第3章数值分析曲线拟合
数值分析Ch3函数逼近与曲线拟合

正交,这就需要引进范数与赋范线性空间,内积
3.1 函数逼近的基本概念
• 定义 设集合 S 是数域 P 上的线性空间,元 素 x1 , x2 , , xn S ,若存在不全为零的数 1 , 2 , , n P ,使得 1 x1 2 x2 n xn 0 则称 x1 , x2 , , xn 线性相关,否则,若仅对
数 值 分 析
Computational Method
Chapter 3 函数逼近
第三章 函数逼近与曲线拟合 设函数 y f x 的离散数据(有误差)为
x y
,
x0 y0
x1 y1
x2 y2
xn yn
希望找到简单函数 Px 整体上有 是某度量, 0 是指定精度。
f x Px
1 x1
2 x2 x 2 , 1 1 1 , 1 x , x , 3 2 2 3 x3 3 1 1 2 , 2 1 , 1
xn , 1 xn , 2 xn , n1 1 2 n1 n xn 1 , 1 2 , 2 n1 , n1 k 1 xk , i i ( k 1,2,, n) 简写为: k x xk i 1 i , i
,
x
2
。
(连续) f x Ca, b
b
常见范数:
f x 1 f x dx • 1范数: a ,
• 2-范数:
f x 2
2 f x dx a b
1 2
f x max f x • 范数: , a ,b
数值分析论文--曲线拟合的最小二乘法

---------------------------------------------------------------最新资料推荐------------------------------------------------------ 数值分析论文--曲线拟合的最小二乘法曲线拟合的最小二乘法姓名:徐志超学号:2019730059 专业:材料工程学院:材料科学与工程学院科目:数值分析曲线拟合的最小二乘法一、目的和意义在物理实验中经常要观测两个有函数关系的物理量。
根据两个量的许多组观测数据来确定它们的函数曲线,这就是实验数据处理中的曲线拟合问题。
这类问题通常有两种情况:一种是两个观测量 x 与 y 之间的函数形式已知,但一些参数未知,需要确定未知参数的最佳估计值;另一种是 x 与 y 之间的函数形式还不知道,需要找出它们之间的经验公式。
后一种情况常假设 x 与 y 之间的关系是一个待定的多项式,多项式系数就是待定的未知参数,从而可采用类似于前一种情况的处理方法。
在两个观测量中,往往总有一个量精度比另一个高得多,为简单起见把精度较高的观测量看作没有误差,并把这个观测量选作x,而把所有的误差只认为是y 的误差。
设 x 和 y 的函数关系由理论公式 y=f(x; c1, c2, cm)1 / 13(0-0-1)给出,其中 c1, c2, cm 是 m 个要通过实验确定的参数。
对于每组观测数据(xi, yi) i=1, 2,, N。
都对应于 xy 平面上一个点。
若不存在测量误差,则这些数据点都准确落在理论曲线上。
只要选取m 组测量值代入式(0-0-1),便得到方程组yi=f (x;c1,c2,cm)(0-0-2)式中 i=1,2,, m.求 m 个方程的联立解即得 m 个参数的数值。
显然Nm 时,参数不能确定。
在 Nm 的情况下,式(0-0-2)成为矛盾方程组,不能直接用解方程的方法求得 m 个参数值,只能用曲线拟合的方法来处理。
3.4 离散数据的曲线拟合——数值分析课件PPT

4
(P0 , P0 ) i P02 (xi ) 5 i0
4
(xP0 , P0 ) i xi P02 (xi ) 2.5 i0
a0
(xP0 , P0 ) (P0 , P0 )
0.5
P1(x) x a0 x 0.5
由此得 从而有
4
(P1, P1) i P12 (xi ) 0.625 i0
aj j (x)存在唯一;
j0
(b) p *(x)
n
aj j (x)的系数
a
j
n 可由法方程组
j0
j0
(0 ,0 ) (1 ,0 )
(n ,0 )
(0 ,1 ) (0 ,n ) a0 ( f ,0 )
(1 ,1 )
(1
,n
)
a1
( f
,1
)
(n ,1 )
(n ,n )an
i1
m
xi
i 1
m
xi2
i 1
m
xi3
i 1
m
xi
2
m
yi
i1 m
xi
3
a0
a1
i 1
m
xi yi
i1 m
xi 4
a2
i1
i1
m
xi
2
yi
i1
例 3.4.1 用多项式拟合表3-4中的离散数据。
表3-4
i
1
2
3
45
xi 0.00 0.25 0.50 0.75 1.00 yi 0.10 0.35 0.81 1.09 1.96
(
f
,
n
)
或Ga
d
数值分析之曲线拟合

xi 强度 ¿ Ç È ¶ yi
5.5 5 5.5 6.4 6 5.3 6.5 7 8.5 8 8.1 8.1
9
纤维强度随拉伸 倍数增加而增加 并且24个点大致分 布在一条直线附近
因此可以认为强度 y与拉伸倍数x的主 要关系应是线性关系
8 7 6 5 4 3 2 1
1
2
3
4
5
6
7
8
9
10
y( x) 0 1 x
即
[ a ( x ) ( x ) f ( x )] 0
i 0 j 0 n j j i k i i k i
m
n
a ( x ) ( x ) f ( x )
i 0 j 0 j j i k i i 0 i k i
m
m
a ( x ) ( x ) f ( x )
定义2 设 ψn(x) 是[a,b]上首项系数 an≠0 的 n次多项 式,ρ(x)为[a,b]上权函数,如果多项式序列 满足关系式:
则称为多项式序列 为在[a,b]上带权ρ(x)正交, 称ψn(x)为[a,b]上带权ρ(x)的n次正交多项式。
只要给定区间[a,b]及权函数ρ(x), 均可由一族 线性无关的幂函数 { 1 , x , … , xn , … } 利用逐个正交化手续(Gram-Schmidt正交化方法):
j 0
n
* 2 称为最小二乘解的平方 误差
在确定了拟合函数 S( x)后, 如何求拟合系数 a j ( j 0,1,, n)
使得S *( x ) a* j j ( x ) 满足拟合条件(3)呢?
j 0 n
2
三、法方程组
由
S ( x ) a j j ( x )
数值分析 第3章 函数逼近与曲线拟合)

在[a, b]上一致成立 。
定理:设X为一个内积空间,u1,u2,…,un∈X,矩阵
(u1, u1) (u2 , u1)
G
(u1, u2
(u1, un
) )
(u2 , u2 )
(u2 , un )
(un , u1)
(un , u2 )
(un
, un
)
称为格拉姆矩阵,则G非奇异的充分必要条件是 u1,u2,…,un线性无关 。
n1(x) (x an )n (x) n n1(x)
(n 0,1,...)
其中 0 (x) 1, -1(x) 0, n (xn (x),n (x)) /(n (x),n (x)), n (n (x),n (x)) /(n1(x),(n1(x))
(n 1,2,.....)
并且(
中找一个元素 * (x) 使 f (x) *(x) 在某种意义下
最小.
3、 范数的定义
设S为线性空间,x∈S,若存在唯一实数 || || 满足条件:
(1)‖x‖≥0;当且仅当x=0时,‖x‖=0; (正定性)
(2)‖αx‖=|α|‖x‖,α∈R; (齐次性)
(3)‖x+y‖≤‖x‖+‖y‖,x,y∈S. (三角不等式)
类较简单的便于计算的函数类B中,求函数 P(x) B , 使P(x)与f(x)
之差在某种度量意义下最小” . 函数类A通常是区间[a,b]上的连续 函数,记作C[a,b];函数类B通常是代数多项式,分式有理函数或 三角多项式.
2、函数空间 数学上常把在各种集合中引入某些不同的确定关系称为赋予
集合以某种空间结构,并将这样的集合称为空间.
1 2n n!
dn dxn
{(
第三章(曲线拟合)

y1 y0 a x1 x0 y1 y0 b y0 x0 x1 x0
第4章 插值法
代入式(4―3)得
y1 y0 P ( x1 x0 ) 1 ( x ) y0 x1 x0
《 计 算 方 法 》
(4―4)
图 4.1
第4章 插值法
A(x0,y0),B(x1,y1),C(x2,y2)的抛物线来近似地代替f(x),见图
4.2。
第4章 插值法
《 计 算 方 法 》
图 4.2
第4章 插值法
§3 代数多项式插值的存在唯一性
《 计 算 方 法 》
线性插值和二次插值都属于代数多项式插值。对 于一般的代数插值问题,就是寻求一个不高于n次的代数 多项式 Pn(x)=a0+a1x+a2x2+…+anxn (4―9)
现要构造一个二次函数
φ(x)=P2(x)=ax2+bx+c 近似地代替f(x),并满足插值原则(4―2)
《 计 算 方 法 》
(4―6) (4―7)
P2(xi)=yi, i=0,1,2,… 由(4―7)式得
2 ax0 bx0 c y0 2 ax1 bx1 c y1 ax 2 bx c y 2 2 2
第4章 插值法
10 9
《 计 算 方 法 》
§ 曲 线 拟 合 法
§ 数 值 微 分
§
8
§ 7 牛 顿 前 差 和 后 差 插 值 多 项 式
§ 6 牛 顿 均 差 插 值 多 项 式
§
5
§ 4 代 数 多 项 式 的 余 项
§ 3 代 数 多 项 式 插 值 的 存 在 唯 一 性
数值计算3-插值和曲线拟合

数值计算...........3.-.插值和曲线拟合插值法是实用的数值方法,是函数逼近的重要方法。
在生产和科学实验中,自变量x与因变量y的函数y = f(x)的关系式有时不能直接写出表达式,而只能得到函数在若干个点的函数值或导数值。
当要求知道观测点之外的函数值时,需要估计函数值在该点的值。
如何根据观测点的值,构造一个比较简单的函数y=φ(x),使函数在观测点的值等于已知的数值或导数值。
用简单函数y=φ(x)在点x处的值来估计未知函数y=f(x)在x点的值。
寻找这样的函数φ(x),办法是很多的。
φ(x)可以是一个代数多项式,或是三角多项式,也可以是有理分式;φ(x)可以是任意光滑(任意阶导数连续)的函数或是分段函数。
函数类的不同,自然地有不同的逼近效果。
在许多应用中,通常要用一个解析函数(一、二元函数)来描述观测数据。
根据测量数据的类型:1.测量值是准确的,没有误差。
2.测量值与真实值有误差。
这时对应地有两种处理观测数据方法:1.插值或曲线拟合。
2.回归分析(假定数据测量是精确时,一般用插值法,否则用曲线拟合)。
MATLAB中提供了众多的数据处理命令。
有插值命令,有拟合命令,有查表命令。
一维插值插值定义为对数据点之间函数的估值方法,这些数据点是由某些集合给定。
当人们不能很快地求出所需中间点的函数值时,插值是一个有价值的工具。
例如,当数据点是某些实验测量的结果或是过长的计算过程时,就有这种情况。
interp1(x,y,xi,method)x和y为既有数据的向量,其长度必须相同。
xi为要插值的数据点向量。
method插值方法,‘nearest’/‘linear’/‘cubic’/‘spline’之一,分别为最近点插值/线性插值/分段三次Hermite插值/三次样条插值。
例x=[1.0 2.0 3.0 4.0 5.0]; %输入变量数据xy=[11.2 16.5 20.4 26.3 30.5]; %输入变量数据yx1=2.55; %输入待插值点xy11=interp1(x,y,x1,'nearest') %最近点插值方法的插值结果y12=interp1(x,y,x1,'linear') %线性插值方法的插值结果y13=interp1(x,y,x1,'cubic') %三次Hermite插值方法的插值结果y14=interp1(x,y,x1,'spline') %样条插值方法的插值结果y11 =20.4000y12 =18.6450y13 =18.6028y14 =18.4874plot(x,y)或许最简单插值的例子是MATLAB的作图。
数值分析 曲线拟合

第三章实验作业由物理实验得到下列一组数据:x i 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 y i 33.40 79.50 122.65 159.05 189.15 214.15 238.65 252.50 267.55 280.50 296.65 x i 6.5 7 7.5 8y i 301.65 310.40 318.15 325.15用抛物线2cx bx a y ++=做曲线拟合。
1.N-S 图;C语言程序:#include "stdio.h"#include "conio.h"#include "stdlib.h"#include "math.h"#define N 15//N个节点#define M 2//M次拟合#define K 2*Mvoid zhuyuan (int k,int n,float a[M+1][M+2]) {int t,i,j;float x,y;x=fabs(a[k][k]);t=k;for (i=k+1;i<=n;i++)if (fabs(a[i][k])>x){x=fabs(a[i][k]);t=i;}for (j=k;j<=n+1;j++){y=a[k][j];a[k][j]=a[t][j];a[t][j]=y;}}void xiaoyuan(int n,float a[M+1][M+2]){int k,i,j;for(i=0;i<n;i++){zhuyuan(i,n,a);for (j=i+1;j<=n;j++)for (k=i+1;k<=n+1;k++)a[j][k]=a[j][k]-a[j][i]*a[i][k]/a[i][i];}}void huidai(int n,float a[M+1][M+2],float x[M+1]) {int i,j;x[n]=a[n][n+1]/a[n][n];for (i=n-1;i>=0;i--){ x[i]=a[i][n+1];for (j=i+1;j<=n;j++)x[i]=x[i]-a[i][j]*x[j];x[i]=x[i]/a[i][i];}}void main(){float x_y[N][2],A[N][K+1],B[N][M+1],AA[K+1],BB[M+1],a[M+1][M+2],m[M+1]; int i,j,n;printf("请输入%d个已知点:\n",N);for(i=0;i<N;i++){printf("(x%d y%d):",i,i);scanf("%f %f",&x_y[i][0],&x_y[i][1]);}for(i=0;i<N;i++){A[i][0]=1;for(j=1;j<=K;j++)A[i][j]=A[i][j-1]*x_y[i][0];for(j=0;j<=M;j++)B[i][j]=A[i][j]*x_y[i][1];}for(j=0;j<=K;j++)for(AA[j]=0,i=0;i<N;i++)AA[j]+=A[i][j];for(j=0;j<=M;j++)for(BB[j]=0,i=0;i<N;i++)BB[j]+=B[i][j];for(i=0;i<M+1;i++){a[i][M+1]=BB[i];for(j=0;j<=M;j++)a[i][j]=AA[i+j];}n=M;xiaoyuan(n,a);huidai(n,a,m);printf("拟合曲线方程为:\ny(x)=%g",m[0]);for(i=1;i<=n;i++){printf(" + %g",m[i]);for(j=0;j<i;j++){printf("*X");}}}C语言结果:组员:李遨蔚,杨切,肖天,蒋智慧,陈前广,王爽。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
f (x1)0 (x1) 0 (x1) c j j (x1) j0
n
f (xm )0 (xm ) 0 (xm ) c j j (xm ) 0 j0
n
移项整理得 c j( j ,0) ( f ,0 ) j0
其中f ( f (x0 ), f (x1),..., f (xm )),
i0
(1.20)
则称 P*(x) 为 f (x)的最小二乘拟合.
最小二乘法(误差的平方和最小)
3
曲线拟合是什么?
它不同于插值,它是寻找一条曲线(有函数表 达式),满足 : (1)未必通过所有离散点; (2)只要能反映离散点的分布情况.
4
(1)曲线拟合对应的数学问题
已知y
f
x (x),
x0
x1 xm ,在某个标准下,
(2)曲线拟合
寻找一个有函数表达式的曲线, 满足: a, 未必通过所有点; b, 只能反映离散点的分布情况.
注 : 插值法、曲线拟合都是函数逼近问题的一种 1
基本概念及定义 P51-66
n维向量空间,线性空间,函数空间 线性相关或无关 赋范线性空间 内积与内积空间 权函数 正交、正交函数族、标准正交函数族 正交多项式(legendre多项式、切比雪夫多项式、等)
10
10
xi yi ( xi )c0 ( xi2 )c1
i0
i0
10 i0
xi yi
9
(3)由最小二乘法得标准方程(正规方程)
10
i0 10
i0
yi xi yi
10
10
( 1)c0 ( xi )c1
i0
i0
,
10
10
( xi )c0 ( xi2 )c1
先确定一个线性无关函数族{0 (x),1(x),...,n (x)},
然后用函数族中若干函数组装成一个函数,
(x) c00 (x) c11(x) ... cnn (x)
用最小二乘标准构造出误差的平方和
m
Q(c0 , c1,..., cn ) [ f (xi ) (xi )]2 i0 m
X x Y ln y
X 0 x0 Y0
X1 x1 X n xn
Y1
Yn
此时x与ln y具有线性关系,可用最小二乘法得正规方程
(
n i0
1)
n
A(
i0
Xi)B
n i0
Yi
(
n i0
Xi)
A
n
(
i0
Xi
Xi)B
n i0
x1
xn
y a bx5
有Y a bX
x 与y具有线性关系 y1 yn 令Y Y ,X x5 5
x05 x15 xn5
y0 y1 yn
16
练习:观察物体直线运动,得以下数据
时间t 0 0.9 1.9 3 3.9 5
距离s 0 10
30
50
, 80 110
求运动方程。
(0 ,0 ) (0 ,1) (0 ,n )
G
(1
,
0
)
(1 , 1 )
(1
,
n
)
.
(n ,0 ) (n ,1) (n ,n )
(4.7)
矩阵G对应的行列式不为零,因此正规方程
有唯一解( P54, 定理3)
注 : 一般地,0 (x),1(x),...,n (x)线性无关,可以保证 0 (0 (x0 ),0 (x1),...,0 (xn )),1,...,n线性无关
( X iYi )
A
, B
?
由BA
ln b
a ,
最后求出a,
b.
P75例10
15
4 其他非线性一
x
x0
x1
xn
1 ab 1
y
x
有Y a bX
y
y0
y1
yn
令1 具有线性关系 xy
5 其他非线性二
x x0 y y0 X x5 Yy
y (x) c0 c1x,把它视为y的拟合
(2)构造误差的平方和
10
10
Q(c0 , c1) ( yi (xi ))2 ( yi c0 c1xi )2
i0
i0
c0 , c1待定
8
(3)求偏导,令为0,求出C0,C1,
令
Q c0
0,Q c1
0,求出c0 , c1
i0
j 0
(k 0,1,, n).
这里关于c0,c1,..., cn的线性方程组,可以改写为
当k
0时, Q c0
m
0,有 [
i0
f
(xi )
n
cj
j0
j (xi )]0 (xi )
0
11
n
f (x0 )0 (x0 ) 0 (x0 ) c j j (x0 ) j0
n
(
i0
xi2 ) c1
n i0
(xi yi )
2 二次
x
x0
x1 xn
设拟合曲线
y
y0
y1
yn
y c0 c1xc2 x2
0 ( x)1
1 ( x) x,2 ( x) x2
( n 11) c0 ( n
n
xi 1) c1 (
7
例. i 0 1 2 3 4 5 xi 1 2 3 4 5 6
6 7
7 8 9 10 8 9 10 11
yi 1.3 3.5 4.2 5 7 8.8 10.1 12.5 13 15.6 16.1
求曲线拟合函数 y (x) ,且计算出x=12时,y的值
解.(1)根据离散数据描点画散点图,由散点图中点的分布情况 大致猜测离散数据,应符合的函数关系式
i0
i0
10
10
yi 97.1, ( xi ) 66
i0
i0
10
10
xi yi 749.5, xi2 506
i0
i0
代入得 c0 0.276,c1 1.517
所得拟合曲线y (x) c0 c1x 0.276 1.517x
令x 12,有y 0.276 1.517*12 17.928 x12
2
3.4曲线拟合的最小二乘法
若 f (x)是 [a, b]上的一个列表函数,在
a x0 x1 xm b
上给出 f (xi )(i 0,1,, m) ,要求 P* 使
m
f P * min
2
P
f
P
2
min P
[ f (xi ) P(xi )]2
y y0 y1 ym
寻找y s(x),使得y f (x)与y s(x)的距离最小.
(2)曲线拟合中常用的标准
用y s(x)去作为y f (x)的近似,希望误差的平方和最小,
m
即 [ f (xi ) s(xi )]2最小 (最小二乘标准) i0
5
(3)曲线拟合问题的转化
0 (0 (x0 ),0 (x1),...,0 (xm ))
同理分析 Q 0,,Q 0得出
c1
cn
n
c j( j ,0) ( f ,k ), k 0,1,..., n.(正规方程组、法方程组) (4.6)
j0
12
上方程组(法方程)的系数矩阵
n
xi xi2 ) c1 (
xi2 xi2 ) c2
n
(xi2 yi )
i0
i0
i0
i0
14
3 一般非线性
x
x0
x1
xn
设拟合曲线
非线性问题能否线性化 ?
y
y0
y y 1
n y aebx
y a ebx,ln y ln a bx Y A BX
P74定义7.哈尔条件
13
非线性模型举例
1 线性 x x0 x1 y y0 y1
xn
设拟合曲线
yn
y c0 c1x
0 ( x)1
1( x)x
(
i
n 0
1)
c0
n
(
i0
xi ) c1
n i0
yi
(
i
n 0
1
xi
)
c0
xi2 1) c2
n
yi
i0
i0
i0
i0
n
n
( 1 xi ) c0 (
n
xi xi ) c1 (
xi2 xi ) c2
n
(xi yi )
i0
i0
i0
i0
n
(
n
1 xi2 ) c0 (
17
关于多项式拟合,Matlab中有现成的程序
a polyfit (x, y, m)
其中输入参数 x, y为要拟合的数据, m为拟合多项式的次数, 输出参数 a 为拟合多项式的系数.