网络流量分类研究
基于半监督学习的网络流量分类算法研究

基于半监督学习的网络流量分类算法研究近年来,随着网络技术的不断发展和普及,网络安全问题也愈加突出。
其中,网络流量分类是网络安全的一个重要领域,其目的是对网络流量进行分类,将正常流量与恶意流量区分开来,以保障网络的安全可信。
网络流量分类算法通常分为有监督学习和无监督学习两种方式。
有监督学习需要大量已知类别的流量样本作为训练集,通过构建分类模型对未知流量进行预测。
而无监督学习则是在无标签数据的情况下,通过数据分布等特征进行分类。
然而,由于训练样本的获取和标记成本较高,有监督学习的分类模型可能会导致过拟合与泛化性能差的问题。
相对而言,无监督学习虽然不需要标记,但它训练出的分类模型稳定性较差,分类效果可能并不理想。
因此,近年来基于半监督学习的网络流量分类算法备受关注。
半监督学习旨在在有限标记样本和大量无标记样本的条件下,通过挖掘不同样本之间的相似性或者差异性,提高分类模型的准确性。
基于半监督学习的网络流量分类算法有多种,常见的包括基于图的半监督学习和基于深度学习的半监督学习等。
其中,基于图的半监督学习是一种基于网络拓扑形态的分类方法。
该方法对网络流量的特征向量进行建模,并将其转换成图形结构上的节点。
然后,在有标记节点的同时,通过节点之间的连接与相似性计算出新的“虚拟标签”,从而对未知的节点进行分类。
相比于基于图的半监督学习,基于深度学习的半监督学习算法具有更好的泛化性能和适应能力。
最近提出的一种基于卷积神经网络(Convolutional Neural Networks,CNN)的网络流量分类算法,通过在CNN中嵌入半监督学习算法实现网络流量分类。
该方法利用卷积神经网络对网络流量进行分层特征提取,并将提取的特征向量输入到半监督学习算法中进行分类。
除了以上两种方法,还有基于网络嵌入的半监督学习算法等。
网络嵌入是一种将节点或网络图转化为低维向量表示的方法。
基于网络嵌入的半监督学习算法通过节点之间的相似度计算相互作用,将图中的相近节点嵌入到同一空间中,并通过半监督分类算法对其进行标记。
网络流量分类及其现状研究

商务交 易等 各种应用不断涌现 , 造成新兴应用层 出不穷 、 带宽消
耗急剧增加 、 安全问题 日益增多 , 如何 为用户提供一个安全 、 可靠
索策 略来选取流统计学特征 。H U A N G等人将粒子群算法用 于特 征搜索 , 但粒子被过多束缚 , 容易导致局部最优。2 0 0 9年 , L i 等人 利用遗传算法进行特征属性选择 , 搜索 能力 强 , 对求解大规模 复
消耗 时间较长的不足。2 0 1 2年 , Wa n g以流 的统计学特征为依据 , 提 出了一种基 于 f i l t e r 和w r a p p e r 的组合式 特征选择 ,获得 识别
议类型 ) 的单向数据包集合。只要数据包的上述五个要 素中有一
个 不相 同, 它们就不属于 同一条流。 在 流的定义的基 础上 , 网络流 量分 类是 指 :对流按 照其 应用 层 的应用类 型 ( 如 m 。 MA I L , www, P 2 P等 ) , 将网络 中存在的 T C P流或 U D P流进行分类。对 网络流量分类 的研究 主要 是网络流量特征选择和分类方法 两方
是实现 网络可控性的基础技术 , 在网络管理 、 服务质量保障 和网
络安全等领域都有应用 。 但随着网络的发展 , 网络速度不断提高 ,
新型的 网络应用和技术不断 出现 , 对网络流量分类术提 出了更 高 的要求 。
一
、
网 络流 量 的 定 义
流特征选择算法 ,通过曲线拟合趋势相关性属性进行特征选择 ,
面。
P 2 P的最优流特征子集 , 但该方法 的通用性有待提高 。
目前 , 各种新 的搜索机制和评价标准如支持 向量机 、 马尔可
夫、 粗糙集 、 神经网络等方法被广泛应用 于改进现 有的特征选择
网络流量识别与分类研究

网络流量识别与分类研究随着互联网的日益普及,人们逐渐离不开网络。
然而,网络的使用也带来了很多问题,其中之一便是网络流量的管理。
网络流量是指在网络中传输的信息,根据不同的内容和用途,可以被分为不同的类型。
本文将探讨网络流量的识别与分类研究。
一、网络流量的识别网络流量的识别是指对在网络中传输的信息进行简单的分类,以便于后续的管理和分流。
网络流量的识别可以采用深度学习等人工智能技术,也可以使用一些传统的算法。
在具体实践中,网络流量的识别可以分为两个部分:传输层流量识别和应用层流量识别。
1. 传输层流量识别传输层流量识别可以将网络的传输层协议进行分类。
传输层协议主要有TCP和UDP两种。
TCP协议是面向连接的协议,保证了数据的可靠性和数据的正确性。
UDP协议则是面向无连接的协议,可以快速地传输数据。
在实验室中,我们可以通过分析包头中的标识符来区分TCP和UDP协议。
2. 应用层流量识别应用层流量识别则可以将网络中的应用进行分类。
网络中的应用有很多种,如HTTP协议、FTP协议、P2P协议等。
我们可以通过对网络包的特征进行分析来识别不同的应用。
比如HTTP协议的应用层端口是80端口,FTP协议则是21端口。
二、网络流量的分类网络流量的分类是指对已经识别的流量进行更为细致的分类和管理。
网络流量的分类可以依据不同的需求而进行不同的划分。
在网络管理中,我们通常需要将网络流量分为是否有害流量和是否正常流量,以便于进行进一步的管理。
1. 正常流量分类正常流量是指那些网络中传输的正常数据。
在实践中,我们可以将正常流量分为以下几类:(1)Web流量:指那些由浏览器发出的HTTP请求。
(2)Email流量:指由邮件客户端或邮件服务器发出的邮件。
(3)FTP流量:指由FTP客户端或FTP服务器进行的文件传输。
(4)VoIP流量:指由VoIP软件(如Skype)进行的语音传输。
2. 有害流量分类有害流量是指那些意图破坏网络性能或者非法获取网络资源的数据。
《网络流量分类研究》课件

通过流量分类,可以更好地了解网络瓶颈和性能瓶颈,从而进行有针对性的优化。
2 安全分析
流量分类可以帮助识别恶意流量和网络攻击,提高网络的安全性。
3 流量控制
通过对流量进行分类和控制,可以优化网络带宽的使用,提高网络的质量。
基于端口号的流量分类技术
基于端口号的流量分类技术是一种简单而常用的方法,它通过识别数据包的 源/目的端口号来进行流量分类。
基于IP地址的流量分类技术
基于IP地址的流量分类技术是一种常见的方法,它通过识别数据包的源/目的I技术是一种流行的方法,它通过识别数据包的协议类型 来进行流量分类。
基于深度学习的流量分类技术
基于深度学习的流量分类技术利用神经网络结构和深度学习算法对网络流量 进行分析和分类。
《网络流量分类研究》 PPT课件
在这个PPT课件中,我们将深入探讨网络流量分类的背景、意义和应用。探讨 各种流量分类方法,包括基于端口号、IP地址、协议、深度学习和机器学习的 技术。以及流量分类对网络管理、优化和流量控制的重要性。
研究背景与意义
网络流量分类是一项关键的研究领域,它对于网络性能优化、安全分析和流量控制至关重要。
网络流量分类的概念与定义
网络流量分类是指根据网络数据包的特征和属性将流量进行分类和标识,以便更好地理解和管理网络通信。
网络流量分类的分类标准
网络流量可以根据不同的标准进行分类,如协议类型、应用类型、源/目的地地址等。
常见的流量分类方法
基于端口号的流量分类技术
根据数据包的源/目的端口号进行流量分类,适 用于传统的网络应用。
基于协议的流量分类技术
根据数据包的协议类型进行流量分类,适用于区 分不同协议的网络流量。
基于IP地址的流量分类技术
基于机器学习的网络流量分类研究

基于机器学习的网络流量分类研究一、引言随着互联网的快速发展,网络流量的数量和种类不断增加。
对网络流量进行分类和分析,有助于了解网络行为和保护网络安全。
传统的基于规则的方法虽然简单,但无法适应网络流量快速变化的特点。
随着机器学习技术的发展,基于机器学习的网络流量分类逐渐成为研究热点,本文将详细探讨基于机器学习的网络流量分类研究。
二、网络流量分类的重要性网络流量分类是指对网络中传输的数据流进行分类和标记,以便更好地了解和管理网络流量。
网络流量分类的重要性体现在以下几个方面:1. 网络安全:通过对网络流量进行分类,可以识别异常流量和恶意行为,及时发现并防止网络攻击。
2. 网络管理:对网络流量进行分类和监控,可以了解网络中的流量分布和使用情况,从而优化网络资源分配和调整网络策略。
3. 服务质量优化:对网络流量进行分类和分析,可以根据不同类型的流量提供不同的服务质量,提升用户体验。
三、基于机器学习的网络流量分类方法基于机器学习的网络流量分类方法是利用机器学习算法对网络流量数据进行建模和分类。
主要包括以下步骤:1. 数据预处理:网络流量数据通常包括各种协议和特征,需要对原始数据进行处理和提取有用特征。
常用的预处理方法包括数据清洗、数据采样和特征选择等。
2. 特征提取:从网络流量数据中提取有用的特征,以供机器学习算法使用。
常用的特征包括包大小、传输速率、协议类型等。
3. 数据标记:需要为网络流量数据标记标签,即将不同类型的流量分为不同的类别。
一般采用人工标注或其他自动化方法进行标记。
4. 模型选择和训练:选择合适的机器学习算法,并使用标记好的数据进行模型训练。
常用的机器学习算法包括决策树、支持向量机和深度学习等。
5. 模型评估和优化:对训练好的模型进行评估和优化,包括计算准确率、召回率和F1值等指标,进一步优化模型性能。
四、基于机器学习的网络流量分类应用实例基于机器学习的网络流量分类已经在各个领域得到应用。
以下是几个常见的应用实例:1. 网络入侵检测:通过对网络流量进行分类,可以识别和检测各种网络入侵行为,如DDoS攻击、端口扫描等。
网络流量分类与分析技术研究综述

网络流量分类与分析技术研究综述网络流量是指通过网络传输的数据包的数量和速率。
在互联网时代,网络流量成为了信息传输的重要指标,通过对网络流量的分类和分析可以了解网络的使用情况、发现网络故障、提高网络性能等。
本文将对网络流量分类与分析技术进行综述,并介绍其应用领域和未来发展方向。
一、网络流量分类技术网络流量的分类是通过对流量数据包进行特征提取和识别,将流量划分为不同的类型。
常见的网络流量分类技术包括端口号识别、深度包检测、统计分析等。
1. 端口号识别端口号是TCP/IP协议中用于区分不同应用程序或服务的标识符。
通过识别数据包的源端口号和目的端口号,可以判断该流量所属的应用程序或服务。
例如,源端口号为80表示该流量属于Web浏览器的HTTP请求,而源端口号为443表示该流量属于使用HTTPS协议加密的Web服务。
2. 深度包检测深度包检测是指对数据包的负载进行深入分析,提取出更多的特征信息以进行分类。
深度包检测可以依靠不同的特征进行分类,比如协议头部信息、数据包长度、数据内容等。
通过深度包检测,可以识别出隐藏在加密协议中的流量类型,提高分类的准确性。
3. 统计分析统计分析是指通过对网络流量数据进行统计和分析,从中抽取出特征规律进行分类。
常见的统计方法包括数据包长度分布、时间序列分析、频谱分析等。
通过对流量数据的频率、持续时间、数据量等进行统计,并结合机器学习算法,可以建立分类模型,实现更精确的流量分类。
二、网络流量分析技术网络流量分析是指对网络流量数据进行解析、处理和分析,从中提取出有价值的信息和模式,为网络管理、安全监测、性能优化等提供支持。
常见的网络流量分析技术包括流量分析工具、数据挖掘、机器学习等。
1. 流量分析工具流量分析工具是一类专门用于捕获、存储和分析网络流量的软件工具。
其中最广泛使用的工具是Wireshark,它可以对网络流量进行抓包和分析,提供了丰富的功能和可视化界面,能够展现数据包的各个层级信息,并支持定制化的分析。
利用人工智能技术进行网络流量分析与分类研究

利用人工智能技术进行网络流量分析与分类研究随着互联网的快速发展和大规模应用,网络流量(Network Traffic)的分析和分类成为了保障网络安全、优化网络性能和发现网络异常的重要手段。
传统的网络流量分析方法局限于静态规则和人工经验,无法应对日益复杂和智能化的网络攻击。
而利用人工智能技术进行网络流量分析和分类研究,可以提高网络安全性和性能,并且为网络系统的运行提供更加智能的决策支持。
一、人工智能在网络流量分析中的应用人工智能技术在网络流量分析中发挥了重要的作用。
具体来说,机器学习、深度学习和数据挖掘等领域的算法和方法被广泛应用于网络流量数据的分析和分类。
它们能够自动地学习和识别网络流量中的模式、特征以及异常行为,从而帮助系统管理员发现并应对潜在的网络攻击和威胁。
1. 机器学习在网络流量分析中的应用机器学习是一种利用数据来训练算法模型并自动学习的方法。
在网络流量分析中,机器学习方法可以根据已有的网络流量数据训练模型,然后用于对未知流量进行分类。
常用的机器学习算法有朴素贝叶斯、决策树、支持向量机等。
2. 深度学习在网络流量分析中的应用深度学习是一种基于神经网络的机器学习方法,可以通过多层神经网络模型来进行数据分析和特征提取。
在网络流量分析中,深度学习方法可以自动地提取网络流量中的特征,并根据这些特征进行分类和判断。
常用的深度学习模型有卷积神经网络(CNN)、循环神经网络(RNN)等。
3. 数据挖掘在网络流量分析中的应用数据挖掘是一种从海量数据中发现模式和规律的方法。
在网络流量分析中,数据挖掘可以帮助发现网络流量中的关联规则、异常行为以及攻击模式。
通过分析和挖掘网络流量数据,可以提高对网络攻击的检测能力和响应能力。
二、利用人工智能的优势进行网络流量分析与分类相对于传统的网络流量分析方法,利用人工智能技术进行网络流量分析和分类具有以下几方面的优势:1. 自动化和智能化:人工智能技术可以自动地对海量的网络流量数据进行分析和分类。
网络流量分类算法比较研究

进行 Qo S调度 ; 为用 户提供 长期 有价 值 的分类 预测 ; 被 对 禁 的应 用或攻击进行检中建立一套分类规则 。聚类则是将具有 相似特征 的无 标识 的实例相 聚成簇 , 它是没有先验知识的分类 。 每个实例 即单 向流 , 由其特征 值 向量描述 。分类过程 的输入 是实例的特征 值 向量 , 出则 是通过 对给 定的 实例 输
能 达 到 分 类 准 确 度 要 求 的 特征 子集 。若 使 用 无 关 的 和 冗 余
最近邻算法[ ( —Ners ih os k 7k ] aet g b r,NN) Ne 是采用 欧 氏距离计算在 维特征空 间中每一个实例 与距 离它最近 的 k个数 据点之间的距 离。实例根据 其近邻 的类标号 进行分 类 。如果这个实例的近 邻 中含 有多个 类标 号 , 则将该 实例
指派到其最邻近的多数类 。 神 经 网络 ( e rl t是 高 度 互 连 的 由神 经 元 组 成 的 N uaNe)
的特征将大为降低分 类算法 的准 确率 , 同时随着 用来 描述 实 例的特征集维数 的增 加 , 需要 存储 和加工 的信 息量 也将
不 断地 增长 , 这使得 系 统更加 耗费 计算 资源 。因此理想 的 情况是选择 较小的且保 留 了相 关类 的最 基本 、 用信息 的 有
有 偏 斜 的 。过 滤 法 特 点 是 计 算 简 单 、 移 植 性 强 。 包 装 法 可
用 非线 性变换将 样本空间的分类问题转化为高维特征空 间
的分 类 问题 , 外 又 根 据 结 构 风 险 最 小 原 则 , 分 类 问题 转 另 将
特点是计算 复杂度 高 , 不适合高维特征 的计算 。
基 于 过 滤 方 法 又 分 为 基 于 相 关 过 滤 方 法 ( orl in C re t - ao
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
流量分类度量标准
TP(True Positives),属于类别X并被正确
预测为类别X的百分比;
FN(False Negatives), 属于类别X但被预
测为不是类别X的百分比;
FP(False Positives),不属于类别X但被预
提供实时、连续的流量记录和分析; 需时较长,工程规模复杂,费用极高;
❖ FLUKE公司的网络协议分析仪OPV_WGA
提供对网络的从一层到七层的全部分析; 基于端口的传统协议;
❖华为3Com公司的NTA(Network Traffic Analysis)
基于三层协议号、端口号,可以识别上千种应用; 无法分析四层至七层的应用流量;
目前,分类模型的构造 方法主要包括决策树、朴素 贝叶斯、支持向量机、关联 规则学习、神经网络、NN 算法、LDA算法和遗传算法 等。
基于机器学习的流量分类—聚类
无监督学习,它是最终要发现相似 数据点的结合,相对于有监督的机 器学习法,无监督学习不需要事先 有待分类对象的先验知识,只是根 据待分类对象的相似度分类。
目前常用的聚类算法也有很多,如: k-means算法、DBSCAN、 AutoClass和EM算法等。
几种分类方法比较
分类方法 准确度
分类速度 使用场景
优点
缺点
是否单独适合高 速网络流量分类 是否单独适合加
密流量分类 是够单独适合精 细化流量分类
基于端口号
低 很快 使用传统IANA注 册端口号的传统 网络
简单快速
若应用不使用 IANA注册的端口 号或使用动态端 口号,该方法无
法使用
否
否
否
基于特征字段 非常高 慢
数据包有效负载 为明文
适合P2P等新兴 网络应用
开销大,涉及用 户隐私问题
是,但范围有限
否
是
基于传输层主机 行为 较高 较快
大流量骨干网络
能对加密数据进 行分析,开销较
低、易实施
无法识别特定应 用的子类型
测为类别X的百分比;
TN(True Negatives),不属于类别X并被
预测为不是类别X的百分比。
Accuracy:
TP+TN
TP+FN+FP+TN
Recall:
TP
TP+FN
Precision:
TP
TP+FP
基于端口号的流量分类
❖ 依赖TCP或UDP数据包中的端口号,将熟知的端口号进行映 射来识别不同的应用类型。分类器只需找到一次TCP连接中 的SYN包,并从这个SYN包中找到目的端口号即可。UDP也 使用类似的方法。
下一步工作
❖ 对机器学习中的几种算法通过实验进行性能比较 ❖ 找出一种效率及准确率更高的流量分类算法
参考文献
[1]熊刚,孟姣,曹自刚,王勇,郭莉,方滨兴.网络流量分类研究进展与展望 [J].集成技术,2012 [2]彭芸,刘琼.Internet流分类方法的比较研究[J].计算机科学,2007 [3] Thuy T.T.Nguyen,Grenville Armitage.A survey of techniques for internet traffic classification using machine learning.In IEEE,2008. [4] Sen S, Spatscheck O, Wang D. Accurate, scalable in network identifi cation of P2P traffi c using application signatures [C] //In WWW2004. New York(USA), 2004. [5] Moore A, Papagiannaki K. Toward the accurate identification of network applications [C] //Proceedings of Passive and Active Measurement Workshop ( PAM2005).Boston(USA), 2005. [6]Karagiannis T,Papagiannaki K,Faloutsos M.BLINC:Multilevel traffic classification in the dark.In ACM. October 1st 2005. [7]徐鹏,林森.基于C4.5决策树的流量分类算法[J].软件学报,2009. [8]胡婷,王勇,陶晓玲.网络流量分类方法的比较研究[J].桂林电子科技大学, 2010. [9]席讴婕,李茹.基于k-means和自适应谐振理论的网络流量分类方法.内蒙古大 学.2010.
❖ Cisco公司的SCE
采用DPI对应用层协议进行识别; )Bit-level:关注网络流量的数据特征 ❖ b)Packet-level:关注数据包(packet)的特征及其到达过程
、延迟和丢包率等 ❖ c)Flow-level:依据地址和应用协议划分,关注流的到达过
网络流量分类研究
❖ 演讲人:衡丽花 ❖ 导 师:王宗敏 ❖ 指导老师: 陈 刚
主要内容
❖ 研究背景、意义和现状 ❖ 流量分类基本概念 ❖ 当前流量分类进展 ❖ 几种分类方法的比较 ❖ 流量分类未来发展预测 ❖下一步工作
研究背景
❖ 自P2P网络出现以来,网络流量越来越大; ❖ 网络流量管理技术可以帮助网络运营商提供更好的
基于特征字段的流量分类
❖ 根据网络应用在传输过程中所具有的特征来区分不同的应用, 需要解析数据包中的特征字段。主要用于识别P2P协议流量。
基于传输层主机行为的流量分类
分析主机在传输层的
行为模式,主要有三个特 点:不需要访问数据包的 载荷内容;无需识别端口 号;只需采集当前的流量 信息。
主要分析三个层次的内容: 社会层:分析某台主机与
哪些主机进行相互通信; 功能层:研究主机在网络
中的功能,即它是做为一个提 供者还是请求者,或者是两者 兼有;
应用层:捕获特定主机间
的相互作用,利用一个四元组 通过观察流的特性来细化分类。
基于机器学习的流量分类—分类
也称监督机器学习方法, 根据已标记样本的特点构造 分类规则或分类器,将未知 类别的样本映射到给定类别 中的一个。它的输入为一些 已经分好类的样本实体的集 合,输出为通过这些样本产 生的一个分类模型。主要包 括两个过程:训练过程和分 类过程。
服务质量,还能对网络进行有效的监督管理。
研究意义
❖ 通过流分类,可以获悉各类网络应用所占比例,研究新的协 议与应用,预测网络业务的发展趋势,合理规划网络;
❖ 定期分析重要的特定流量,了解流入流出信息,发现设备故 障、链路拥堵、用户带宽的使用及发现入侵和恶意攻击等。
现有的网络流量分类产品
❖ Niksun公司的NetDetector
是,需配合其他 方法 是
是
基于机器学习 较高 慢
传统及新型网络 应用
可扩展性强,能 够识别加密流量
耗费资源过多
试验阶段 是 是
流量分类未来发展预测
可以总结为以下几点:
逐步避免依赖端口号; 无需检测用户数据包的负载内容; 能迅速得到新型应用的识别特征; 在高速骨干网络环境中,对流量进行实时精确地分类; 为避免涉及用户隐私问题,对加密流量的分类; 更细粒度的层次上对网络流量进行分类; 协议动态变化时的流量分类。