 0.4 + (2 − 2)2 × 0.1+ (3 − 2)2 × 0.2 + (4 − 2)2 × 0.2 = 1.8,故 C 正 确;因为Y = 2 X +1,所以 EY = 2EX +1 = 5 , DY = 4DX = 7.2 ,故 D 正确,故选:ACD.
a2 2019
= a2019a2020
− a a 2019 2018
a12 + a22 + a32 + ⋅⋅⋅⋅⋅⋅ +a22019 = a a 2019 2020 ,故 D 正确;
故选:ABCD.
4.设离散型随机变量 X 的分布列为
X
0
1[来源:学科网 ZXXK]
2
3
4
P
q
0.4
0.1
0.2
0.2
5. 《九章算术》是中国古代的数学名著,其中《方田》一章给出了弧田面积的计算公式.如图所 示,弧田是由圆弧 AB 和其所对弦 AB 围成的图形,若弧田的弧 AB 长为 4π,弧所在的圆的半径 为 6,则弧田的弦 AB 长是 ,弧田的面积是 .
【答案】6 3 ,12π﹣9 3
【解析】∵如图,弧田的弧 AB 长为 4π,弧所在的圆的半径为 6,
1 读万卷书 行万里路
2.已知三个数1, a, 9 成等比数列,则圆锥曲线 x2 + y2 = 1 的离心率为 a2
旗开得胜
A. 5
B. 3 3
C. 10 2
D. 3
【答案】BC
【解析】由等比数列的性质求出 a ,再判断曲线类型,进而求出离心率
由三个数 1, a, 9 成等比数列,得 a2 = 9 ,即 a = ±3 ;当 a = 3 ,圆锥曲线为 x2 + y2 = 1,曲线 32
为椭圆,则 e = 1 = 3 ;当 a = −3 时,曲线为 y2 − x2 = 1,曲线为双曲线, e = 5 = 10 ,
33
23
22
则离心率为: 3 或 10 .故选:BC. 32
3.意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一列数:1,1,2,3,5,….,
其中从第三项起,每个数等于它前面两个数的和,后来人们把这样的一列数组成的数列{an } 称 为“斐波那契数列”,记 Sn 为数列{an } 的前 n 项和,则下列结论正确的是
6. 设函数 f (x) = 1 ,则 f(1)= ;若 f (f (x)) = 1 ,则 x= .
x+2
3
1
【解答】 ,﹣1
3
【解析】
f
(1)
=
1 1+ 2
=
1 3
;由
f
(f
(x))
=
1 3
,
即
f
1 (x) +
2
=
1 3
,得
f(x)=1,由
x
1 +
2
=
1,解得
x=﹣1.故答案为
1 3
,﹣1
7.在① sn = 2bn −1, ② − 4bn = bn−1(n ≥ 2), ③ bn = bn−1 + 2(n ≥ 2) 这三个条件中任选一个,补充在 下面的问题中,若问题中的 k 存在,求出 k 的值;若 k 不存在,说明理由.
新高考开放性试题题型专练 01
旗开得胜
1.由我国引领的 5G 时代已经到来,5G 的发展将直接带动包括运营、制造、服务在内的通信行业
整体的快速发展,进而对 GDP 增长产生直接贡献,并通过产业间的关联效应和波及效应,间接
带动国民经济各行业的 发展,创造岀更多的经济增加值.如图是某单位结合近年数据,对今后几 年的 5G 经济产出所做的预测.结合下图,下列说法正确的是
A. a6 = 8
B. S7 = 33
C. a1 + a3 + a5 + ⋅⋅⋅ + a2019 = a2020
D. a12
+ a22 + ⋅⋅⋅⋅⋅⋅ +a22019 a2019
= a2020
【答案】ABCD
2 读万卷书 行万里路
旗开得胜
{ } 【解析】由题意可得数列 an 满足递推关系 a1 = 1, a2 = 1, an = an−2 + an−1(n ≥ 3) ,对 照四个选
若离散型随机变量Y 满足Y = 2 X +1,则下列结果正确的有
A. q = 0.1
B. EX = 2 , DX = 1.4
3
读万卷书 行万里路
C. EX = 2 , DX = 1.8
D. EY = 5 , DY = 7.2
旗开得胜
【答案】ACD
【解析】先计算 q 的值,然后考虑 EX 、 DX 的值,最后再计算 EY 、 DY 的值.
A.5G 的发展带动今后几年的总经济产出逐年增加 B.设备制造商的经济产出前期增长较快,后期放缓 C.设备制造商在各年的总经济产出中一 直处于领先地位 D.信息服务商与运营商的经济产出的差距有逐步拉大的趋势 【答案】ABD 【解析】本题结合图形即可得出结果. 由图可知设备制造商在各年的总经济产出中在前期处于 领先地位, 而后期是信息服务商处于领先地位,故 C 项表达错误.故选:ABD.
项可得正确答案.
对 A,写出数 列的前 6 项为1,1, 2,1+ 2 + 3 + 5 + 8 +13 = 33,故 B 正确; 对 C,由 a1 = a2 , a3 = a4 − a2 , a5 = a6 − a4 ,……, a2019 = a2020 − a2018 , 可得: a1 + a3 + a5 + ⋅⋅⋅ + a2019 = a2020 .故 a1 + a3 + a5 + ⋅⋅⋅ + a2019 是斐波那契数列中的第 2020
∴α=∠AOB= 4π = 2π ,可得∠AOD= π ,OA=6,
63
3
∴AB=2AD=2OAsin
π 3
=2× 6 ×
3 =6 2
3,
4
读万卷书 行万里路
∴弧田的
面积
S=S
扇形
OAB﹣S△OAB=
1 2
×
4π×6﹣
1 2
×
6
3 × 3 =12π﹣9
3.
旗开得胜
故答案为:6 3 ,12π﹣9 3 .