解析几何中的定值和定点问题
(完整)解析几何中的定点和定值问题

解析几何中的定点定值问题考纲解读:定点定值问题是解析几何解答题的考查重点。
此类问题定中有动,动中有定,并且常与轨迹问题,曲线系问题等相结合,深入考查直线的圆,圆锥曲线,直线和圆锥曲线位置关系等相关知识。
考查数形结合,分类讨论,化归与转化,函数和方程等数学思想方法。
一、定点问题解题的关健在于寻找题中用来联系已知量,未知量的垂直关系、中点关系、方程、不等式,然后将已知量,未知量代入上述关系,通过整理,变形转化为过定点的直线系、曲线系来解决。
例1、已知A 、B 是抛物线y 2=2p x (p 〉0)上异于原点O 的两个不同点,直线OA 和OB 的倾斜角分别为α和β,当α、β变化且α+β=4π时,证明直线AB 恒过定点,解析: 设A (121,2y p y ),B (222,2y py ),则212tan ,2tan y py p ==βα,代入1)tan(=+βα 得221214)(2p y y y y p -=+ (1) 又设直线AB 的方程为b kx y +=,则022222=+-⇒⎩⎨⎧=+=pb py ky pxy bkx y ∴kpy y kpby y 2,22121=+=,代入(1)式得pk p b 22+= ∴直线AB 的方程为)2(2p x k p y +=- ∴直线AB 过定点(-)2,2p p说明:本题在特殊条件下很难探索出定点,因此要从已知出发,把所求的定点问题转化为求直线AB ,再从AB 直线系中看出定点。
例2.已知椭圆C :22221(0)x y a b a b+=>>,以原点为圆心,椭圆的短半轴长为半径的圆与直线0x y -=相切. ⑴求椭圆C 的方程;⑵设(4,0)P ,M 、N 是椭圆C 上关于x 轴对称的任意两个不同的点,连结PN 交椭圆C 于另一点E ,求直线PN 的斜率的取值范围;⑶在⑵的条件下,证明直线ME 与x 轴相交于定点.解析:⑴由题意知c e a ==,所以22222234c a b e a a -===,即224a b =,又因为1b ==,所以224,1a b ==,故椭圆C 的方程为C :2214x y +=.⑵由题意知直线PN 的斜率存在,设直线PN 的方程为(4)y k x =- ①联立22(4)14y k x x y =-⎧⎪⎨+=⎪⎩消去y 得:2222(41)324(161)0k x k x k --+-=, 由2222(32)4(41)(644)0k k k ∆=-+->得21210k -<, 又0k =不合题意,所以直线PN的斜率的取值范围是0k <<或0k <<. ⑶设点1122(,),(,)N x y E x y ,则11(,)M x y -,直线ME 的方程为212221()y y y y x x x x +-=--, 令0y =,得221221()y x x x x y y -=-+,将1122(4),(4)y k x y k x =-=-代入整理,得12121224()8x x x x x x x -+=+-. ②由得①2212122232644,4141k k x x x x k k -+==++代入②整理,得1x =, 所以直线ME 与x 轴相交于定点(1,0).【针对性练习1】 在直角坐标系xOy 中,点M到点()1,0F,)2,0F 的距离之和是4,点M 的轨迹是C 与x 轴的负半轴交于点A ,不过点A 的直线:l y kx b =+与轨迹C 交于不同的两点P 和Q . ⑴求轨迹C 的方程;⑵当0AP AQ ⋅=时,求k 与b 的关系,并证明直线l 过定点.解:⑴∵点M到(),0,),0的距离之和是4,∴M 的轨迹C 是长轴为4,焦点在x轴上焦中为的椭圆,其方程为2214x y +=.⑵将y kx b =+,代入曲线C 的方程,整理得22(14)40k x +++= ,因为直线l 与曲线C 交于不同的两点P 和Q ,所以222222644(14)(44)16(41)0k b k b k b ∆=-+-=-+> ①设()11,P x y ,()22,Q x y ,则1228214k x x k +=-+,122414x x k =+ ② 且2212121212()()()()y y kx b kx b k x x kb x x b ⋅=++=+++,显然,曲线C 与x 轴的负半轴交于点()2,0A -,所以()112,AP x y =+,()222,AQ x y =+.由0AP AQ ⋅=,得1212(2)(2)0x x y y +++=.将②、③代入上式,整理得22121650k kb b -+=.所以(2)(65)0k b k b -⋅-=,即2b k =或65b k =.经检验,都符合条件①,当2b k =时,直线l 的方程为2y kx k =+.显然,此时直线l 经过定点()2,0-点.即直线l 经过点A ,与题意不符.当65b k =时,直线l 的方程为6556y kx k k x ⎛⎫=+=+ ⎪⎝⎭.显然,此时直线l 经过定点6,05⎛⎫- ⎪⎝⎭点,且不过点A .综上,k 与b 的关系是:65b k =,且直线l 经过定点6,05⎛⎫- ⎪⎝⎭点.【针对性练习2】在平面直角坐标系xoy 中,如图,已知椭圆15922=+y x 的左、右顶点为A 、B ,右焦点为F.设过点T(m t ,)的直线TA 、TB 与椭圆分别交于点M ),(11y x 、),(22y x N ,其中m 〉0,0,021<>y y .(1)设动点P 满足422=-PB PF ,求点P 的轨迹; (2)设31,221==x x ,求点T 的坐标; (3)设9=t ,求证:直线MN 必过x 轴上的一定点(其坐标与m 无关)。
解析几何中的定点、定值与最值问题解法揭秘

定值 问题 ,通过特殊探索法不但能够确定出定点、定 值 ,还可 以为我们提供解题 的线索.
例 1 已知抛物线 y=p ( > )问 : .  ̄Zxp O , 在轴 的正半 轴
上是否存在一点 。 使得过 M点 的抛 物线 的任 意一 条 弦 P 都有 P0 2 ( 1尸 D为坐标原点 )请说明理 由. = ?
题 .从 而找到解决 问题 的突破 E. ,有许 多定 点 、 1 另外
直线 A P的方程 为 , j (+)令 x 2 / , y , = x 2, = 、 2 则 =
高中 21 0 2年第 ’嬲
数攀有数
,
xo z + 5
即 E2 (
,
・
.
.
蔚 ・ =华 (
, ) , 。 ( ) 一 ・。 y ) 2 ( 。2 =
1 1
明若满 足题设条 件 的点 存在 , 其坐标 只能是 ( ,
参数表示 , 然后计算出所需结果与该参数无关 : 也可 将变动元 素置于特殊状态下 探求 出定点 、定值 ,然 后给 以证 明. 注意的是 ,解 析几何 中的定 点 、定 值得
值问题与一般几何证明不同 .它 的结论中没有确定 的
二
分析 : 这是一道 与探索性相结合的定点 问题 . 过 通 阅读题意我们发现几个关 键词 :正半轴 ” “ “ ,任意一 条 弦” 抛物线 y=p (> ) , =Zx p 0 的开 口向右 , 先假设 满足 题 设 条件的点 存在 , 并求 出 的坐标 , 然后证 明过 点的任意一条直 弦 PP 都有 /PO 2 也就是先 证 l2 - ,P=" I T,
x #-
0 , PP是过点 ( 0 的任意一条弦 , )设 I 2 2 ) p, 其斜率为 k , 则 P 的 方 程 为 y k( 一 ) 代 入 = p = , z 得 J 一 】 }
难点2.10 解析几何中的定值、定点和定线问题 (解析版)

解析几何中的定值、定点、定线问题仍是高考考试的重点与难点,该类问题知识综合性强,方法灵活,对运算能力和推理能力要求较高,因而成为了高中数学学习的重点和难点.主要以解答题形式考查,往往是试卷的压轴题之一,一般以椭圆或抛物线为背景,考查定值、定点、定线问题,试题难度较大.定点、定值、定线问题都是探求"变中有不变的量".因此要用全面的、联系的、发展的观点看待并处理此类问题.从整体上把握问题给出的综合信息,并注意挖掘问题中各个量之间的相互关系,恰当适时地运用函数与方程、转化与化归、数形结合、分类讨论、特殊到一般、相关点法、设而不求、换元、消元等基本思想方法. 在解答这类问题过程中,既有探索性的历程,又有严密的逻辑推理及复杂的运算,成为考查学生逻辑思维能力、知识迁移能力和运算求证能力的一道亮丽的风景线,真正体现了考试大纲中“重知识,更重能力”的指导思想.复习时不能把目标仅仅定位在知识的掌握上,要在解题方法、解题思想上深入下去.解析几何中基本的解题方法是使用代数方程的方法研究直线、曲线的某些几何性质,代数方程是解题的桥梁,要掌握一些解方程(组)的方法,掌握一元二次方程的知识在解析几何中的应用,掌握使用韦达定理进行整体代入的解题方法;其次注意分类讨论思想、函数与方程思想、化归与转化思想等的应用.1解析几何中的定值问题在解析几何中,有些几何量与参数无关,这就构成了定值问题,解决这类问题时,要善于运用辩证的观点去思考分析,在动点的“变”中寻求定值的“不变”性,一种思路是进行一般计算推理求出其结果,选定一个适合该题设的参变量,用题中已知量和参变量表示题中所涉及的定义,方程,几何性质,再用韦达定理,点差法等导出所求定值关系所需要的表达式,并将其代入定值关系式,化简整理求出结果;另一种思路是通过考查极端位置,探索出“定值”是多少,用特殊探索法(特殊值、特殊位置、特殊图形等)先确定出定值,揭开神秘的面纱,这样可将盲目的探索问题转化为有方向有目标的一般性证明题,从而找到解决问题的突破口,将该问题涉及的几何形式转化为代数形式或三角形式,证明该式是恒定的.同时有许多定值问题,通过特殊探索法不但能够确定出定值,还可以为我们提供解题的线索.如果试题是客观题形式出现,特珠化方法往往比较奏效.例1【百校联盟2018届一月联考】已知点()0,2F ,过点()0,2P -且与y 轴垂直的直线为1l , 2l x ⊥轴,交1l 于点N ,直线l 垂直平分FN ,交2l 于点M .(1)求点M 的轨迹方程;(2)记点M 的轨迹为曲线E ,直线AB 与曲线E 交于不同两点()()1122,,,A x y B x y ,且2211x x m-=+(m 为常数),直线l '与AB 平行,且与曲线E 相切,切点为C ,试问ABC ∆的面积是否为定值.若为定值,求出ABC ∆的面积;若不是定值,说明理由.思路分析:(1)根据抛物线的定义可得点M 的轨迹,根据待定系数法可得轨迹方程.(2)设直线AB 的方程为y kx b =+,与抛物线方程联立消元后可得AB 中点()24,4Q k k b +的坐标为.同样设出切线方程y kx t =+,与抛物线方程联立消元后可得切点C 的坐标为()24,2k k ,故得CQ ⊥ x 轴.于是点评:圆锥曲线中求定值问题常见的方法(1)从特殊入手,求出定值,再证明这个值与变量无关.(2)由题意得到目标函数,直接通过推理、计算,并在计算推理的过程中消去变量,从而得到目标函数的取值与变量无关,从而证得定值.定值问题通常是通过设参数或取特殊值来确定“定值”是多少,或者将该问题涉及的几何式转化为代数式或三角问题,证明该式是恒定的.定值问题同证明问题类似,在求定值之前已知该值的结果,因此求解时应设参数,运用推理,到最后必定参数统消,定值显现. 定值问题的主要处理方法是函数方法,首先,选择适当的量为变量,然后把证明为定值的量表示为上述变量的函数(可能含多元),最后把得到的函数解析式化简,消去变量得到定值.消去变量的过程中,经常要用到点在曲线上进行坐标代换消元.有时先从特殊情形入手,求出定值,再对一般情形进行证明,这样可使问题的方向更加明确.另外关注图形的几何性质可简化计算.学*科网2解析几何中的定点问题定点问题是动直线(或曲线)恒过某一定点的问题,一般方法是先将动直线(或曲线)用参数表示出来,再分析判断出其所过的定点.定点问题的难点是动直线(或曲线)的表示,一旦表示出来,其所过的定点就一目了然了.所以动直线(或曲线)中,参数的选择就至关重要.解题的关健在于寻找题中用来联系已知量,未知量的垂直关系、中点关系、方程、不等式,然后将已知量,未知量代入上述关系,通过整理,变形转化为过定点的直线系、曲线系来解决.定点问题多以直线与圆锥曲线为背景,常与函数与方程、向量等知识交汇,形成了过定点问题的证明.难度较大.定点问题是在变化中所表现出来的不变的量,那么就可以用变化的量表示问题的直线方程、数量积、比例关系等,这些直线方程、数量积、比例关系不受变化的量所影响的一个点,就是要求的定点.化解这类问题难点的关键就是引进变的参数表示直线方程、数量积、比例关系等,根据等式的恒成立、数式变换等寻找不受参数影响的量.解析几何中的“定点”问题一般是在一些动态事物(如动点、动直线、动弦、动角、动轨迹等)中,寻求某一个不变量——定点,由于这种问题涉及面广、综合性强.例2【河南省中原名校2018届第五次联考】已知椭圆()2222:10x y E a b a b+=>>的右焦点为F ,上顶点为G ,直线FG 与直线30x y -=垂直,椭圆E 经过点31,2P ⎛⎫ ⎪⎝⎭. (1)求椭圆E 的标准方程;(2)过点F 作椭圆E 的两条互相垂直的弦,AB CD .若弦,AB CD 的中点分别为,M N ,证明:直线MN 恒过定点.思路分析:(1)根据直线FG 与直线30x y -=垂直可得3b c =,从而得到2243a b =,再由点31,2P ⎛⎫ ⎪⎝⎭在椭圆上可求得22,a b ,即可得椭圆的方程.(2)当直线AB CD ,的斜率都存在时,设AB 的方程为()10x my m =+≠,与椭圆方程联立消元后根据根据系数的关系可得点M 的坐标,同理可得点N 坐标,从而可得直线MN 的方程,通过此方程可得直线过定点4,07⎛⎫ ⎪⎝⎭.然后再验证当直线AB CD 或的斜率不存在时也过该定点.点评:本题考查椭圆的标准方程、椭圆的几何性质、直线与椭圆的位置关系、基本不等式,属难题;解决圆锥曲线定点方法一般有两种:(1)从特殊入手,求出定点、定值、定线,再证明定点、定值、定线与变量无关;(2)直接计算、推理,并在计算、推理的过程中消去变量,从而得到定点、定值、定线.应注意到繁难的代数运算是此类问题的特点,设而不求方法、整体思想和消元的思想的运用可有效地简化运算. 定点定值问题的实质为等式恒成立,方法为待定系数法.定点问题,关键在于寻找题中的已知量、未知量间的平行、垂直关系或是方程、不等式,然后将已知量、未知量代入上述关系,通过整理、变形转化为过定点的直线系、曲线系的问题来解决.定值问题,关键在于选定一个适合该题设的参变量,用题中已知量和参变量表示题中所涉及的定义、方程、几何性质,再用韦达定理等方法导出所求定值关系式需要的表达式,并将其代入定值关系式,化简整理求出结果. 圆锥曲线中的定点问题是高考中的常考题型,常常把直线、圆及圆锥曲线等知识结合在一起,注重数学思想方法的考查,尤其是数形结合思想、分类讨论思想的考查.求解的方法有以下两种:①假设定点坐标,根据题意选择参数,建立一个直线系或曲线系方程,而该方程与参数无关,故得到一个关于定点坐标的方程组,以这个方程组的解为坐标的点即所求定点;②从特殊位置入手,找出定点,再证明该点符合题意.学*科网3解析几何中的定线问题 定线问题是证明动点在定直线上,其实质是求动点的轨迹方程,所以所用的方法即为求轨迹方程的方法,如定义法、消参法、交轨法等.例3在平面直角坐标系xOy 中,过点()2,0C 的直线与抛物线24y x =相交于,A B 两点,()()1122,,,A x y B x y .(1)求证:12y y 为定值;(2)是否存在平行于y 轴的定直线被以AC 为直径的圆截得的弦长为定值?如果存在,求该直线方程和弦长;如果不存在,说明理由.思路分析:(Ⅰ)设出过点()2,0C 的直线方程,与抛物线方程联立消去未知数x ,由根与系数关系可得128y y =-为定值;(Ⅱ)先设存在直线l :a x =满足条件,求出以AC 为直径的圆的圆心坐标和半径,利用勾股定理求出弦长表达式222124(1)84r d a x a a -=--+-,由表达式可知,当1a =时,弦长为定值.点评:本题考查抛物线的标准方程与几何性质、直线与抛物线的位置关系、直线与圆的位置关系,属难题;解决圆锥曲线定值定点方法一般有两种:(1)从特殊入手,求出定点、定值、定线,再证明定点、定值、定线与变量无关;(2)直接计算、推理,并在计算、推理的过程中消去变量,从而得到定点、定值、定线.应注意到繁难的代数运算是此类问题的特点,设而不求方法、整体思想和消元的思想的运用可有效地简化运算. 学*科网综上所述:解决圆锥曲线问题,关键是熟练掌握每一种圆锥曲线的定义、标准方程、图形与几何性质,注意挖掘知识的内在联系及其规律,通过对知识的重新组合,以达到巩固知识、提高能力的目的. 定值问题是解析几何中的一种常见问题,基本的求解思想是:先用变量表示所需证明的不变量,然后通过推导和已知条件,消去变量,得到定值,即解决定值问题首先是求解非定值问题,即变量问题,最后才是定值问题.解析几何中的定值问题是指某些几何量、线段的长度、图形的面积、角的度数、直线的斜率等的大小或某些代数表达式的值等和题目中的参数无关,不依参数的变化而变化,而始终是一个确定的值.求定值问题常见的方法有两种:①从特殊入手,求出定值,再证明这个值与变量无关;②直接推理、计算,并在计算推理的过程中消去变量,从而得到定值. 证明直线过定点的解题步骤可以归纳为:一选、二求、三定点.具体操作程序如下:一选:选择参变量.需要证明过定点的直线往往会随某一个量的变化而变化,可选择这个量为参变量(当动直线牵涉的量比较多时,也可以选择多个参变量). 二求:求出动直线的方程.求出只含上述参变量的动直线方程,并由其他辅助条件减少参变量的个数,最终使动直线的方程的系数中只含有一个参变量. 三定点:求出定点的坐标.不妨设动直线的方程中含有变量,把直线方程写成的形式,然后解关于的方程组得到定点的坐标. 解这类问题时,需要有较强的代数运算能力和图形识别能力,要能准确地进行数与形的语言转换和运算、推理转换,并在运算过程中注意思维的严密性,以保证结果的完整性.。
解析几何中的定点、定值问题教案(定稿)

解析几何中一类定点和定值的问题【教学目标】(l)通过圆的直径的一个简单性质类比到椭圆,学生能通过自主探究得到椭圆的直径的一个性质;(2)会从不同视角证明这个性质;(3)能证明性质成立的充要条件,并能利用性质解决相关问题;(4)通过问题解决领悟其中蕴涵的数学思想方法,在探究与发现中体验数学之美.【教学难、重点】解题思路的优化.【教学方法】探究式、讨论式【教学过程】一、回归问题背景,追溯题根本质。
选修2-1课本(人教版)第41页上例3的一个问题:设点A ,B 的坐标分别为(-5,0)(5,0),直线,AM 、BM 相交于点M ,且它们的斜率之积为94-,求点M 的轨迹方程。
(斜率之积为94,则为教材55页探究问题) 请同学们思考:问题1 设点A ,B 的坐标分别为(-2,0)(2,0),直线AM 、BM 相交于点M ,且它们的斜率之积为41-(或41),求点M 的轨迹方程。
答案1422=+y x (y ≠0)(第41页例2)(或1-422=y x (y ≠0)) 你本题采用直接法求轨迹方程,最终发现动点M 的轨迹是双曲线,而且注意到斜率这样一个条件,因此要剔除x 轴上的点,非常好!请同学们继续思考,如果将直线,AM 、BM 的斜率乘积改为-1,则定点M 的轨迹如何? (为了了解学生对此方法的掌握情况,教师指定一名学生回答)变式:设点A ,B 的坐标分别为(-2,0)(2,0),直线AM 、BM 相交于点M ,且它们的斜率之积为-1,求点M 的轨迹方程。
答案422=+y x (y ≠0)(可用几何法)通过以上问题,你有什么发现?学生讨论交流后提出了发现:设点A ,B 的坐标分别为(-2,0)(2,0),直线,AM 、BM 相交于点M ,且它们的斜率之积为k ,求点M 的轨迹方程。
的轨迹可以是直线、圆、椭圆、双曲线等等(剔除某些点)设计意图 作为本节课的引入,问题直接源自课本,入口浅,能有效激发学生兴趣,为后续学习奠定情感基础;另一方面也统领本节课,为接下来的学习埋下伏笔,留下悬念,有利于学生主动去探索研究,可谓寓意深刻值得一提的是,问题提问注意了差异性教学,有些问题鼓励学生自己回答(素质教好学生);有些问题则指定学生回答(如一名中等生,学困生)二、 提出目标 明确任务什么是定值问题:在变化过程中存在不变量的问题,今天研究解析几何中的定值问题.思考一问题1.设点A ,B 的坐标分别为(-2,0)(2,0),M (与A,B 不重合)为圆422=+y x 的任意一点,则直线AM 、BM 的斜率之积是不是定值,如果是定值求出定值?问题2.点A,B 为椭圆1422=+y x 长轴上的两个顶点.M (与A,B 不重合)为椭圆的任意一点,则直线AM 、BM 的斜率之积是不是定值,如果是定值求出定值?问题3.点A,B 为双曲线1-422=y x 实轴上的两个顶点.M (与A,B 不重合)为双曲线的任意一点,则直线AM 、BM 的斜率之积是不是定值,如果是定值求出定值?通过几何画板探究结论,要求学生观察完后进行证明。
专题29解析几何中的定点与定值问题

2021年髙考数学二轮复习专项微专题核心考点突破专题29解析几何中的定点与定值问题定点与定值问题是解析几何中的髙频考点,在近几年的考题中层出不穷•圆锥曲线的有关定点、定值等综合性问题涉及圆锥曲线的左义、几何性质、直线与圆锥曲线位置关系等知识,同时又与函数、不等式、方程、平而向量等代数知识紧密联系•求解这类问题时,需要有较强的代数运算能力和图形识别能力,要能准确地进行数与形的语言转换和运算,合理猜想并仔细推理论证,对熟练运用所学知识分析问题、解决问题的能力要求较髙,较大部分学生对此类问题望而生畏.泄点问题主要是曲线系(直线系)过左点的问题,反映的是数学对象的本质属性,如圆锥曲线的某些特有性质,因此,常见某些具有圆锥曲线的性质背景的题目(如蒙日圆、阿基米徳三角形等)•定值问题主要涉及而积、而积比、斜率、长度、角度等几何捲的定值,也涉及动点运动轨迹中的某些不变因素.处理这两大类问题时可以直接推理求出定点、泄值,也可以从特殊情形、极限状态、图形的对称性等方而入手猜测结论,再证明这个点(值)与变量无关,通过特殊值法探求立点、左值能达到事半功倍的效果•同时,要设左合理的变量,准确把握各变量的数量关系,要善于捕捉题目信息,合理变形、消元,并注意整体思想的熟练应用.1定点问题曲线系(直线系)过左点的问题是一类常考题型,这类问题以直线和圆锥曲线为载体,结合貝他条件探究或证明直线、曲线过左点或动点在左宜线上等问题•试题条件中一般含有两个参数,解题过程就是利用条件消参的过程,因此,此类问题的求解往往伴随着一泄的讣算.具体来讲,若是证明直线过泄点,可将直线设为斜截式,然后消掉一个参数,即得直线所过的左点;证明圆过左点时,常利用直径所对圆周角为直角转化为向量的数量枳恒为零处理;证明其他曲线过左点的问题时,经常将曲线中的参变量集中在一起,令其系数等于零,解得左点.例1椭圆F!^ + ^=l(a>6>0)的左焦点为右焦点为离心率0 =圭过鬥的直线交椭圆于久B 两点,且△佔尺的周长为8(/)求椭圆E的方程:总结起來,应注意如下几点:首先,仔细研究题干,认淸问题本质,找准思路,预计求解过程中遇到的各种情况,也就是要想得明白,思路通畅可操作:其次,找准主元,引入参数,建立各个戢间的数量关系,运用消元变形、推理运算等手段证明左点、圧值问题:再次,要努力突破汁算关、心理关,认真仔细计算、准确规范,随时检査,树立信心,只要方向正确就一算到底:最后,必须树立数形结合意识,善于把握问题的特泄信息,运用对称性、特殊性猜想立点、泄值,然后证明,要仔细分析图中的点、线等关系,挖掘隐含条件,往往能取得出奇制胜的效果.2定值问题泄值问题与最值问题属同一类问题,都是在一个运动变化过程中,由某个变量的变化引起另一个量的变化或不变的问题•此类问题的求解的一种思路是找准变化的主元,设为参数,建立参变量与其他量的关系(如函数关系、方程关系、不等式关系等),探求目标式,通过代数运算将目标式用参变量表示出来,这一步是求解的难点也是关键所在,然后再恒等变形得到立值•另一种思路是通过特殊值或极端情形探索出泄值是多少, 然后进行一般性计算或证明,探索岀的泄值也可以作为检验结果正确与否的试金石.例2已知椭圆+咅= l(a >b> 0)的禽心率为g过左焦点F且垂直于长轴的弦长为总fl* 5 5(/)求椭圆c的标准方程;(II)点P(m, 0)为椭圆C长轴上的一个动点,过点P且斜率为孰勺直线I交椭圆C于A, B两点,求证:|M|2+|PB|2为定值.例3已知点P(—1,9是椭圆E:石+音二Ha>b>0)上一点,人迟分别是椭圆£的左、右焦点,O是坐标原点,PFi 丄x输(/)求椭圆E的方程:(11)设儿B是椭圆上两个动点,丙+两=久而(0<A<4, 盼2).求证:直线AB的斜率等于泄值.線觀模獗题强褪2 21.在椭圆C:^ + ^ = \(2b>a>b>0)±任取一点P (P不为长轴端点),连结卩斥、PF-并延长与a1 lr椭圆C分别交于点A、B两点,已知AAPF,的周长为8, △斥卩尸2面积的最大值为2.已知椭圆C: 3卫+4b = 12.(1)求椭圆C的离心率;(2)设A,B是四条直线x = ±a,y = ±l)所围成的两个顶点,p是椭圆C上的任意一点,若OP = mOA + nOB»求证:动点。
探究解析几何中的定点、定值问题

解题篇经典题突破方法高考数学2021年4月探究解析几何中的定点.定值问题■浙江省湖州市第二中学曹亚奇定点与定值问题是解析几何中的高频考点。
此类问题定中有动,动中有定,并常与轨迹问题、曲线系问题等相结合,综合性强,解法灵活多变。
求解这类问题时,需要有较强的代数运算能力和图形识别能力,要能合理猜想并仔细推理论证,对熟练运用所学知识分析问题、解决问题的能力要求较高,所以掌握这类问题的通性通法是我们学习的重中之重。
一.直线的定点问题我们知道,若一条直线经过一定点,往往表达成如下形式:(1)夕=也7+1;(2)夕=足2—冷;(3)夕一1=忌(工一1);(4)Cm—1)rr+(2?n—1)»=?n—5。
于是我们最终需要表达的直线的方程是含有一个参数,那又该如何做到呢?下面让我们以一道经典习题为例,从“线设”、“点设”、“共线”等三个视角入手,寻求直线中定点问题的通性通法。
侧f(武汉市2020届高中毕业生质量检测第19题)已知抛物线r iy2=2p^ S>0)的焦点为F,P是抛物线。
上一点,且在第一象限,满足FP=(2,2/3)o(1)求抛物线r的标准方程。
(2)已知过点A(3,-2)的直线交抛物线r于M,N两点,经过定点B(3,—6)和M点的直线与拋物线「交于另一点试问:直线NL是否恒过定点?若过定点,求出该定点;若不过定点,请说明理由。
解析:(1)抛物线r的标准方程为y2= 4工。
(过程略)(2)解法1:设M(?“),则直线MN:工一护T-33=上+2(夕+2),与抛物线方程y2=4鼻联立竹*f2护—122t2-\~X2t,r并化简得:y y-=0,故y N=t2_12_2e+12_“+6\27+2"—t=—匚卡-,心=(石巨),即N((爭)1—帚)。
同理直线辺山—3 *2_1O=17+24^+6),与抛物线方程宁=4工联立,得叫峯广-罟)。
于是直线N“+6^+122z+122e+12_e+6t~\~2((e+6)2、…i+2=(卄6)2(3£+6尸严―q+2)2丿,化(卄2)2—(卄6)2简整理得’=_(霁+霁寻»_3,所以直线NL过定点(一3,0)。
解析几何中的一道亮丽“风景线”——浅析定值、定点、定直线问题

1:
当A B不与 轴垂 直时 , 直 线 A 设 曰的
方程 是 y k 一 ) ±1。 =( 2 x ≠ ) 代 入 一 。2 有 ( 一 4 2一 y= , 1 kk + k x
( 2 = 。 4 ) 0
设 1, yi 孚1 Aj日 孚 = 由 + y l
_溺l 鳕l _l l 渤 ÷ l
垒 UE Ncu wE
‘ ‘
浅析定值\ 定点\ 定直线问题
福建省莆田市秀屿区大丘中学 柯国庆
关键 词 : 定点
定值
定 直 线
综上所述, ・ 为常数 一 。 商 1
还 有 2 0 重 庆 理 、 09年 北 京 理 07年 20 都 是 定值 问题 。对 于 这 类定 值 问题 , 然 显 定 值 的结 果 并 不 知 道 ,故 我 们 只 好借 助 特 殊 法 , 如取 特 殊 点 或特 殊 位 置 , 得 比 使 问题 变得 更 加 清 晰 。所 以 , 有关 这 方 面 问 题 的 求 解 往 往 采 取 两 步 : 用特 殊 法 探 寻 其 定值 ; 一般 性 加 以 验证 、 导 。 对 推 二、 与证 明有 关 的定 点 问题 例 2 (b 7 高 考 题 ) 知 椭 圆 C 2o 年 已 的 中心 在 坐 标 原 点 , 点 在 轴 上 , 圆 焦 椭
—
3m 一 k) + 4 m ( 4 ( 乙3 )
解析几何题是历年高考 的必考点, 其
相 应 的 高 考 题 更 以解 答 题 中 的 定 值 、 定 点 、 直 线 问题 为热 点 , 正 是 由 于 其 在 定 也 解 答 之前 并 不 知道 其 定值 、定 点 之 结果 , 更 增添 了它的 难度 。因此 , 决 这类 问题 , 解
解析几何中的定点、定值问题教案

解析几何中的定点和定值问题【教学目标】学会合理选择参数(坐标、斜率等)表示动态几何对象和几何量,探究、证明动态图形中的不变性质(定点、定值等),体会“设而不求”、“整体代换”在简化运算中作用.【教学难、重点】解题思路的优化.【教学方法】讨论式【教学过程】一、基础练习1、过直线4x =上动点P 作圆224O x y +=:的切线PA PB 、,则两切点所在直线AB 恒过一定点.此定点的坐标为_____________________.2、已知PQ 是过椭圆22:21C x y +=中心的任一弦,A 是椭圆C 上异于P Q 、的任意一点.若AP AQ 、 分别有斜率12k k 、 ,则12k k ⋅=______________.3,过右焦点F 作不垂直于x 轴的直线交椭圆于A 、B 两点, 的垂直平分线交x 轴于N ,则_______.4,F A ,是其左顶点和左焦点,P 是圆222b y x =+ 上的动点,若PF=常数,则此椭圆的离心率是 . 二、典型例题例1、如图,椭圆C : 22142x y +=的左顶点为A ,过原点O 的直线(与坐标轴不重合)与椭圆C 交于P ,Q 两点,直线PA ,QA 分别与y 轴交于M ,N 两点. 试问以MN 为直径的圆是否经过定点(与直线PQ 的斜率无关)?请证明你的结论.例2、已知离心率为e 的椭圆C (1)e ,和()20,. (1) 求椭圆C 的方程;(2) 已知AB MN 、为椭圆C 上的两动弦,其中M N 、关于原点O 对称,AB 过动点(,0),(22)E m m -<<,且AB MN 、斜率互为相反数. 试问:直线AM BN 、的斜率之和是否为定值?证明你的结论.例3、已知椭圆E 的中心在原点,焦点在x 轴上,1,离心率为e. ﹙1﹚求椭圆E 的方程.﹙2﹚过点(1,0)作直线l 交E 于P 、Q 两点,试问:在x 轴上是否存在一个定点M ,使MP MQ 为定值?若存在,求出这个定点M 的坐标;若不存在,请说明理由.三、回顾反思1A 、B 是其左、右顶点,动点M 满足MB ⊥AB ,连结AM 交椭圆于点P ,在A 、B 的定点Q ,以MP 为直径的圆经过直线BP 、MQ 的交点,则点Q 的坐标为____________.2、已知P B 的任意一点,记直线P A ,PB 3是椭圆的左右顶点,P 为椭圆上不同于AB 的动点,直线PA,PB 的倾斜角分别为,αβ,则= .4、如图所示,已知椭圆C C 上任取不同两点A ,B ,点A 关于x 轴的对称点为'A ,当A ,B AB 经过x 轴上的定点T (1,0),则直线'A B直线交椭圆于于,M N 两点,令 6、已知椭圆C 的中心在坐标原点,焦点在x 轴上,左顶点为A ,左焦点为()120F -,,点(B 在椭圆C 上,直线()0y kx k =≠与椭圆C 交于E ,F 两点,直线AE ,AF 分别与y 轴交于点M ,N .(Ⅰ)求椭圆C 的方程;(Ⅱ)以MN 为直径的圆是否经过定点?若经过,求出定点的坐标;若不经过,请说明理由.7、已知椭圆C: 2222x y a b+=1(a >0,b >0A (1在椭圆C 上. (I)求椭圆C 的方程;(Ⅱ)设动直线l 与椭圆C 有且仅有一个公共点,判断是否存在以原点O 为圆心的圆,满 足此圆与l 相交于两点P 1,P 2(两点均不在坐标轴上),且使得直线OP 1,OP 2的斜率之 积为定值?若存在,求此圆的方程;若不存在,说明理由.8、已知椭圆C 1:22221(0)y x a b a b+=>>,且过定点M (1. (1)求椭圆C 的方程;(2)已知直线l :1()3y kx k =-∈R 与椭圆C 交于A 、B 两点,试问在y 轴上是否存在定点P ,使得以弦AB 为直径的圆恒过P 点?若存在,求出P 点的坐标,若不存在,说明理由.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解析几何中的定值定点问题(一)一、定点问题【例1】.已知椭圆 C :2 2x y2 2 1(a b 0)a b的离心率为32,以原点为圆心,椭圆的短半轴长为半径的圆与直线x y 2 0 相切.⑴求椭圆 C 的方程;⑵设P(4, 0) ,M 、N 是椭圆 C 上关于x轴对称的任意两个不同的点,连结PN 交椭圆C 于另一点 E ,求直线PN 的斜率的取值范围;⑶在⑵的条件下,证明直线ME 与x 轴相交于定点.解:⑴由题意知 e ca32,所以 2e2 2 2c a b2 2a a34,即 2 4 2a b ,又因为2b 1,所以1 12 2a 4,b 1,故椭圆 C 的方程为 C :2x42 1y .⑵由题意知直线PN 的斜率存在,设直线PN 的方程为y k(x 4) ①y k( x 4)联立 2x42y 1消去y 得: 2 2 2 2(4k 1)x 32k x 4(16k 1) 0 ,由 2 2 2 2(32k ) 4(4 k 1)(64 k 4) 0 得212k 1 0,又k 0 不合题意,所以直线PN 的斜率的取值范围是36k 0 或03k .6⑶设点N (x1 , y1), E (x2 , y2 ) ,则M (x1 , y1) ,直线ME 的方程为y y2 1y y ( x x )2 2x x2 1,y (x x ) 令y 0 ,得 2 2 1x x2y y2 1 ,将y1 k( x1 4), y2 k(x2 4) 代入整理,得x2x x 4(x x )1 2 1 2x x1 28.②由得①2 232k 64k 4x x , x x1 2 2 1 2 24k 1 4k 1代入②整理,得x 1 ,所以直线ME 与x 轴相交于定点(1, 0) .【针对性练习1】在直角坐标系xOy 中,点M 到点F1 3 , 0 ,F2 3 , 0 的距离之和是 4 ,点M 的轨迹是C 与x轴的负半轴交于点A,不过点A的直线l : y kx b 与轨迹C 交于不同的两点P 和Q .⑴求轨迹 C 的方程;⑵当AP AQ 0 时,求k 与b 的关系,并证明直线l 过定点.解:⑴∵点M 到 3 , 0 , 3 , 0 的距离之和是4,∴M 的轨迹 C 是长轴为4,焦点在x 轴上焦中为 2 3的椭圆,其方程为2x42 1y .1yPO xQ⑵将y kx b ,代入曲线 C 的方程,整理得 2 2(1 4k )x 8 2kx 4 0 ,因为直线l 与曲线 C 交于不同的两点P 和Q ,所以 2 2 2 2 2 264k b 4(1 4k )(4 b 4) 16(4k b 1) 0 ①设P x1 , y1 ,Q x2 , y2 ,则x1 x28 2k1 42 k, 4x x1 2 21 4k②且 2 2y1 y2 (kx1 b)( kx2 b) (k x1x2) kb (x1 x2 ) b ,显然,曲线 C 与x 轴的负半轴交于点 A 2 , 0 ,所以A P x y ,AQ x2 2 , y2 .由AP AQ 0,得(x1 2)( x2 2) y1 y2 0 .1 2 , 1将②、③代入上式,整理得 2 212k 16 k b 5b 0.所以(2k b) (6k 5b) 0 ,即b 2k 或6b k .经检验,5都符合条件①,当 b 2k 时,直线l 的方程为y kx 2k .显然,此时直线l 经过定点 2 , 0 点.即直线l经过点A,与题意不符.当6b k 时,直线l 的方程为56 5y kx k k x .5 6显然,此时直线l 经过定点65, 0 点,且不过点 A .综上,k 与 b 的关系是:6b k ,且直线l 经过定点56 5 , 0点.2 y 2x【针对性练习2】在平面直角坐标系xoy 中,如图,已知椭圆 1的左、右顶点为 A 、B,右焦点9 5 为F。
设过点T(t, m )的直线TA、TB 与椭圆分别交于点M (x1, y ) 、1N(x2 ,y2 ) ,其中m>0, y1 0, y2 0。
2 PB 2(1)设动点P 满足 4PF ,求点P 的轨迹;(2)设1x1 2, x2 ,求点T 的坐标;3(3)设t 9 ,求证:直线MN 必过x 轴上的一定点(其坐标与m 无关)。
【解析】本小题主要考查求简单曲线的方程,考查方直线与椭圆的方程等基础知识。
考查运算求解能力和探究问题的能力。
解:(1)设点P(x,y),则:F(2,0)、B(3,0)、A(-3,0)。
2 PB2由 4PF ,得2 2 2 2(x 2) y [( x 3) y ] 4, 化简得9x 。
22故所求点P 的轨迹为直线9 x 。
2(2)将1x 分别代入椭圆方程,以及y1 0, y2 0得:M (2,1 2, x2353)、N(13,209)直线MTA 方程为:y0 x 35 2 33,即1y x 1,3直线NTB 方程为:y0 x 320 10 39 3,即5 5y x 。
6 2 x 7联立方程组,解得:y 10 3,所以点T 的坐标为10 (7, )3。
(3)点T 的坐标为(9, m)直线MTA 方程为:y 0 x 3m 0 9 3 m,即( 3)y x ,12直线NTB 方程为:y 0 x 3m 0 9 3m,即( 3)y x 。
62 y2x分别与椭圆 1联立方程组,同时考虑到9 5x1 3, x2 3,解得:M23(80 m ) 40m( , )2 280 m 80 m、N23(m 20) 20m( , )2 220 m 20 m。
(方法一)当x x 时,直线MN 方程为:1 2220m 3(m 20) y x2 220 m 20 m40 20 3(80 2) 3( 2 20)m m m m2 2 2 2 80 m 20 m 80 m 20 m令y 0,解得:x 1。
此时必过点D(1,0);当x x 时,直线MN 方程为:x 1,与x 轴交点为D(1,0)。
1 2所以直线MN 必过x 轴上的一定点D(1,0)。
(方法二)若x x ,则由1 22 2240 3m 3m 602 280 m 20 m及m 0 ,得m 2 10 ,此时直线MN 的方程为x 1,过点D(1,0)。
40m若x x ,则m 2 10 ,直线MD 的斜率1 2 kMD2 10m80 m2 2240 3m 40 m1280 m,3直线N D 的斜率kND20m10m220 m2 23m 60 40 m1220 m,得k k ,所以直线M N 过D 点。
MD ND因此,直线M N 必过x轴上的点(1,0)。
【针对性练习3】已知椭圆C中心在原点,焦点在x 轴上,焦距为 2 ,短轴长为 2 3 .(Ⅰ)求椭圆C的标准方程;(Ⅱ)若直线l:y kx m k 0 与椭圆交于不同的两点M 、N (M 、N 不是椭圆的左、右顶点),且以MN 为直径的圆经过椭圆的右顶点 A .求证:直线l过定点,并求出定点的坐标.解: (Ⅰ)设椭圆的长半轴为a,短半轴长为 b ,半焦距为c,则2c 2,2b 2 3,2 2 2a b c , 解得ab2,3,∴椭圆C的标准方程为2 2x y4 31.⋯⋯ 4 分(Ⅱ)由方程组2 2x y14 3y kx m消去y ,得2 2 23 4k x 8kmx 4m 12 0.⋯⋯ 6 分由题意△ 2 2 28km 4 3 4k 4m 12 0 ,整理得: 2 23 4k m 0 ①⋯⋯⋯7分设M x1, y1 、N x2 , y2 ,则8km x x1 2 23 4k ,24m 12x x1 2 23 4k.⋯⋯⋯8分由已知,AM AN ,且椭圆的右顶点为 A (2,0) ,∴x1 2 x2 2 y1y2 0 .⋯⋯10 分即 2 21 k x x km2 x x m 4 0 ,1 2 1 2也即24m 12 8km2 21 k km2 m 4 02 23 4k 3 4k,整理得 2 27m 16mk 4k 0 .解得m 2k 或2km ,均满足①⋯⋯⋯11 分7当m 2k 时,直线l的方程为y kx 2k ,过定点(2,0) ,不符合题意舍去;当2km 时,直线l的方程为72y k x ,过定点72( ,0)7,4二、定值问题【例2】.已知椭圆的中心在原点,焦点 F 在y 轴的非负半轴上,点 F 到短轴端点的距离是4,椭圆上的点到焦点 F 距离的最大值是 6.(Ⅰ)求椭圆的标准方程和离心率e;(Ⅱ)若F 为焦点 F 关于直线3y 的对称点,动点M 满足2MFMFe,问是否存在一个定点 A ,使M 到点A 的距离为定值?若存在,求出点 A 的坐标及此定值;若不存在,请说明理由. 解:(Ⅰ)设椭圆长半轴长及半焦距分别为a,c,由已知得a4,a c 6,解得 a 4,c 2 .所以椭圆的标准方程为2 2y x16 121. 离心率 e2 14 2.(Ⅱ) F (0,2), F (0,1) ,设M (x, y), 由MFMFe得2 2x ( y 2) 12 2x ( y 1)2化简得 2 23x 3y 14y 15 0 ,即2 7 2 2 2 x (y ) ( )3 3故存在一个定点7A(0, ) ,使M 到A 点的距离为定值,其定值为323.【例3】.已知抛物线 C 的顶点在坐标原点,焦点在x 轴上,P(2,0)为定点.(Ⅰ)若点P 为抛物线的焦点,求抛物线 C 的方程;(Ⅱ)若动圆M 过点P,且圆心M 在抛物线 C 上运动,点 A 、B 是圆M 与y 轴的两交点,试推断是否存在一条抛物线C,使|AB|为定值?若存在,求这个定值;若不存在,说明理由.解:(Ⅰ) 设抛物线方程为p2 2 ( 0)y px p ,则抛物线的焦点坐标为( ,0)2p.由已知, 22,即p 4 ,故抛物线 C 的方程是 2 8y x.(Ⅱ)设圆心M (a,b) ( a 0 ),点 A (0, y1) ,B (0, y2) . 因为圆M 过点P(2,0),则可设圆M 的方程为2 2 2 2(x a) ( y b) (a 2) b . 令x 0 ,得 2 2 4 4 0y b y a .则y1 y2 2b,y1 y2 4a 4.所以 2 2 2| AB | (y y ) (y y ) 4y y 4b 16a 16 . ,设抛物线 C 的方程为1 2 1 2 1 22 ( 0)y mx m ,因为圆心M 在抛物线 C 上,则2b ma . 所以| AB| 4ma 16a 16 4a(m 4) 16 . 由此可得,当m 4 时,| AB | 4 为定值.故存在一条抛物线 2 4y x,使|AB| 为定值 4.5解析几何中的定值定点问题(二)1、已知椭圆C 的离心率 e32,长轴的左右端点分别为A1 2 , 0 ,A 2 2 , 0 。