线段与角计算中的思想方法
怎样借助数学思想求角的度数

数学篇求角度问题是初中几何中的常见问题.在具体求解时除了需运用角的平分线性质,角的和、差、倍、分等运算技巧以及一些基本图形的性质外,还需合理借助相应的数学思想,如分类讨论思想、转化思想、方程思想等来解题.下面举例进行分析说明.一、借助分类讨论思想求角的度数所谓分类讨论思想,就是当要求解的问题包含两种或两种以上的可能情况时,需要根据不同的情况进行分类讨论,分析、综合结论,得到答案.在求角度时,若问题存在多种情形,就需要采用分类讨论思想,对每种情形加以具体讨论.进行分类讨论时需要注意两点:一是确保分类标准统一;二是讨论全面,确保不重、不漏.例1已知∠AOB =100°,∠BOC =60°,OM 平分∠AOB ,ON 平分∠BOC ,求∠MON 的度数.分析:本题没有图,作图时应考虑OC 落在∠AOB 的内部和外部两种情况.解:(1)如图1,当OC 落在∠AOB 的内部时,∵OM 平分∠AOB ,ON 平分∠BOC ,∴∠AOM =12∠AOB =12×100°=50°,∠BON =12∠BOC =12×60°=30°,∴∠MON =∠AOB -∠AOM -∠BON =100°-50°-30°=20°;图1图2(2)如图2,当OC 落在∠AOB 的外部时,∵OM 平分∠AOB ,ON 平分∠BOC ,∴∠BOM =12∠AOB =50°,∠BON =12∠BOC =30°,∴∠MON=∠BOM+∠BON=50°+30°=80°.评析:当图形之间的位置关系不明确时,往往要进行分类讨论,不能片面考虑一种情况从而造成漏解.尤其在解答无图几何题时一定要慎重,要利用分类的思想分析满足条件的图形有几种情形,确保解答的完整性.二、借助整体思想求角的度数整体思想就是从整体的角度思考问题,即将局部放在整体中去观察、分析、探究问题.在求解与三角形有关的角度问题时,局部求解比较困难,就可利用三角形的一个外角等于和它不相邻的两个内角之和及三角形的三个内角的和等于180等相关定理,运用整体思想求解,进而使问题化繁为简,化难为易.例2如图3,BE 是∠ABD 的平分线,CF 是∠ACD 的平分线,BE 与CF 交于G ,如果∠BDC =140°,∠BGC =110°,则∠A =______.图3图4分析:连接BC ,根据三角形内角和定理求出∠DBC +∠DCB =40°,∠GBC +∠GCB =70°,所怎样借助数学思想求角的度数浙江宁波孙乾解法荟萃31数学篇以∠GBD +∠GCD =30°,再根据角平分线的定义求出∠ABG +∠ACG =30°,然后根据三角形内角和定理即可求出∠A =80°.解:连接BC ,如图4,∵∠BDC =140°,∴∠DBC +∠DCB =180°-140°=40°,∵∠BGC =110°,∴∠GBC +∠GCB =180°-110°=70°,∴∠GBD +∠GCD =70°-40°=30°,∵BE 是∠ACG 的平分线,CF 是∠ACD的平分线,∴∠ABG +∠ACG =∠GBD +∠GCD =30°,在ΔABC 中,∠A =180°-40°-30°-30°=80°.故答案为:80°.评析:整体代换是一种重要的解题策略.在解题时,当单个对象无法求出时,可考虑将几个单个的对象作为一个整体来考虑.在解答本题过程中多次运用了整体思想,才使问题顺利得解.三、借助转化思想求角的度数转化思想就是将未知的、陌生的、复杂的问题转化为已知的、熟悉的、简单的问题来解答的一种思想方法.在求解角度问题中运用转化思想可将题干中的条件、结论转化,从而将分散的条件适当集中,使线段与线段,角与角,形与形之间建立联系.例3在小学阶段我们已经掌握了三角形内角性质:三角形的三个内角之和等于180°,如图5所示,△ABC 的内角和∠1+∠2+∠3=180°,请回答下列问题:图5图6(1)对于图6中的四边形ABCD ,其内角和∠1+∠2+∠3+∠4=_______;(2)平角等于180°,试求图5中∠4+∠5+∠6的大小,以及图6中∠5+∠6+∠7+∠8的大小.分析:题目初始引出了三角形的内角和知识,实则是引导同学们运用该知识进行角度之和问题的转化.计算角度之和常用的方法有两种:一是直接将多角之和转化为一角,然后计算该角的大小;二是结合等角转化,将所求角度转化为相关角之间的数量关系,即等角代换.解:(1)已知三角形的内角和为180°,则可以通过添加辅助线,将四边形ABCD 转化为两个三角形,连接AC ,显然四边形的内角和等于两个三角形内角和的叠加,所以∠1+∠2+∠3+∠4=180°×2=360°.(2)根据平角定义可知:图5中,∠4+∠5+∠6=180°-∠1+180°-∠2+180°-∠3=540°-(∠1+∠2+∠3)=360°;图6中,∠5+∠6+∠7+∠8=180°-∠1+180°-∠2+180°-∠3+180°-∠4=720°-(∠1+∠2+∠3+∠4)=360°.评析:在上面的解题过程中,计算图形中的角度之和,采用了恒等代换的策略,将所求角度之和转化为关联角的和差关系,进而利用三角形内角和等相关知识来解答.四、借助方程思想求角的度数方程思想就是将数学问题中的数量关系,运用数学语言转化为方程模型,即将问题中的已知量与未知量转化为一元一次方程或二元一次方程组,从而求解问题.在求解几何角度问题时,可以根据三角形内角和、外角和以及三角形内角与外角的关系构建关于几何角的方程.例4如图7所示,D 和E 分别是△ABC 解法荟萃32的边BC 、AC 上的点,已知∠B =∠C ,∠ADE =∠AED ,∠BAD =30°,试求∠EDC 的度数.图7分析:题目所示图形存在多个三角形,题干给出了相应的角度关系,可利用方程思想,设出其中的未知角,根据其中的内角和、外角和构建方程,从而确定角度.解:设∠EDC =x ,∠B =∠C =y .∵∠ADC 为△ABD 的外角,由外角性质可知∠ADC =∠B +∠BAD =y +30°.由∠AED 为△CDE 的外角,得∠ADE =∠AED =∠EDC +∠C =x +y .由于∠ADC =∠ADE +∠EDC ,则y +30°=x +y +x ,解得x =15°,所以∠EDC =15°.评析:上述解法充分利用了方程思想,设出未知角,根据三角形外角性质,以及几何等量关系构建方程.方程思想是中学数学中的重要思想,不仅适用于常规的代数问题,在求解线段、角度问题中同样有着重要作用.上期《〈不等式与不等式组〉巩固练习》参考答案套,B 种型号健身器材y 套,依题意得:ìíîx +y =50,300x +400y =16000,解得:ìíîx =40,y =10.答:购买A 种型号健身器材40套,B 种型号健身器材10套.(2)设购买A 种型号健身器材m 套,则购买B 种型号健身器材(50-m )套,依题意得:300m +400(50-m )≤18050,解得:m ≥19.5,又∵m 为整数,∴m 的最小值为20.答:A 种型号健身器材至少要购买20套.上期《〈锐角三角函数〉拓展精练》参考答案;3.A ;4.A ;5.33+3或33-3;6.2.4;7.;8.256;9.(1)BC 的长为7;(2)∠ACB 的正切值为6.10.解:(1)由题意得:∠CAE =15°,AB =30(米),∵∠CBE 是ΔABC 的一个外角,∴∠ACB =∠CBE -∠CAE =15°,∴∠ACB =∠CAE =15°,∴AB =BC =30(米),∴斜坡BC 的长为30(米);(2)在RtΔCBE 中,∠DBE =53°,BC =30(米),∴CE =12BC =15(米),BE =3CE =153(米),解法荟萃。
七年级数学上册线段和角的定值问题课堂学案及配套作业(解析版)

专题19线段和角的定值问题(解析版)第一部分教学案类型一线段中的定值问题1.(2019秋•北仑区期末)如图,C为射线AB上一点,AB=30,AC比BC的14多5,P、Q两点分别从A、B两点同时出发,分别以2个单位/秒和1个单位/秒的速度在射线AB上沿AB方向运动,当点P运动到点B时,两点同时停止运动,运动时间为t(s),M为BP的中点,N为MQ的中点,以下结论:①BC=2AC;②AB=4NQ;③当BP=12BQ时,t=12;④M,N两点之间的距离是定值.其中正确的结论(填写序号)思路引领:根据线段中点的定义和线段的和差关系即可得到结论.解:∵AB=30,AC比BC的14多5,∴BC=20,AC=10,∴BC=2AC;故①正确;∵P,Q两点分别从A,B两点同时出发,分别以2个单位/秒和1个单位/秒的速度,∴BP=30﹣2t,BQ=t,∵M为BP的中点,N为MQ∴PM=12BP=15﹣t,MQ=MB+BQ=15,NQ=12MQ=7.5,∴AB=4NQ;故②正确;∵BP=30−2t,BQ=t,BP=12 BQ,∴30−2t=t2,解得:t=12,故③正确,∵BP=30﹣2t,BQ=t,∴BM=12PB=15﹣t,∴MQ=BM+BQ=15﹣t+t=15,∴MN=12MQ=152,∴MN的值与t无关是定值,故答案为:①②③④.总结提升:本题考查两点间的距离,解题的关键是求出P到达B点时的时间,以及点P与Q重合时的时间,涉及分类讨论的思想.2.(2020秋•东西湖区期末)如图,已知直线l上有两条可以左右移动的线段:AB=a,CD=b,且a,b满足|a﹣2|+(b﹣6)2=0.M为线段AB的中点,N为线段CD中点.(1)求线段AB、CD的长;(2)若线段AB以每秒2个单位长度的速度向右运动,同时线段CD以每秒1个单位长的速度也向右运动,在运动前A点表示的数为﹣2.BC=6,设运动时间为t秒,求t为何值时,MN=4;(3)若将线段CD固定不动,线段AB以每秒2个单位长度的速度向右运动,在运动前AD=36,在线段AB向右运动的某一个时间段内,始终有MN+BC为定值,求出这个定值,并求出t的取值范围.思路引领:(1)根据非负数的性质即可得到结论;(2)t秒后点M表示的数是﹣1+2t,点N表示的数是9+t,然后根据MN=4列出方程可得答案;(3)根据题意分类讨论得到结果.解:(1)∵|a﹣2|+(b﹣6)2=0,∴a﹣2=0,b﹣6=0,∴a=2,b=6,∴AB=2,CD=6;(2)∵运动前A点表示的数为﹣2,BC=6,∴点B表示的数是0,点C、D表示的数分别是6和12,∵M为线段AB的中点,N为线段CD中点,∴点M、N表示的数分别是﹣1和9,t秒后点M表示的数是﹣1+2t,点N表示的数是9+t,∴|(﹣1+2t)﹣(9+t)|=4,解得t=14或6,答:t=14秒或6秒时,MN=4;(3)运动t秒后,MN=|32﹣2t|,BC=|28﹣2t|,当0≤t<14时,MN+BC=32﹣2t+28﹣2t=60﹣4t,当14≤t≤16时,MN+BC=32﹣2t+2t﹣28=4,当t >16时,MN +BC =2t ﹣32+2t ﹣28=4t ﹣60, ∴当14≤t ≤16时,MN +BC 为定值.总结提升:本题主要考查了非负数的性质,一元一次方程的应用以及数轴和两点间的距离等知识,解答本题的关键是掌握两点间的距离公式,解答第三问注意分类讨论思想,此题难度不大.3.(2020秋•遵化市期末)如图,已知线段AB =m ,CD =n ,线段CD 在直线AB 上运动(点A 在点B 的左侧,点C 在点D 的左侧),若|m ﹣12|+(6﹣n )2=0. (1)求线段AB ,CD 的长;(2)若点M ,N 分别为线段AC ,BD 的中点,BC =4,求线段MN 的长;(3)当CD 运动到某一时刻时,点D 与点B 重合,点P 是线段AB 的延长线上任意一点,下列两个结论:①PA−PB PC是定值,②PA+PB PC是定值,请选择你认为正确的一个并加以说明.思路引领:(1)先由|m ﹣12|+(6﹣n )2=0,根据非负数的性质求出n =6,m =12,即可得到AB =12,CD =6;(2)需要分类讨论:①如图1,当点C 在点B 的右侧时,根据“M 、N 分别为线段AC 、BD 的中点”,先计算出AM 、DN 的长度,然后计算MN =AD ﹣AM ﹣DN ;②如图2,当点C 位于点B 的左侧时,利用线段间的和差关系求得MN 的长度;(3)计算①或②的值是一个常数的,就是符合题意的结论. 解:(1)∵|m ﹣12|+(6﹣n )2=0, ∴|m ﹣12|=﹣(6﹣n )2, ∴m ﹣12=0,6﹣n =0, ∴n =6,m =12, ∴AB =12,CD =6;(2)如图1,∵M 、N 分别为线段AC 、BD 的中点, ∴AM =12AC =12(AB +BC )=8, DN =12BD =12(CD +BC )=5, ∴MN =AD ﹣AM ﹣DN =9;如图2,∵M 、N 分别为线段AC 、BD 的中点,∴AM =12AC =12(AB ﹣BC )=4, DN =12BD =12(CD ﹣BC )=1,∴MN =AD ﹣AM ﹣DN =12+6﹣4﹣4﹣1=9;(3)②正确.理由如下: ∵PA+PB PC =(PC+AC)+(PC−CB)PC=2PC PC=2,∴②PA+PBPC 是定值2.总结提升:本题考查了一元一次方程的应用,比较线段的长短.利用中点性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.4.(2018秋•江夏区期末)已知,如图所示,一条直线上依次有A 、B 、C 三个点. (1)若BC =10,AC =3AB 的长;(2)若点D 是射线CB 上一点,点M 为BD 中点,点N 为CD 中点,求BC MN的值;(3)当点P 在线段BC 的延长线上运动时,点E 是AP 的中点,点F 是BC 的中点(E ,F 不重合).下列结论中:①EF AC+BP是定值;②EFAC−BP是定值,其中只有一个结论正确,请选择正确结论并求出其值.思路引领:(1)由AC =AB +BC =3AB 可得;(2)分三种情况:①D 在BC 之间时②D 在AB 之间时③D 在A 点左侧时;(3)分三种情况讨论:①F 、E 在BC 之间,F 在E 左侧②F 在BC 之间,E 在CP 之间③F 、E 在BC 之间,F 在E 右侧;解:(1)∵BC =10,AC =AB +BC =3AB ,∴AB=5;(2)∵点M为BD中点,点N为CD中点,∴BM=BD,DN=NC,①D在BC之间时:BC=BD+CD=2MD+2DN=2MN,∴BCMN=2;②D在AB之间时:BC=DC﹣DB=2DN﹣2MB=2(BN+2MB)﹣2MB=2BN+2MB=2MN,∴BCMN=2;③D在A点左侧时:BC=DN﹣NB=MN+DM﹣NB=MN+MB﹣NB=MN+MN+NB﹣NB=2MN,∴BCMN=2;故BCMN=2;(3)点E是AP的中点,点F是BC的中点.∴AE=EP,BF=CF,①F、E在BC之间,F在E左侧,EF=FC﹣EC=12BC﹣AC+AE=12(AC﹣AB)﹣AC+AE=AE−12AB−12AC,BP=AP﹣AB=2AE﹣AB,AC﹣BP=AC﹣2AE+AB,∴EFAC−BP =−12.②F在BC之间,E在CP之间,EF=12BC+CE=12BC+AE﹣AC=12(AC﹣AB)+AE﹣AC=AE−12AB−12AC,BP=AP﹣AB=2AE﹣AB,AC﹣BP=AC+AB﹣2AE,∴EFAC−BP =−12.③F、E在BC之间,F在E右侧,EF=CE﹣CF=CE−12BC=AC﹣AE−12BC=AC﹣AE−12(AC﹣AB)=12AC﹣AE+12AB,BP=AP﹣AB=2AE﹣AB,∴AC﹣BP=AC+AB﹣2AE,∴EFAC−BP =12,∴只能是②EFAC−BP 是定值,定值为12.总结提升:本题考查线段之间量的关系,结合图形,能够考虑到所有分类是解题的关键.5.(越秀区期末)已知线段AB=8(点A在点B的左侧)(1)若在直线AB上取一点C AC=3CB,点D是CB的中点,求AD的长;(2)若M是线段AB的中点,点P是线段AB延长线上任意一点,请说明P A+PB﹣2PM是一个定值.思路引领:(1)①当点C在线段AB上时,如图1,②当点C在线段AB的延长线上时,如图2,③当点C在BA的延长线上时,明显,次情况不存在;列方程即可得到结论;(2)如图3,设BP=x,则P A=AB+BP=8+x,PM=12AB+BP=4+x,代入P A+PB﹣2PM即可得到结论.解:(1)①当点C在线段AB上时,如图1,∵AC=3BC,设BC=x,则AC=3x,∵AB=AC+BC,∴8=3x+x,∴x=2,∴BC=2,AC=6,∵点D是CB的中点,∴CD=BD=12BC=1,∴AD=AC+CD=6+1=7;②当点C在线段AB的延长线上时,如图2,设BC=x,AC=3BC=3x,∵AB=AC﹣BC=2x=8,∴x=4,∴BC=4,AC=12,AB=8,∵点D是CB的中点,∴BD=CD=12BC=2,∴AD=AB+BD=8+2=10;③当点C在BA的延长线上时,明显,次情况不存在;综上所述,AD的长为7或10;(2)如图3,设BP=x,则P A=AB+BP=8+x,PM=12AB+BP=4+x,∴P A+PB﹣2PM=8+x+x﹣2(4+x)=0,∴P A+PB﹣2PM是一个定值0.总结提升:本题考查了两点间的距离,线段中点的定义,正确的作出图形是解题的关键.6.(2020秋•奉化区校级期末)如图,已知直线l有两条可以左右移动的线段:AB=m,CD=n,且m,n 满足|m﹣4|+(n﹣8)2=0.(1)求线段AB,CD的长;(2)线段AB的中点为M,线段CD中点为N,线段AB以每秒4个单位长度向右运动,线段CD以每秒1个单位长度也向右运动,若运动6秒后,MN=4,求线段BC的长;(3)将线段CD固定不动,线段AB以每秒4个单位速度向右运动,M、N分别为AB、CD中点,BC=24,在线段AB向右运动的某一个时间段t内,始终有MN+AD为定值.求出这个定值,并直接写出t在哪一个时间段内.思路引领:(1)根据非负数的性质即可得到结论;(2)若6秒后,M’在点N’左边时,若6秒后,M’在点N’右边时,根据题意列方程即可得到结论;(3)根据题意分类讨论于是得到结果.解:(1)∵|m﹣4|+(n﹣8)2=0,∴m﹣4=0,n﹣8=0,∴m=4,n=8,∴AB=4,CD=8;(2)若6秒后,M’在点N’左边时,由MN+NN’=MM’+M’N’,即2+4+BC+6×1=6×4+4,解得BC=16,若6秒后,M’在点N’右边时,则MM’=MN+NN’+M’N’,即6×4=2+BC+4+6×1+4,解得BC=8,(3)运动t秒后MN=|30﹣4t|,AD=|36﹣4t|,当0≤t<7.5时,MN+AD=66﹣8t,当7.5≤t≤9时,MN+AD=6,当t≥9时,MN+AD=8t﹣66,∴当7.5≤t≤9时,MN+AD为定值.总结提升:本题主要考查了非负数的性质,一元一次方程的应用以及数轴和两点间的距离等知识,解答本题的关键是掌握两点间的距离公式,解答第三问注意分类讨论思想,此题难度不大.7.(2022秋•平南县月考)如图AB=48,C为线段AB的延长线上一点,M,N分别是AC,BC的中点.(1)若BC=10,求MN的长;(2)若BC的长度为不定值,其它条件不变,MN的长还是定值吗?若是,请求出MN的长;若不是,请说明理由.思路引领:(1)根据线段中点的性质,可得CM,CN的长,根据线段的和差,可得答案;(2)根据线段中点的性质,可得CM,CN的长,根据线段的和差,可得答案.解:(1)由已知得AC=AB+BC=58.由M,N分别是AC,BC的中点,得CM=29,NC=5.由线段的和差,得MN=CM﹣NC=29+5=24;(2)若BC的长度为不定值,其它条件不变,MN的长是定值.由M,N分别是AC,BC的中点,得CM=12(AB+BC),CN=12BC,MN=CM﹣NC=12(AB+BC)−12BC=12AB=24.总结提升:本题考查了两点间的距离,利用线段中点的性质得出MC,NC的长是解题关键,又利用了线段的和差.类型二角中的定值问题8.(2017秋•宁海县期末)如图,已知在同一平面内OA⊥OB,OC是OA绕点O顺时针方向旋转α(α<90°)度得到,OD平分∠BOC,OE平分∠AOC.(1)若α=60即∠AOC=60°时,则∠BOC=°,∠DOE=°.(2)在α的变化过程中,∠DOE的度数是一个定值吗?若是定值,请求出这个值;若不是定值,请说明理由.思路引领:(1)先得到∠BOC=∠AOB+∠AOC=150°,再根据角平分线的定义得到∠DOC=75°,∠EOC=30°,然后计算∠DOC﹣∠EOC得到∠DOE的度数;(2)根据角平分线的定义∠DOC=12∠BOC=45°+12α,∠EOC=12∠AOC=12α,所以∠DOE=∠DOC﹣∠EOC=45°,从而可判断∠DOE的度数是一个定值.解:(1)∵OA⊥OB,∴∠AOB=90°,∴∠BOC=∠AOB+∠AOC=90°+60°=150°,∵OD平分∠BOC,∴∠DOC=12∠BOC=75°,∵OE平分∠AOC,∴∠EOC=12∠AOC=30°,∴∠DOE=∠DOC﹣∠EOC=75°﹣30°=45°;故答案为150°;45°;(2)在α的变化过程中,∠DOE的度数是一个定值,为45°.∵OD平分∠BOC,∴∠DOC=12∠BOC=12(90°+α)=45°+12α∵OE平分∠AOC,∴∠EOC=12∠AOC=12α,∴∠DOE=∠DOC﹣∠EOC=45°+12α−12α=45°,即∠DOE的度数是一个定值.总结提升:本题考查了角度的计算:会利用几何图形计算角度的和与差.也考查了角平分线的定义.9.(2020秋•平山区校级期中)已知∠AOB=110°,∠COD=40°,OE平分∠AOC,OF平分∠BOD.(1)如图1,当OB、OC重合时,∠AOE﹣∠BOF=;(2)如图2,当∠COD从图1所示位置绕点O以每秒3°的速度顺时针旋转t秒(0<t<10),在旋转过程中∠AOE﹣∠BOF的值是否会因t的变化而变化,若不发生变化,请求出该定值;若发生变化,请说明理由.思路引领:(1)首先根据角平分线的定义求得∠AOE和∠BOF的度数,然后根据∠AOE﹣∠BOF求解;(2)首先由题意得∠BOC=3t°,再根据角平分线的定义得∠AOC=∠AOB+3t°,∠BOD=∠COD+3t°,然后由角平分线的定义解答即可.解:(1)∵OE平分∠AOC,OF平分∠BOD,∴∠AOE=12∠AOC=12×110°=55°,∠BOF=12∠BOD=12×40°=20°,∴∠AOE﹣∠BOF=55°﹣2035°.故答案为:35°;(2)∠AOE﹣∠BOF的值是定值.由题意∠BOC=3t°,则∠AOC=∠AOB+3t°=110°+3t°,∠BOD=∠COD+3t°=40°+3t°,∵OE平分∠AOC,OF平分∠BOD,∴∠AOE=12∠AOC=12(110°+3t°)=55°+32t°,∠BOF=12∠BOD=12(40°+3t°)=20°+32t°,∴∠AOE﹣∠BOF=(55°+32t°)−(20°+32t°)=35°,∴∠AOE﹣∠BOF的值是定值,定值为35°.总结提升:本题考查了角度的计算以及角的平分线的性质,理解角度之间的和差关系是关键.10.(2019秋•沙坪坝区校级期中)如图,已知∠AOC=80°,∠BOD=30°,若OM平分∠AOB,ON平分∠COD.(1)如图1,当OC 与OB 重合时,求∠MON 的度数;(2)如图2,当∠BOD 从图1位置开始绕点O 顺时针旋转m (0<m <90)时,∠BOM ﹣∠DON 的值是否为定值?若是定值,求出∠BOM ﹣∠DON 的值;若不是定值,请说明理由;(3)如图2,当∠BOD 从图1位置开始绕点O 顺时针旋转m (30<m <70)时,满足∠AOD +∠MON =7∠BOD ,求m 的值.思路引领:(1)由角平分线的定义求∠AOM =∠MOB =12∠AOB ,∠DON =∠NOC =12∠COD ,然后求∠MON ;(2)用含有m 的式子表示∠AOM 、∠BOD 和∠AOD ,然后利用角的和差关系求∠BOM ﹣∠DON ; (3)分别用含有m AOD 、∠MON 和∠BOD ,然后根据已知条件列出方程,从而得到m 的值.解:(1)∵OM 平分∠AOB ,ON 平分∠COD ,∴∠AOM =∠MOB =12∠AOB ,∠DON =∠NOC =12∠COD , ∵∠AOB =80°,∠COD =30°, ∴∠MOC =40°,∠NOC =15°,∴∠MON =∠MOC +∠NOC =40°+15°=55°; (2)∠BOM ﹣∠DON 为定值25°,理由如下: 由题意可知:∠AOD =∠AOB +∠COD +m =110°+m ,由(1)可知:∠AOM =∠MOB =12∠AOB ,∠DON =∠NOC =12∠COD ,∴∠BOM =∠AOM =∠12(∠AOC +m )=12(80°+m ),∠DON =12(∠BOD +m )=12(30°+m ),∴∠BOM﹣∠DON=12(80°+m)−12(30°+m)=25°,∴∠BOM﹣∠DON的值为25°;(3)由(2)知:∠AOD=110°+m,∠AOM=12(80°+m),∠DON=12(30°+m),∴∠MON=∠AOD﹣∠AOM﹣∠DON=110°+m−12(80°+m)−12(30°+m)=55°,∵∠AOD+∠MON=7∠BOD,∠BOD=30°,∴110°+m+55°=7×30°,∴m=45°.总结提升:本题考查了角平分线的定义和图形的旋转,探究角与角之间的关系时,要注意先理清楚所求角与已知角的和差关系,然后再逐步求解.11.(2022秋•沁阳市期末)已知∠AOB=110°,∠COD=40°,OE平分∠AOC,OF平分∠BOD.(1)如图1,当OB、OC重合时,∠AOE﹣∠BOF=;(2)如图2,当∠COD从图1所示位置绕点O以每秒3°的速度顺时针旋转t秒(0<t<10),在旋转过程中∠AOE﹣∠BOF的值是否会因t的变化而变化,若不发生变化,请求出该定值;若发生变化,请说明理由.(3)在(2)的条件下,当∠COF=17°时,t=秒.思路引领:(1)首先根据角平分线的定义求得∠AOE和∠BOF的度数,然后根据∠AOE﹣∠BOF求解;(2)首先由题意得∠BOC=3t°,再根据角平分线的定义得∠AOC=∠AOB+3t°,∠BOD=∠COD+3t°,然后由角平分线的定义解答即可;(3)根据题意得∠BOF=(3t+17)°,故3t+17=20+32t,解方程即可求出t的值.解:(1)∵OE平分∠AOC,OF平分∠BOD,∴∠AOE=12∠AOC=12×110°=55°,∠BOF=12∠BOD=12×40°=20°,∴∠AOE﹣∠BOF=55°﹣20°=35°.故答案为:35°;(2)∠AOE﹣∠BOF的值是定值.由题意∠BOC=3t°,则∠AOC=∠AOB+3t°=110°+3t°,∠BOD=∠COD+3t°=40°+3t°,∵OE平分∠AOC,OF平分∠BOD,∴∠AOE=12∠AOC=12(110°+3t°)=55°+32t°,∠BOF=12∠BOD=12(40°+3t°)=20°+32t°,∴∠AOE﹣∠BOF=(55°+32t°)−(20°+32t°)=35°,∴∠AOE﹣∠BOF的值是定值,定值为35°;(3)根据题意得∠BOF=(3t+17)°,∴3t+17=20+32 t,解得t=2.故答案为2.总结提升:本题考查了角度的计算以及角的平分线的性质,理解角度之间的和差关系是关键.12.(2017秋•宿豫区期末)如图,将两块直角三角尺的60°角和90°角的顶点A叠放在一起.将三角尺ADE绕点A旋转,旋转过程中三角尺ADE的边AD始终在∠BAC的内部在旋转过程中,探索:(1)∠BAE与∠CAD的度数有何数量关系,并说明理由;(2)试说明∠CAE﹣∠BAD=30°;(3)作∠BAD和∠CAE的平分线AM、AN,在旋转过程中∠MAN的值是否发生变化?若不变,请求出这个定值;若变化,请求出变化范围.思路引领:(1)根据题意得到∠BAD+∠CAD=60°,∠CAE+∠CAD=90°,根据角的和差即可得到结论;(2)根据题意得到∠BAD+∠CAD=60°,∠CAE+∠CAD=90°,列方程即可得到结论;(3)根据题意得到∠BAD+∠CAD=60°,∠CAE+∠CAD=90°,根据角平分线的定义和角的和差即可得到结论.解:(1)∠BAE+∠CAD=150°,理由:∵∠BAD+∠CAD=60°,∠CAE+∠CAD=90°,∴∠BAE=∠BAD+∠CAD+∠CAE=60°+90°﹣∠CAD,∴∠BAE+∠CAD=150°;(2)∵∠BAD+∠CAD=60CAE+∠CAD=90°,∴∠CAD=60°﹣∠BAD,∠CAD=90°﹣∠CAE,∴60°﹣∠BAD=90°﹣∠CAE,∴∠CAE﹣∠BAD=90°﹣60°=30°;(3)在旋转过程中∠MAN的值不会发生变化,如图,∵∠BAD+∠CAD=60°,∠CAE+∠CAD=90°,∴∠BAD=60°﹣∠CAD,∠CAE=90°﹣∠CAD,∵AM,AN分别是∠∠BAD和∠CAE的平分线,∴∠MAD=12∠BAD=30°−12∠CAD,∠NAC=12∠CAE=45°−12∠CAD,∵∠MAN=∠MAD+∠CAD+∠NAC=30°−12∠CAD+∠CAD+45°−12∠CAD=75°.总结提升:本题考查了角的计算,角平分线的定义,正确的识别图形是解题的关键.13.(2022秋•晋州市期中)如图所示,以直线AB上的一点O为端点,在直线AB的上方作射线OP,使∠BOP=68°,将一块直角三角尺(∠MON=90°)的直角顶点放在点O处,且直角三角尺在直线AB的上方.设∠BOM=n°(0<n<90).(1)当n=30时,求∠PON的大小;(2)当OP恰好平分∠MON时,求n的值;(3)当n≠68时,嘉嘉认为∠AON与∠POM的差为定值,淇淇认为∠AON与∠POM的和为定值,且二人求得的定值相同,均为22°,老师说,要使两人的说法都正确,需要对n分别附加条件.请你补充这个条件:当n满足时,∠AON POM=22°;当n满足时,∠AON+∠POM=22°.思路引领:(1)根据角的和差关系可得答案;(2)根据角平分线的定义与角的和差关系可得答案;(3)分两种情况:OM在OP的左侧和右侧时,根据角的和差关系可得结论.解:(1)当n=30°时,∠BOM=30°,∵∠POB=68°,∴∠POM=68°﹣30°=38°,∵∠MON=90°,∴∠PON=90°﹣38°=52°;(2)∵OP恰好平分∠MON,∠MON=90°,∴∠POM=45°,∵∠POB=68°,∴n=68﹣45=23;(3)当0<n<68时,如图1,∠AON﹣∠POM=22°,理由如下:∵∠POB=68°,∴∠POM=68°﹣n°,∵∠MON=90°,∴∠AON=180°﹣90°﹣n°﹣n°,∴∠AON﹣∠POM=(90°﹣n°)﹣(68°﹣n°)=22°;当68<n<90时,如图2,理由如下:∵∠POB=68°,∴∠POM=n°﹣68°,∵∠MON=90°,∴∠AON=180°﹣90°﹣n°=90°﹣n°,∴∠AON+∠POM=(90°﹣n°)+(n°﹣68°)=22°;故答案为:0<n<68,68<n<90.总结提升:本题考查了角的和差,平角的定义,角平分线的定义,熟练掌握角的和与差关系,角平分线的定义的应用,分情况讨论是解题关键.14.(2021秋•迁安市期末)如图1,把∠APB放置在量角器上,P与量角器的中心重合,射线P A、PB分别对准刻度117°和153°,将射线P A绕点P逆时针旋转90°得到射线PC.(1)∠APB=度;(2)求出∠CPB的度数;(3)小红在图1的基础上,在∠CPB内部任意做一条射线PD,并分别做出了∠CPD和∠BPD的平分线PE和PF,如图2,发现PD在∠CPB内部的不同位置,∠EPF的度数都是一个定值,请你求出这个定值.思路引领:(1)∠APB=153°﹣117°;(2)根据∠CPB=∠APB+∠APC,可得∠CPB的度数;(3)根据角平分线的定义得到∠EPD=12∠CPD,∠FPD=12∠BPD,再根据角的和差可得答案.解:(1)由图可得,∠APB=153°﹣117°=36°.故答案为:36;(2)由题意得,∠APC=90°,∴∠CPB=∠APB+∠APC=36°+90°=126°.答:∠CPB的度数是126°;(3)∵∠CPD和∠BPD的平分线是PE和PF,∴∠EPD=12∠CPD,∠FPD=12∠BPD,∴∠EPF =∠EPD +∠FPD =12∠CPD +12∠BPD =12∠CPB =63°.∴当PD 在∠CPB 内部的不同位置时,∠EPF 的度数都是一个定值是63°. 总结提升:本题考查角的计算,熟练掌握角平分线的定义和角的和差是解题关键. 15.(2022秋•硚口区期末)∠AOB 与它的补角的差正好等于∠AOB 的一半 (1)求∠AOB 的度数;(2)如图1,过点O 作射线OC ,使∠AOC =4∠BOC ,OD 是∠BOC 的平分线,求∠AOD 的度数; (3)如图2,射线OM 与OB 重合,射线ON 在∠AOB 外部,且∠MON =40°,现将∠MON 绕O 顺时针旋转n °,0<n <50,若在此过程中,OP 平分∠AOM ,OQ 平分∠BON ,试问∠AOP−∠BOQ∠POQ的值是定值吗?若是,请求出来,若不是,请说明理由.思路引领:(1)设∠AOB =x °,根据题意列方程即可得到结论;(2)①当OC 在∠AOB 的内部时,②当OC 在∠AOB 外部时,根据角的和差和角平分线的定义即可得到结论;(3)根据角的和差和角平分线的定义即可得到结论. 解:(1)设∠AOB =x °,依题意得:x ﹣(180﹣x )=12x ∴x =120答:∠AOB 的度数是120°(2)①当OC 在∠AOB 的内部时,∠AOD =∠AOC +∠COD 设∠BOC =y °,则∠AOC =4y °, ∴y +4y =120,y =24,∴∠AOC =96°,∠BOC =24°, ∴OD 平分∠BOC , ∴∠COD =12∠BOC =12°, ∴∠AOD =96°+12°=108°,②当OC 在∠AOB 外部时,同理可求∠AOD =140°, ∴∠AOD 的度数为108°或140°; (3)∵∠MON 绕O 顺时针旋转n °, ∴∠AOM =(120+n )° ∵OP 平分∠AOM , ∴∠AOP =(120+n 2)°∵OQ 平分∠BON , ∴∠MOQ =∠BOQ =(40+n 2)°,∴∠POQ =120+40+n ﹣∠AOP ﹣∠NOQ , =160+n −120+n 2−40+n 2=160+n −160+2n2=80°, ∴∠AOP ﹣∠BOQ =120+n 2−40+n2=40°, ∴∠AOP−∠BOQ∠POQ=4080=12.总结提升:本题考查了角的计算,余角和补角的定义,解题时注意方程思想和分类思想的灵活运用. 16.(2019秋•莆田期末)定义:若α﹣β=90°,且90°<α<180°,则我们称β是α的差余角.例如:若α=110°,则α的差余角β=20°.(1)如图1,点O 在直线AB 上,射线OE 是∠BOC 的角平分线,若∠COE 是∠AOC 的差余角,求∠BOE 的度数;(2)如图2,点O 在直线AB 上,若∠BOC 是∠AOE 的差余角,那么∠BOC 与∠BOE 有什么数量关系; (3)如图3,点O 在直线AB 上,若∠COE 是∠AOC 的差余角,且OE 与OC 在直线AB 的同侧,∠AOC−∠BOC∠COE请你探究是否为定值?若是,请求出定值;若不是,请说明理由.思路引领:(1)根据角平分线的定义得到∠COE =∠BOE =12∠BOC ,根据题意得到∠AOC ﹣∠COE =∠AOC −12∠BOC =90°,于是得到结论;α (2)根据角的和差即可得到结论;(3)如图3,由∠COE 是∠AOC 的差余角,得到∠AOC =90°+∠COE ,∠BOC =90°﹣∠COE ,如图4,由∠COE 是∠AOC 的差余角,得到∠AOC =90°+∠COE ,于是得到结论. 解:(1)∵OE 是∠BOC 的角平分线, ∴∠COE =∠BOE =12∠BOC , ∵∠COE 是∠AOC 的差余角,∴∠AOC ﹣∠COE =∠AOC −12∠BOC =90°, ∵∠AOC +∠BOC =180°, ∴∠BOC =60°, ∴∠BOE =30°;(2)∵∠BOC 是∠AOE 的差余角,∴∠AOE ﹣∠BOC =∠AOC +∠COE ﹣∠COE ﹣∠BOE =∠AOC ﹣∠BOE =90°, ∵∠AOC +∠BOC =180°, ∴∠BOC +∠BOE =90°;(3)答:是,理由:如图3,∵∠COE 是∠AOC 的差余角, ∴∠AOC ﹣∠COE =∠AOE =90°,∴∠AOC =90°+∠COE ,∠BOC =90°﹣∠COE , ∴∠AOC−∠BOC∠COE=90°+∠COE−90°+∠COE∠COE=2(定值);如图4,∵∠COE 是∠AOC 的差余角, ∴∠AOC ﹣∠COE =90°, ∴∠AOC =90°+∠COE ,∵∠BOC =180°﹣∠AOC =180°﹣(90°+∠COE )=90°﹣∠COE , ∴∠AOC−∠BOC∠COE=90°+∠COE−90°+∠COE∠COE=2(定值),综上所述,∠AOC−∠BOC∠COE为定值.总结提升:本题考查了余角和补角,角的和差的计算,正确的理解题意是解题的关键.17.(2018秋•荔城区期末)如图∠AOB=120°,把三角板60°的角的顶点放在O处.转动三角板(其中OC边始终在∠AOB内部),OE始终平分∠AOD.(1)【特殊发现】如图1,若OC边与OA边重合时,求出∠COE与∠BOD的度数.(2)【类比探究】如图2,当三角板绕O点旋转的过程中(其中OC边始终在∠AOB内部),∠COE与∠BOD的度数比是否为定值?若为定值,请求出这个定值;若不为定值,请说明理由.(3)【拓展延伸】如图3,在转动三角板的过程中(其中OC边始终在∠AOB内部),若OP平分∠COB,请画出图形,直接写出∠EOP的度数(无需证明)思路引领:(1)∵OC边与OA边重合,如图1,根据角的和差和角平分线的定义即可得到结论;(2)①0°≤∠AOC<60°时,如图2,②当60°≤∠AOC≤120°时,如图3,根据角的和差和角平分线的定义即可得到结论;(3)①0°≤∠AOC<60°时,设∠AOC=α,∠BOD=β,②当60°≤∠AOC≤120°时,设∠AOC=α,∠BOD=β,根据角的和差和角平分线的定义即可得到结论;.解:(1)∵OC边与OA边重合,如图1,∴∠AOD=60°,∠BOD=∠AOB﹣∠AOD=120°﹣60°=60°,∵OE平分∠AOD,∴∠COE=12∠AOD=30°;(2)①0°≤∠AOC<60°时,如图2,∵OE平分∠AOD,∴∠DOE=12∠AOD,∴∠COE=∠COD﹣∠EOD=60°−12∠AOD,∵∠DOB=∠AOB﹣∠AOD=120°﹣∠AOD,∴∠COE:∠BOD=1 2;②当60°≤∠AOC≤1203,∵OE平分∠AOD,∴∠DOE=12∠AOD,∴∠COE=∠EOD﹣∠COD=12∠AOD﹣60°,∵∠DOB=∠AOD﹣∠AOB=∠AOD﹣120°,∴∠COE:∠BOD=1 2;(3)①0°≤∠AOC<60°时,设∠AOC=α,∠BODD=β,∵∠AOB=120°,∠COD=60°,∴α+β=60°,∴∠AOD=60°+α,∠BOC=60°+β,∵OE始终平分∠AOD,OP平分∠COB,∴∠AOE=12∠AOD=30°+12α,∠BOP=12∠BOC=30°+12β,∴∠POE=∠AOB﹣∠AOE﹣∠BOP=120°﹣(30°+12α)﹣(30°+12β)=30°;②当60°≤∠AOC≤120°时,设∠AOC=α,∠BOD=β,∵∠AOB=120°,∠COD=60°,∴∠BOC=120°﹣∠AOC=60°﹣∠BOD,∴120°﹣α=60°﹣β,∴α﹣β=60°,∴∠AOD=120°+β,∠BOC=60°﹣β,∵OE始终平分∠AOD,OP平分∠COB,∴∠DOE=12∠AOD=60°+12β,∠BOP=12∠BOC=30°−12β,∴∠POE=∠DOE﹣∠BOD﹣∠BOP=(60°+12α)﹣β﹣(30°−12β)=30°;综上所述,∠POE=30°.总结提升:本题考查了角的计算,角平分线的定义,分类讨论是解题的关键.第二部分 配套作业1.(2022秋•成都期末)已知点O 为数轴原点,点A 在数轴上对应的数为a ,点B 对应的数为b ,A 、B 之间的距离记作AB ,且|a +4|+(b ﹣10)2=0.(1)求线段AB 的长;(2)设点P 在数轴上对应的数为x ,当P A +PB =20时,求x 的值;(3)如图,M 、N 两点分别从O 、B 出发以v 1、v 2的速度同时沿数轴负方向运动(M 在线段AO 上,N 在线段BO 上),P 是线段AN 的中点,若M 、N 运动到任一时刻时,总有PM 为定值,下列结论:①v 2v 1的值不变;②v 1+v 2的值不变.其中只有一个结论是正确的,请你找出正确的结论并求值.思路引领:(1)根据非负数的和为0,各项都为0即可求解; (2)应考虑到A 、B 、P 三点之间的位置关系的多种可能解题;(3)设运动时间为t ,首先得到PM =AP ﹣AM =3−12v 2t +v 1t ,由M 、N 运动到任一时刻时,总有PM 为定值,得到PM =3,t =1时,t =2时,于是得到结论. 解:(1)∵|a +4|+(b ﹣10)2=0, ∴a =﹣4,b =10,∴AB =|a ﹣b |=14,即线段AB 14;(2)如图1,当P 在点A 左侧时.P A +PB =(﹣4﹣x )+(﹣x +10)=20,即﹣2x +6=20,解得 x =﹣7; 如图2,当点P 在点B 的右侧时,P A +PB =(x +4)+(x ﹣10)=20,即2x ﹣6=20,解得 x =13; 如图3,当点P 在点A 与B 之间时,P A +PB =x +4+10﹣x =20,不存在这样的x 的值, 综上所述,x 的值是﹣7或13;(3)①v 2v 1的值不变.如图4,设运动时间为t ,理由如下:∵PM =AP ﹣AM=12AN ﹣(OA ﹣OM ) =12(AB ﹣BN )﹣OA +OM =12(14﹣v 2t )﹣4+v 1t =3−12v 2t +v 1t ,∵M 、N 运动到任一时刻时,总有PM 为定值, 而t =0时,PM =3, t =1时,PM =3−12v 2+v 1, t =2时,PM =3﹣v 2+2v 1, ∴3﹣v 2+2v 1=3−12v 2+v 1=3, ∴v 1v 2=12,即:v 2v 1的值不变,值为2.总结提升:此题主要考查了一元一次方程的应用,渗透了分类讨论的思想,体现了思维的严密性,在今后解决类似的问题时,要防止漏解.利用中点性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.2.(2022秋•江岸区校级月考)已知:如图,一条直线上依次有A 、B 、C 三点. (1)若BC =60,AC =3AB ,求AB 的长;(2)若点D 是射线CB 上一点,点M 为BD 的中点,点N 为CD 的中点,求BC MN的值;(3)当点P 在线段BC 的延长线上运动时,点E 是AP 中点,点F 是BC 中点,下列结论中: ①AC+BP EF是定值;②|AC−BPEF|是定值.其中只有一个结论是正确的,请选择正确结论并求出其值.思路引领:(1)由AC=AB+BC=3AB可得;(2)分三种情况:①D在BC之间时②D在AB之间时③D在A点左侧时;(3)分三种情况讨论:①F、E在BC之间,F在E左侧②F在BC之间,E在CP之间③F、E在BC之间,F在E右侧;解:(1)∵BC=60,AC=AB+BC=3AB,∴AB=30;(2)∵点M为BD中点,点N为CD中点,∴BM=BD,DN=NC,①D在BC之间时:BC=BD+CD=2MD+2DN=2∴BCMN=2;②D在AB之间时:BC=DC﹣DB=2DN﹣2MB=2(BN+2MB)﹣2MB=2BN+2MB=2MN,∴BCMN=2;③D在A点左侧时:BC=DN+NB=MN+DN﹣NB=MN+MB﹣NB=MN+MN+NB﹣NB=2MN,∴BCMN=2;故BCMN=2;(3)点E是AP的中点,点F是BC的中点.∴AE=EP,BF=CF,①EF=FC﹣EC=12BC﹣AC+AE=12(AC﹣AB)﹣AC+AE=AE−12AB=12AC,BP=AP﹣AB=2AE﹣AB,AC﹣BP=AC﹣2AE+AB,∴|AC−BPEF|=2.②EF=12BC+CE=12BC+AE﹣AC=12(AC﹣AB)+AE﹣AC=AE−12AB−12AC,BP=AP﹣AB=2AE﹣AB,AC﹣BP=AC+AB﹣2AE,∴|AC−BPEF|=2.③EF=CE﹣CF=CE−12BC=AC﹣AE−12BC=AC﹣AE−12(AC﹣AB)=12AC﹣AE+12AB,BP=AP﹣AB=2AE﹣AB,∴AC﹣BP=AC+AB﹣2AE,∴|AC−BPEF|=2.总结提升:本题考查线段之间量的关系,结合图形,能够考虑到所有分类是解题的关键.3.(2016秋•启东市校级月考)如图,线段AB=24,动点P从A出发,以2个单位/秒的速度沿射线AB运动,M为AP的中点.(1)出发多少秒后,PB=2AM;(2)当P在线段AB上运动时,试说明2BM﹣BP为定值.(3)当P在AB延长线上运动,N为BP的中点,下列两个结论:①MN长度不变;②MN+PN的值不变.选出一个正确的结论,并求其值.思路引领:(1)分两种情况讨论,①点P在点B左边,②点P在点B右边,分别求出t的值即可.(2)AM=x,BM=24﹣x,PB=24﹣2x,表示出2BM﹣BP后,化简即可得出结论.(3)P A=2x,AM=PM=x,PB=2x﹣24,PN=12PB=x﹣12,分别表示出MN,MN+PN的长度,即可作出判断.解:(1)如图1,设出发x秒后PB=2AM,当点P在点B左边时,P A=2x,PB=24﹣2x,AM=x,由题意得,24﹣2x=2x,解得:x=6;当点P在点B右边时,P′A=2x,P′B=2x﹣24,AM=x,由题意得:2x﹣24=2x,方程无解;综上可得:出发6秒后PB=2AM.(2)∵AM=x,BM=24﹣x,PB=24﹣2x,∴2BM﹣BP=2(24﹣x)﹣(24﹣2x)=24;(3)选①;如图2,∵P A=2x,AM=PM=x,PB=2x﹣24,PN=12PB=x﹣12,∴①MN=PM﹣PN=x﹣(x﹣12)=12(定值);②MN+PN=12+x﹣12=x(变化).总结提升:本题考查了两点间的距离,解答本题的关键是用含时间的式子表示出各线段的长度,有一定难度.4.(2022秋•高新区期中)如图,线段AB=12,动点P从A出发,以每秒2个单位的速度沿射线AB运动,M为AP的中点.(1)出发多少秒后,PB=2AM?(2)当P在线段AB上运动时,试说明2BM﹣BP为定值.(3)当P在AB延长线上运动时,N为BP的中点,下列两个结论:①MN长度不变;②MA+PN的值不变,选择一个正确的结论,并求出其值.思路引领:(1)由题意表示:AP=2t,则PB=12﹣2t,根据PB=2AM列方程即可;(2)把BM=12﹣t和BP=12﹣2t代入2BM﹣BP中计算即可;(3)分别代入求MN和MA+PN的值,发现①正确;②不正确.解:(1)如图1,由题意得:AP=2t,则PB=|12﹣2t|,∵M为AP的中点,∴AM=t,由PB=2AM得:|12﹣2t|=2t,即12﹣2t=2t或2t﹣12=2t,t=3,答:出发3秒后,PB=2AM;(2)如图1,当P在线段AB上运动时,BM=12﹣t,2BM﹣BP=2×(12﹣t)﹣(12﹣2t)=24﹣2t﹣12+2t=12,∴当P在线段AB上运动时,2BM﹣BP为定值12;(3)选①;如图2,由题意得:MA=t,PB=2t﹣12,∵N为BP的中点,∴PN=12BP=12(2t﹣12)=t﹣6,①MN=P A﹣MA﹣PN=2t﹣t﹣(t﹣6)=6,∴当P在AB延长线上运动时,MN长度不变;所以选项①叙述正确;②MA+PN=t+(t﹣6)=2t﹣6,∴当P在AB延长线上运动时,MA+PN的值会改变.所以选项②叙述不正确.总结提升:本题考查了两点间的距离,解答本题的关键是用含时间的式子表示出各线段的长度,有一定难度.5.(2021秋•双流区期末)如图,已知直线l上有两条可以左右移动的线段:AB=m,CD=n,且m,n满足|m﹣4|+(n﹣8)2=0,点M,N分别为AB,CD中点.(1)求线段AB,CD的长;(2)线段AB以每秒4个单位长度向右运动,线段CD以每秒1个单位长度也向右运动.若运动6秒后,MN=4,求此时线段BC的长;(3)若BC=24,将线段CD固定不动,线段AB以每秒4个单位速度向右运动,在线段AB向右运动的某一个时间段t内,始终有MN+AD为定值.求出这个定值,并直接写出t在哪一个时间段内.思路引领:(1)根据非负数的性质即可得到结论;(2)若6秒后,M’在点N’左边时,若6秒后,M’在点N’右边时,根据题意列方程即可得到结论;(3)根据题意分类讨论于是得到结果.解:(1)∵|m﹣4|+(n﹣8)2=∴m﹣4=0,n﹣8=0,∴m=4,n=8,∴AB=4,CD=8;(2)若6秒后,M′在点N′左边时,由MN+NN′=MM′+M′N′,即2+4+BC+6×1=6×4+4,解得BC=16,若6秒后,M′在点N′右边时,则MM′=MN+NN′+M′N′,即6×4=2+BC+4+6×1+4,解得BC=8.综上,BC=16或8;(3)运动t秒后MN=|30﹣4t|,AD=|36﹣4t|,当0≤t<7.5时,MN+AD=66﹣8t,当7.5≤t≤9时,MN+AD=6,当t≥9时,MN+AD=8t﹣66,∴当7.5≤t≤9时,MN+AD为定值.总结提升:本题主要考查了非负数的性质以及数轴和两点间的距离等知识,解答本题的关键是掌握两点间的距离公式,解答第三问注意分类讨论思想,此题难度不大.6.(2021秋•洛川县校级期末)已知∠AOB=110°,∠COD=40°,OE平分∠AOC,OF平分∠BOD.(1)如图①,当OB、OC重合时,求∠AOE﹣∠BOF的值;(2)当∠COD从图①所示位置绕点O以每秒3°的速度顺时针旋转t秒(0<t<10);在旋转过程中∠AOE﹣∠BOF的值是否会因t的变化而变化,若不发生变化,请求出该定值;若发生变化,请说明理由.思路引领:(1AOE和∠BOF的度数,然后根据∠AOE﹣∠BOF求解;(2)首先由题意得∠BOC=3t°,再根据角平分线的定义得∠AOC=∠AOB+3t°,∠BOD=∠COD+3t°,然后由角平分线的定义得∠AOE=12∠AOC=12(110°+3t°)、∠BOF=12∠BOD=12(40°+3t°),最后根据∠AOE﹣∠BOF求解可得;解:(1)∵OE平分∠AOC,OF平分∠BOD,∴∠AOE=12∠AOB=12×110°=55°,∠BOF=12∠COD=12×40°=20°,∴∠AOE﹣∠BOF=55°﹣20°=35°;(2)∠AOE﹣∠BOF的值是定值,如图2,由题意∠BOC=3t°,则∠AOC=∠AOB+3t°,∠BOD=∠COD+3t°,∵OE平分∠AOC,OF平分∠BOD,。
求线段长度问题中运用的数学思想方法

求线段长度问题中运用的数学思想方法平面几何图形中的计算问题是初中数学中常见的题型,线段长度的求解就是典型的一类中考必考题型。
纵观这几年的中考题及教材,不难发现,解决的问题的主要途径是运用数学思想方法,这也是新课标的要求。
针对几年的教学,我总结了几种求线段长度问题的思想方法。
一、分类思想及数形结合思想1.线段及端点位置的不确定性引发讨论例1:已知A、B、C三点在同一条直线上,且线段AB=7cm,点M为线段AB 的中点,线段BC=3cm,点N为线段BC的中点,求线段MN的长.解析:A、B两点确定一条直线,所以点C的位置不确定,需要分类讨论,并画出相应的图形。
(1)点C在线段AB上: (2)点C在线段AB的延长线上解:(1)∵点M为线段AB的中点,∴BM=½AB=3.5cm .同理BN=1.5cm又∵MN=BM-BN=3.5-1.5=2(cm)(2)∵点M为线段AB的中点,∴BM=½AB=3.5cm .同理BN=1.5cm又∵MN=BM+BN=3.5+1.5=5(cm)综上所述线段MN的长为2cm或5cm.2.由于等腰三角形的腰与底不确定而进行的分类例2:若等腰三角形一腰上的中线分周长为9cm和12cm两部分,求这个等腰三角形的底和腰的长。
解析:由题意9cm和12cm两部分不能确定哪一部分是腰+腰的一半还是底+腰的一半,所以要分类讨论,并画出相应的图形直观求解。
(1)当腰+腰的一半=9时,腰=6,那么底=9(2)当腰+腰的一半=12时,腰=8,底=5所以个等腰三角形的底和腰的长为9cm和6cm或5cm和8cm。
3、直角三角形中,直角边和斜边不明确时需要分类讨论例3:已知直角三角形的两边长分别为3、4,求第三边。
解析:因为没有说明两条都是直角边还是一条直角边和斜边,所以要分类并画出图形。
(1)3、4都是直角边时,由勾股定理得第三边为5。
(2)4为斜边,3是直角边时,由勾股定理得第三边为。
人教版小学数学《角的度量》课标解读

《角的度量》课标解读本单元属于“图形与几何”领域。
主要内容有:认识线段、直线和射线以及角的度量。
其中,有关线段、角的初步认识等内容,学生在第一学段已经学习过,但当时的学习是初步的,属于直观认识。
本单元则是在学生原有认知的基础上,对这些内容加以拓展和提高,加深对图形本质特征和图形之间内在联系的认识。
在课程实施中,需要依托学生已有的知识基础,挖掘丰富的现实世界中的相关问题作为学习素材,开展适当、有效地操作活动,使学生在观察、操作、想象、推理、表达等活动中,积累丰富的直观经验和生活经验,感受数学思想方法的应用,发展空间观念,增进数学理解。
一、注重图形特征的刻画,强调概念认识的系统性1.以学生已有知识和经验为基础,帮助学生理解所学知识本册图形与几何的内容,概念比较多,且比较抽象,在生活中不易找到原型。
在编排时,考虑到学生的学习特点,教材尽可能从学生的生活经验和已有知识出发,以学生有所体验的和容易理解的现实问题为素材,让学生在熟悉的事物和具体情境中理解数学知识的含义。
如直线、射线,由学生初步认识的线段引出,说明把线段向两端无限延伸,就得到一条直线,把线段向一端无限延伸,就得到一条射线;进一步指出直线没是端点,是无限长的,射线只有一个端点。
使学生较好地理解线段、直线和射线之间的联系和区别。
并且还借助手电筒、激光光束等体会射线,直观感受射线向一端无限延伸的特点。
再如,垂线的画法,增加了先让学生自己画的过程,虽然他们的画法不一定规范,但可以反映出他们对垂直概念的理解。
在此基础上,介绍规范的画法,可以使学生对方法知其然并知其所以然。
2.采用适当方式,让学生体会概念和图形的本质特征一些数学概念和图形的本质特征,比较抽象,不易直接让学生领会。
教材通过让学生经历概念形成的过程,从不同的角度体验等方式,来领悟体会。
如角的度量原理学生不一定能清晰地理解。
但对于量的大小,通过前面的学习,学生知道可以用相应的单位进行测量,如要知道线段长短可以用长度单位度量、要了解一个面的面积可以用面积单位来量化。
七年级数学上册-思想方法:线段与角计算中的思想方法压轴题四种模型全攻略(原卷版)

专题14思想方法专题:线段与角计算中的思想方法压轴题四种模型全攻略【考点导航】目录【典型例题】 (1)【考点一分类讨论思想在线段的计算中的应用】 (1)【考点二分类讨论思想在角的计算中的应用】 (2)【考点三整体思想及从特殊到一般的思想解决线段和差问题】 (2)【考点四整体思想及从特殊到一般的思想解决角和差问题】 (3)【过关检测】 (5)【典型例题】【考点一分类讨论思想在线段的计算中的应用】【变式训练】A B C D3.(2023秋·江西吉安·七年级校考期末)在同一直线上有,,,则AD的长为.【考点二分类讨论思想在角的计算中的应用】【变式训练】【考点三整体思想及从特殊到一般的思想解决线段和差问题】例题:(2022秋·河南南阳·七年级统考期末)(1)如图,已知线段AB ,点C 是线段AB 上一点,点M 、N 分别是线段AC ,BC 的中点.①若4AC BC ==,则线段MN 的长度是_________;②若AC a =,BC b =,求线段MN 的长度(结果用含a 、b 的代数式表示);(2)在(1)中,把点C 是线段AB 上一点改为:点C 是直线AB 上一点,AC a =,BC b =.其它条件不变,则线段MN 的长度是___________(结果用含a 、b 的代数式表示)【变式训练】(2)设AB a=,C是线段AB上任意一点(不与点①如图2,当M,N分别是AC,BC的中点时,②如图3,若M,N分别是AC,BC的三等分点,即【考点四整体思想及从特殊到一般的思想解决角和差问题】∠的内部,OM平分例题:(2023秋·全国·七年级课堂例题)已知:如图,OC在AOB()∠︒∠<,平分BOCAOB AOB ON180∠.(1)当9060AOC BOC ∠=∠=︒︒,时,MON ∠=___________︒;(2)当8060AOC BOC ∠︒∠=︒=,时,MON ∠=___________︒;(3)当8050AOC BOC ∠︒∠=︒=,时,MON ∠=___________︒;(4)猜想:不论AOC ∠和BOC ∠的度数是多少,MON ∠的度数总等于________的度数的一半.【变式训练】(1)如图1,若40AOM ∠=︒,求CON ∠的度数;(2)在图1中,若AOM α∠=,直接写出CON ∠的度数(用含(3)将图1中的直角三角板OMN 绕顶点O 顺时针旋转至图数.【过关检测】一、单选题河北廊坊·七年级统考期末)已知线段AB 的中点,则线段MB的长度为()B.11cm C.5cm 六年级单元测试)已知30AOB∠=︒,ODB.35D.35∠山西大同·七年级统考期末)在AOB 二、填空题(1)如图1,若57AOC ∠=︒,则BOC ∠=(2)如图2,若120AOB ∠=︒,OC ,OD 是∠①则COD ∠=;②若以点O 为中心,将顺时针旋转n ︒(三、解答题(1)求线段AD 的长度.。
小专题(十二) 线段和角的计算中的数学思想

×12=6.所以AM= AC=1,DN= DB= .①
=MC+CD+DN=2-1+4+ = ;②
如图①,当点N在点D右侧时,MN
如图②,当点N
在点D左侧时,MN=MC+CD-DN=2-1+4- = .综
上所述,线段MN的长为 或
1
2
3
4
5
6
7
写出结果).
(3) 如图③④,∠MON=α+45°或135°-2α
第8题
1
2
3
4
5
6
7
8
9
10
11
12
13
类型三
整体思想
9. 如图,C,D是线段AB上的任意两点,E是AC的中点,F是BD的中点.如果
EF=m,CD=n,那么线段AB的长度为
( C )
A. m+n
B. 2m+n
C. 2m-n
D. 3m-2n
1
或9
,AC=10,BC=4,则线段MN的长为
.
2
1
2
3
4
5
6
7
8
9
10
11
12
13
7. 已知线段AB=12,在AB上有C,D,M,N四点,且AC∶CD∶DB=1∶2∶3,
1
1
AM= AC,DN= DB.求线段MN的长.
2
4
因为AB=12,AC∶CD∶DB=1∶2∶3,所以AC= ×12=2,CD= ×12=4,DB=
“线段”、“角”中渗透的数学思想

思 路 方 法
� � � � � � � � � � � � � � � � � � � � � �
三 �方程思想 通过设未知数建立方程来解决问题的一种解题策略 � 就是方程思想 . 它在解 题中应用十分广泛. � � � � � � � � � 例 � 如图 � 是直线 上一点� � �求 � 的度数 . 分析与解 � 设 + �� 由 得� 即 . . � � 则由 得方程 � � �得 + � �� 解之�
图�
� 例 � 如图 � � � . � . �求 的长. 分析与 解 � 由 条件并结 合图形 知 � 题 目 中 隐含 的 等 量 关系 是 . . + . � 又知
图�
� � � . - � . 由题意 � 得 � + . - � � � � � 于是可设 �� 则 �� . � 解得 � � . . 所以线段 四 �整体思想 把一些彼此独立却又相 互联系的量视为整体 � 立足于整体思考问题 � 不仅 可以简化解题过程 � 而且有助于培养创新意识 . 例 � 是 如图 � 的平分线 � 求 � 是 的度数, 的平 分 线 � 的长是 . .
图�
的平分线
的平分线 求
� � � � � � 分析与解 � 欲求 的度数 可将 转化为 与 的和 � � � � 由角平分 � � � � 线的意义可将 与 分别转化为 与 而 � � � � � � � � � � � 与 的 和恰好是一 平角 所以 + � + ( 1 80 90 .
33
编辑 � 沈红艳
� 编辑 沈红艳
-
:
七年级数学上册专题提升五线段、角的计算及思想方法训练浙教版(2021年整理)

七年级数学上册专题提升五线段、角的计算及思想方法分层训练(新版)浙教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(七年级数学上册专题提升五线段、角的计算及思想方法分层训练(新版)浙教版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为七年级数学上册专题提升五线段、角的计算及思想方法分层训练(新版)浙教版的全部内容。
专题提升五线段、角的计算及思想方法线段的计算1.已知线段AB=8cm,在直线AB上有一点C,且BC=4cm,点M是线段AC的中点,则线段AM的长为()A.2cm B.4cm C.2cm或6cm D.4cm或6cm2.如图,点C,D,E在线段AB上,已知AB=12cm,CE=6cm,求图中所有线段的长度和.第2题图3.已知:如图,B,C两点把线段AD分成2∶5∶3三部分,M为AD的中点,BM=6cm,求CM和AD的长.第3题图4.如图,点C在线段AB上,AC=8cm,CB=6cm,点M,N分别是AC,BC 的中点.第4题图(1)求线段MN的长;(2)若C为线段AB上任意一点,满足AC+CB=a cm,其他条件不变,你能猜想MN的长度吗?并说明理由;(3)若C在AB的延长线上,且满足AC-CB=b cm,其他条件不变,MN的长度为____________.(直接写出答案)角度的计算5.如图,已知∠EOC是平角,OD平分∠BOC,在平面上画射线OA,使∠AOC 和∠COD互余,若∠BOC=50°,则∠AOB是____________.第5题图6.已知一个角的余角的补角是这个角的补角的错误!,求这个角的度数.7.如图,点O在直线AC上,OD是∠AOB的平分线,OE在∠BOC内.若∠BOE=错误!∠EOC,∠DOE=72°,求∠EOC的度数.第7题图8.如图,从点O出发引四条射线OA,OB,OC,OD,已知∠AOC=∠BOD=90°.(1)若∠BOC=35°,求∠AOB与∠COD的大小;(2)若∠BOC=46°,求∠AOB与∠COD的大小;(3)你发现了什么?(4)你能说明上述的发现吗?第8题图9.已知∠AOB是一个直角,作射线OC,再分别作∠AOC和∠BOC的平分线OD、OE.第9题图(1)如图1,当∠BOC=70°时,求∠DOE的度数;(2)如图2,当射线OC在∠AOB内绕点O旋转时,∠DOE的大小是否发生变化?若变化,说明理由;若不变,求∠DOE的度数.10.已知射线OC在∠AOB的内部.(1)如图1,若已知∠AOC=2∠BOC,∠AOB的补角比∠BOC的余角大30°.①求∠AOB的度数;②过点O作射线OD,使得∠AOC=3∠AOD,求出∠COD的度数;(2)如图2,若在∠AOB的内部作∠DOC,OE,OF分别为∠AOD和∠COB 的平分线.则∠AOB+∠DOC=2∠EOF,请说明理由.第10题图直线与数轴11.在如图所示的数轴上,点A是BC的中点,点A,B对应的实数分别为1和-错误!,则点C对应的实数是____________.第11题图12.已知数轴上点A,B,C所表示的数分别是4,-5,x.(1)求线段AB的长;(2)若A,B,C三点中有一点是其他两点的中点,求x的值;(3)若点C在原点,此时A,C,B三点分别以每秒1个单位,2个单位,4个单位向数轴的正方向运动,当A,B,C三点中有一点是其他两点的中点时,求运动的时间.第12题图13.如图,请按照要求回答问题:第13题图(1)数轴上的点C表示的数是____________;线段AB的中点D表示的数是____________;(2)线段AB的中点D与线段BC的中点E的距离DE等于多少?(3)在数轴上方有一点M,下方有一点N,且∠ABM=120°,∠CBN=60°,请画出示意图,判断BC能否平分∠MBN,并说明理由.14.已知:如图,数轴上两点A、B所对应的数分别为-3,1,点P在数轴上从点A出发以每秒2个单位长度的速度向右运动,点Q在数轴上从点B出发以每秒1个单位长度的速度向左运动,设点P的运动时间为t秒.(1)直接写出线段AB的中点所对应的数,以及t秒后点P所对应的数(用含t的代数式表示);(2)若点P和点Q同时出发,求点P和点Q相遇时的位置所对应的数;(3)若点P比点Q迟1秒出发,问点P出发几秒后,点P和点Q刚好相距1个单位长度,并问此时数轴上是否存在一个点C,使其到点A、点P和点Q这三点的距离和最小,若存在,直接写出点C所对应的数,若不存在,试说明理由.第14题图参考答案专题提升五线段、角的计算及思想方法1.C2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
在运用方程思想、整体思想时,通常需要将某些量设为未知数,再用含 未知数的式子表示其它的未知量,然后用方程或代数式解决问题.
⑶将图1中的三角板OCD绕点O旋转到图3的位置,求∠MON.
C
解:由角平分线定义得∠1= 60 3 ,∠2= 45 3 ,
2
2
O 3 2N 1
M
A
∴∠MON=∠1+∠2-∠3
= 60 3 45 3 3
D
2
2
B
=105 23 3
2
=105 ∠3-3 2
= 105 =52.5° 2
课堂小结
A
B
M
N
解:依题意,设 AM=2x,那么 BM=3x,AB=5x.
由 AN:NB=4:1,得 AN= 4 AB=4x,BN= 1 AB=x,
5
5
即有 4x-2x=8,解得 x=4.
所以 AM=2x=2×4=8cm
则 AM、BN 的长分别为 8cm、4cm.
典例精解
类型二:分类讨论思想在线段或角的计算中的应用
ON平分∠COB
⑴∠MON=
;
⑵将图1中的三角板OCD绕点O旋转到图2的位置,求∠MON;
⑶将图1中的三角板OCD绕点O旋转到图3的位置,求∠MON.
C
C
C
O
O
O
N
N
N
D
M A
M
B
A
D
B D
M A
B
将一副三角板如图所示摆放,∠AOB=60°,∠COD=45°,OM平分∠AOB ⑴∠MON= 52.5°;
典例精解
类型一:方程思想在线段或角的计算中的应用 如图,线段AB上有两点M、N,点M将线段AB分成2:3两部分,点N将线段 AB分成4:1两部分,且MN=8cm,则线段AM、NB的长各是多少?
A
B
M
N
如图,线段AB上有两点M、N,点M将线段AB分成2:3两部分,点N将线段 AB分成4:1两部分,且MN=8cm,则线段AM、NB的长各是多少?
C
O
2N 1
M
A
B D
⑵将图1中的三角板OCD绕点O旋转到图2的位置,求∠MON;
解:由角平分线定义得∠1= 60 3 ,∠2= 45 3 ,
2
2
O
C
∴∠MON=∠1+∠2+∠3
3 2N 1
= 60 3 45 3 3
2
2
M A
B
=105 23 3
D
2
=105-∠3 3
2
= 105 =52.5° 2
初中数学知识点精讲课程
线段与角计算中的思想方法
在计算线段或角的问题中,除了常见的能直接计算的问题外,还常会出 现某个特定线段或角与其它线段或角的大小无关的情况,这样的问题需要借 助某些数学思想或方法予以解决.
另外有些几何图形是不确定的,需要运用分类讨论的思想解决. 下面通过几道例题来学习计算线段与角中的思想方法.
∵OM 平分∠BOC, ∴∠MOC= 1 ∠BOC. 2
同理∠NOC= 1 ∠AOC. 2
∵∠AOB=90°
NA M C
O
B
∴∠MON=∠NOC-∠MOC= 1 ∠AOC- 1 ∠BOC
2
2
= 1 (∠AOC-∠BOC)= 1 ∠AOB=45°.
2
2
典例精解
类型三:整体思想及从特殊到一般的思想
将一副三角板如图所示摆放,∠AOB=60°,∠COD=45°,OM平分∠AOB ,
同理∠MOC= 1 ∠COB. 2
∴∠MON=∠CON+∠COM
= 1 ∠AOC+ 1 ∠COB= 1 ∠AOB
2
2
2
又∵∠AOB=90°,∴∠MON=45°.
已知∠AOB=90°,OC为一条射线,OM,ON分别平分∠BOC,∠AOC,求 ∠MON的度数.
A N
O
B M
C
②当 OC 在∠AOB 外部时,如图 2,若∠BOC 为锐角.
已知∠AOB=90°,OC为一条射线,OM,ON分别平分∠BOC,∠AOC,求 ∠MON的度数.
A
A
A
N
C
N
C
O
B
O
M
Oபைடு நூலகம்
B
B M C
C
已知∠AOB=90°,OC为一条射线,OM,ON分别平分∠BOC,∠AOC,求 ∠MON的度数.
A N
C
M
O
B
解:①当 OC 在∠AOB 内部时,如图①,
∵ON 平分∠AOC ∴∠CON= 1 ∠AOC. 2