SVPWM电压矢量控制
SVPWM的原理和法则推导和控制算法详细讲解

SVPWM的原理和法则推导和控制算法详细讲解SVPWM(Space Vector Pulse Width Modulation)是一种三相不对称多电平PWM调制技术。
其原理是将三相电压转换为空间矢量信号,通过调制的方式控制逆变器输出电压,以实现对三相电机的控制。
下面将详细介绍SVPWM的原理、法则推导以及控制算法。
一、原理:SVPWM的原理在于将三相电压分解为两相,即垂直于矢量且相互垂直的两个分量,直流坐标分量和交流坐标分量。
其中,直流坐标分量用于产生直流电压,交流坐标分量用于产生交流电压。
通过对直流和交流坐标的调制,可以生成所需的输出电压。
二、法则推导:1.将三相电压写成直流坐标系下的矢量形式:V_dc = V_d - 0.5 * V_a - 0.5 * V_bV_ac = sqrt(3) * (0.5 * V_a - 0.5 * V_b)2. 空间矢量信号通过电源电压和载波进行调制来生成输出电压。
其中,电源电压表示为空间矢量V。
根据配比原则,V_dc和V_ac分别表示空间矢量V沿直流和交流坐标的分量。
V = V_dc + V_ac3.根据法则推导,导出SVPWM的输出电压:V_u = 1/3 * (2 * V_dc + V_ac)V_v = 1/3 * (-V_dc + V_ac)V_w = 1/3 * (-V_dc - V_ac)三、控制算法:1. 设定目标矢量Vs,将其转换为直流坐标系分量V_dc和交流坐标系分量V_ac。
2.计算空间矢量的模长:V_m = sqrt(V_dc^2 + V_ac^2)3.计算空间矢量与各相电压矢量之间的夹角θ:θ = arctan(V_ac / V_dc)4.计算换向周期T和换相周期T1:T=(2*π*N)/ω_eT1=T/6其中,N为极对数,ω_e为电机的角速度。
5.根据目标矢量和夹角θ,确定目标矢量对应的扇区。
6.根据目标矢量和目标矢量对应的扇区,计算SVPWM的换相角度β和占空比:β=(2*π*N*θ)/3D_u = (V_m * cos(β) / V_dc) + 0.5D_v = (V_m * cos(β - (2 * π / 3)) / V_dc) + 0.5D_w=1-D_u-D_v以上步骤即为SVPWM的控制算法。
空间电压矢量调制SVPWM 技术原理中文讲解(让初学者快速了解SVPWM控制方式)

或者等效成下式:
(2-31)
第 4 页 共 23 页
浙江海得新能源有限公司
Uref *T Ux *Tx Uy *Ty U0 *T0(2-32)
其中,Uref 为期望电压矢量;T 为采样周期;Tx、Ty、T0 分别 为对应两个非零电压矢量 Ux、Uy 和零电压矢量 U 0 在一个采样周 期内的作用时间;其中 U0 包括了 U0 和 U7 两个零矢量。式(2-32) 的意义是,矢量 Uref 在 T 时间内所产生的积分效果值和 Ux、Uy、 U 0 分别在时间 Tx、Ty、T0 内产生的积分效果相加总和值相同。
第 2 页 共 23 页
浙江海得新能源有限公司
U0(000)、U7(111),下面以其中一 种开关 组 合为 例分 析,假设 Sx ( x= a、b、c)= (100), 此 时
UUaaNb UUbdNc,UbUcdc,0U,UaNca UcNUdcUdc UaNUbNUcN 0
(2-30)
求解上述方程可得:Uan=2Ud /3、UbN=-U d/3、UcN=-Ud /3。同理可
1 空间电压矢量调制 SVPWM 技术 SVPWM 是近年发展的一种比较新颖的控制方法,是由三相功率
逆变器的六个功率开关元件组成的特定开关模式产生的脉宽调制波, 能够使输出电流波形尽可能接近于理想的正弦波形。空间电压矢量 PWM 与传统的正弦 PWM 不同,它是从三相输出电压的整体效果出发, 着眼于如何使电机获得理想圆形磁链轨迹。 SVPWM 技术与 SPWM 相比 较,绕组电流波形的谐波成分小,使得电机转矩脉动降低,旋转磁场 更逼近圆形,而且使直流母线电压的利用率有了很大提高,且更易于 实现数字化。下面将对该算法进行详细分析阐述。
1.1 SVPWM 基本原理 SVPWM 的理论基础是平均值等效原理,即在一个开关周期内通过
SVPWM电压矢量控制

is 、i 共轭矢量
' s
空间矢量表达式
考虑到
'
iAO iBO iCO 0
2 3
3 2 3 2 p = k (u AOiAO u BOiBO uCOiCO ) k p 2 2
三相瞬时功率
p=uAOiAO uBOiBO uCOiCO
2 k 3
按空间矢量功率与三相瞬时功率相等的原则
定子磁链空间矢量
ψ s ψ AO ψ BO ψCO k AO k BO e k CO e
j j 2
空间矢量表达式
空间矢量功率表达式
p ' =Re(u s is' ) Re[k 2 (u AO u BO e j uCO e j 2 )(iAO iBO e j iCO e j 2 )] k 2 (u AO iAO u BO iBO uCOiCO ) k 2 Re[(u BO iAO e j uCO iAO e j 2 u AOiBO e j uCO iBO e j u AO iCO e j 2 u BOiCO e j )]
磁链空间矢量的近似关系为
dψ s us dt
的关系
当电动机由三相平衡正弦电压供电时,
电动机定子磁链幅值恒定,其空间矢量以 恒速旋转,磁链矢量顶端的运动轨迹呈圆 形(简称为磁链圆)。
定子磁链矢量 定子电压矢量
ψs s e
j (1t )
不等,但合成电压矢量的表达式相等。 因此,三相合成电压空间矢量与参考点无关。
us uAO uBO uCO 2 (u AO uBO e j uCO e j 2 ) 3
2 [(u A uOO ' ) (uB uOO ' )e j (uC uOO ' )e j 2 ] 3 2 2 [u A uB e j uC e j 2 uOO ' (1 e j e j 2 )] (u A u B e j uC e j 2 ) 3 3
空间电压矢量调制svpwm技术

空间电压矢量调制svpwm技术
空间电压矢量调制(Space Vector Pulse Width Modulation,简称SVPWM)是一种在电机控制中得到普遍应用的一种技术。
它具有传统占空比调制(Pulse Width Modulation,简称PWM)电流良好的性能和空间矢量调制(Space Vector Modulation,简称SVM)的矢量控制优势。
SVPWM的动作变的更为温和,不会出现PWM的跳变峰值,也不会出现SVM的明显的数字步进现象。
同时,SVPWM可以实现更高的转矩精度。
SVPWM技术是由角度切换极坐标系和占空比调制矢量矢量组成,用以驱动同步电机的一种方法。
其特点是:采用多相电容网络,根据外部控制计算输出控制矢量,通过最小二乘算法,得到三相电压控制矢量,可以在模拟和数字单元之间进行无损变换。
最后,再将计算出的三控制矢量分解为二级占空比和重迭开关信号,在这个过程中不需要使用任何滤波器或步进正弦发生器,也可以实现电流的控制。
三相合成空间电压矢量

三相合成空间电压矢量摘要:1.三相合成空间电压矢量(SVPWM)的基本原理2.SVPWM与三相电流的关系3.SVPWM在电力电子设备中的应用4.SVPWM的优势与传统控制方法的比较5.总结与展望正文:一、三相合成空间电压矢量(SVPWM)的基本原理三相合成空间电压矢量(SVPWM)是一种基于三相交流电源的电压波形控制技术。
它通过调整电压波形的幅值和相位,实现对电机转矩和转速的精确控制。
SVPWM技术采用矢量控制思想,将电压、电流、频率等参数转化为二维平面上的矢量,从而实现对电机运行状态的实时监控和调整。
二、SVPWM与三相电流的关系SVPWM技术与三相电流密切相关。
在三相系统中,电流矢量与电压矢量之间的夹角是变化的,通过调整电压矢量的大小和相位,可以使得电流矢量始终沿着电压矢量的方向,从而实现对电机转矩和转速的精确控制。
在SVPWM 控制策略中,电压矢量的幅值和相位分别由调制信号和载波信号决定,通过改变这两个信号的参数,可以灵活地调整电压矢量的形状,从而实现对电机运行状态的调控。
三、SVPWM在电力电子设备中的应用SVPWM技术在电力电子设备中具有广泛的应用,如电机驱动、逆变器、变频器等。
通过采用SVPWM控制策略,可以实现对电压、电流、频率等参数的精确控制,提高电机的运行效率和性能。
此外,SVPWM技术具有较高的控制灵活性,可以适应不同类型的电机和负载,满足各种运行要求。
四、SVPWM的优势与传统控制方法的比较与传统控制方法相比,SVPWM具有以下优势:1.控制精度高:SVPWM技术通过矢量控制,实现对电机运行状态的实时监控和调整,控制精度较高。
2.响应速度快:SVPWM采用数字信号处理技术,响应速度较快,能够迅速应对外部环境的变化。
3.系统稳定性好:SVPWM技术通过调整电压、电流等参数,使电机运行在最佳状态,从而提高系统的稳定性。
4.节能效果显著:通过优化电压、电流波形,降低谐波损耗,实现节能效果。
SVPWM的原理及法则推导和控制算法详解

SVPWM的原理及法则推导和控制算法详解Space Vector Pulse Width Modulation(SVPWM)是一种用于交流电机驱动的调制技术。
它的原理是将固定电压向量分解为两个可控向量,通过改变这两个向量的占空比来控制交流电机的输出。
SVPWM利用矢量图法将三相交流电源的空间矢量变换为两相旋转矢量,从而实现对交流电机驱动电压的控制。
1.假设存在一个以0为中心的静止坐标系,其中电源相电压为Va,Vb,Vc。
我们可以将这三个电压写成以时间为函数的形式,即Va(t),Vb(t),Vc(t)。
2.将Va,Vb,Vc投影到α-β坐标系,得到α轴上的电压Vaα(t),Vbα(t),Vcα(t)和β轴上的电压Vaβ(t),Vbβ(t),Vcβ(t)。
3. 将α-β坐标系反转回静止坐标系,得到参考电压Va_ref(t), Vb_ref(t), Vc_ref(t)。
4.将参考电压投影到空间矢量图上,从而得到交流电机的输入矢量。
5.根据参考电压和输入矢量之间的关系,推导出控制算法。
1.基于所需输出电压的矢量长度和角度,计算矢量图中的两个矢量的占空比,分别为d1和d22.根据矢量长度和角度,计算三个相电压的占空比,分别为d_a,d_b,d_c。
3.根据SVPWM的特性,当d1,d2为0时,输出电压为0;当d1,d2相等时,输出电压处于峰值;当d1和d2不相等时,输出电压的大小和方向都有所改变。
因此,通过改变d1和d2的数值,可以改变输出电压的大小和方向。
4.根据d_a,d_b,d_c和d1,d2的数值,计算出PWM控制信号。
5.将PWM控制信号施加到交流电机驱动电路中,从而实现对输出电压的控制。
总结起来,SVPWM通过将固定电压向量分解为两个可控向量,通过改变这两个向量的占空比来控制交流电机的输出。
通过合理推导和计算,可以得到控制算法,从而实现对输出电压的精确控制。
SVPWM是一种高效且精确的交流电机驱动技术,被广泛应用于工业控制中。
电压空间矢量PWM(SVPWM)控制技术

高压直流输电(HVDC)
适用于高压直流输电系统的电压调节 和电流控制。
电机控制
用于无刷直流电机(BLDC)、永磁 同步电机(PMSM)等电机的控制。
不间断电源(UPS)
用于不间断电源系统的电压调节和能 量转换。
智能电网
用于智能电网中的分布式电源接入和 能量调度。
电压空间矢量PWM(SVPWM)的特点
高电压输出
高效节能
易于数字化实现
降低谐波干扰
能够实现高电压的输出, 适用于高压直流输电
(HVDC)等应用场景。
通过优化PWM脉冲宽度 和角度,实现更高的电 压输出和更低的损耗。
基于数字信号处理(DSP)等 数字技术,实现SVPWM算法
的快速计算和控制。
通过优化PWM脉冲的形 状和角度,降低对电网
电磁干扰
SVPWM控制技术产生的 电磁干扰较小,对周围环 境的影响较小。
04
电压空间矢量 PWM(SVPWM)控制优 化策略
电压空间矢量分配优化
考虑电机参数
根据电机的具体参数,如电感、 电阻等,优化电压空间矢量的分 配,以提高控制精度和响应速度。
降低谐波影响
通过优化电压空间矢量的分配,降 低PWM控制过程中产生的谐波, 减小对电机和整个系统的负面影响。
电压空间矢量 PWM(SVPWM) 控制技术
目录
• 电压空间矢量PWM(SVPWM)技 术概述
• 电压空间矢量PWM(SVPWM)控 制算法
• 电压空间矢量PWM(SVPWM)控 制性能分析
目录
• 电压空间矢量PWM(SVPWM)控 制优化策略
• 电压空间矢量PWM(SVPWM)控 制技术发展趋势
电流输出精度
SVPWM控制算法详解

SVPWM控制算法详解SVPWM(Space Vector Pulse Width Modulation)是一种基于空间矢量的脉宽调制技术,适用于三相交流电机的控制。
通过调节电机的电压矢量,SVPWM可以实现精确的电机控制。
下面将详细介绍SVPWM控制算法的原理与实现。
SVPWM算法的原理是通过合理的控制电机的电压矢量,使得电机的转矩和速度可以按照设定值精确控制。
SVPWM根据当前电机的运行状态,选择合适的电压矢量进行控制,并且在控制周期内根据设定值不断调整电压矢量的大小和方向。
在空间矢量分解中,SVPWM将三相交流电源的电流分解为两个矢量:直流分量和交流分量。
直流分量表示电流的平均值,而交流分量表示电流的波动部分。
通过对直流分量和交流分量进行分解,SVPWM可以确定电流矢量的大小和方向。
在电压矢量计算中,SVPWM根据电机的状态和设定值,选择合适的电压矢量。
电压矢量有6种组合方式,分别表示正向和反向的60度和120度的电压矢量。
通过选择合适的电压矢量,SVPWM可以确定电机的电压大小和方向。
在脉宽调制中,SVPWM根据电压矢量的大小和方向,通过调节脉冲宽度比例控制电机的输出电压。
脉冲宽度比例是控制电机输出电压关键的参数,通过合理的调整脉冲宽度比例,SVPWM可以实现精确的电机控制。
以三相交流电机为例,SVPWM控制算法可以实现精确的电机转矩和速度控制。
通过选择合适的电压矢量,SVPWM可以实现电机的正反转和转速调节。
同时,SVPWM算法还可以提高电机的效率和性能。
总结起来,SVPWM控制算法是一种基于空间矢量的脉宽调制技术,通过控制电机的电压矢量,实现精确的电机控制。
SVPWM算法通过空间矢量分解、电压矢量计算和脉宽调制等步骤,确定电机的电压大小和方向。
通过合理的控制策略和数学运算,SVPWM可以实现精确的电机转矩和速度控制。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2 3
(u
A
uBe j
uCe j2
)
8个基本空间矢量
PWM逆变器共有8种工作状态
当 SA SB SC 1 0 0
uA
uB
u
C
Ud 2
Ud 2
Ud 2
u1
2 Ud (1 e j e j2 ) 32
2
Ud
j 2
(1 e 3
j 4
e 3
)
32
2 Ud [(1 cos 2 cos 4 ) j(sin 2 sin 4 )]
32
3
3
33
2U 3
d
8个基本空间矢量
当 SA SB SC 1 1 0
uA
uB
uC
Ud 2
Ud 2
Ud 2
u2
2
Ud
(1 e j
e j2 ) Ud
j 2
(1 e 3
j 4
e 3
)
32
2
2 Ud [(1 cos 2 cos 4 ) j(sin 2 sin 4 )]
32
3
3
3
3
2 Ud (1 j 3) 32
)e j
Um
cos(1t
4
3
)e j2
]
3U 2
m
e
j1t
U se j1t
空间矢量表达式
以电源角频率为角速度作恒速旋转的空
间矢量,幅值
Us
3
U 2
m
在三相平衡正弦电压供电时,若电动机转 速已稳定,则定子电流和磁链的空间矢量 的幅值恒定,以电源角频率为电气角速度 在空间作恒速旋转。
电压与磁链空间矢量的关系
1
在变频的同时必须调节直流电压,造成了控 制的复杂性。
正六边形空间旋转磁场
有效的方法是插入零矢量 当零矢量作用时,定子磁链矢量的增量
ψs = 0
表明定子磁链矢量停留不动。
空间矢量功率表达式
p' =Re(usis' ) Re[k 2 (uAO uBOe j uCOe j2 )(iAO iBOe j iCOe j2 )] k 2 (uAOiAO uBOiBO uCOiCO ) k 2 Re[(uBOiAOe j uCOiAOe j2 uAOiBOe j uCOiBOe j uAOiCOe j2 uBOiCOe j )]
图5-25 定子磁链矢量增量
ψs(k 1) ψs(k) ψs(k) ψs(k) us(k)t
正六边形空间旋转磁场
在一个周期内, 6个有效工作矢量 顺序作用一次, 定子磁链矢量是 一个封闭的正六 边形。
图5-26 正六边形定子磁链轨迹
正六边形空间旋转磁场
要保持正六边形定子磁链不变,必须使
Ud 常数
2U 3
d
e
j
3
依此类推,可得8个基本空间矢量 。
8个基本空间矢量
6个有效工作矢量
u1 u6
幅值为
2U 3
d
空间互差
3
2个零矢量 u0、u7
基本电压空间矢量图
图5-24 基本电压空间矢量图
正六边形空间旋转磁场
6个有效工作矢量 u1 u6
顺序分别作用△t时间,并使
t 31
每个有效工作矢量作用
us
2 3 (uAO
uBOe j
uCOe j2
)
is
2 3
(iAO
iBOe j
Hale Waihona Puke iCOe j2)ψs
2 3
(
AO
BOe j
COe j2
)
空间矢量表达式
当定子相电压为三相平衡正弦电压时,三 相合成矢量
us uAO uBO uCO
2 3
[U
m
cos(1t) Um
cos(1t
2
3
因此,三相合成电压空间矢量与参考点无关。
us uAO uBO uCO
2 3 (uAO
uBOe j
uCOe j2 )
2 3 [(u A
uOO' ) (uB
uOO' )e j
(uC
uOO' )e j2 ]
2 3
[uA
uBe j
uCe j2
uOO' (1 e j
e j2
)]
形(简称为磁链圆)。
定子磁链矢量
ψs
e j(1t )
s
定子电压矢量
us
d dt
( se j(1t ) )
j e e j(1t) 1s
j
(1t
2
)
1s
电压与磁链空间矢量的关系
图5-22 旋转磁场与电压空 间矢量的运动轨迹
图5-23 电压矢量圆轨迹
电压空间矢量
直流电源中点O’和交流电动机中点O的电位 不等,但合成电压矢量的表达式相等。
电压空间矢量PWM(SVPWM) 控制技术
把逆变器和交流电动机视为一体,以圆形 旋转磁场为目标来控制逆变器的工作,这种 控制方法称作“磁链跟踪控制”,磁链轨迹 的控制是通过交替使用不同的电压空间矢量 实 现 的 , 所 以 又 称 “ 电 压 空 间 矢 量 PWM (SVPWM,Space Vector PWM)控制”。
3
6个有效工作矢量完成一个周期,输出基波
电压角频率
1
3t
正六边形空间旋转磁场
定子磁链矢量的增量 ψs = ust
ψs (k) us (k)t
2U 3
d
t
e
j
(
k
1) 3
k=1,2,3,4,5,6
定子磁链矢量运动方向与电压矢量相同,
增量的幅值等于
2U 3
d
t
正六边形空间旋转磁场
定子磁链矢量的运动轨 迹为
uAO 0 uBO 0 的合成矢量 uCO 0
图5-21 电压空间矢量
空间矢量的定义
定子电流空间矢量
is iAO iBO iCO kiAO kiBOe j kiCOe j2
定子磁链空间矢量
ψs ψAO ψBO ψCO
k AO k BOe j k COe j2
空间矢量表达式
is、is' 共轭矢量
空间矢量表达式
考虑到
iAO iBO iCO 0
2
3
p' =
3 2
k 2 (u i AO AO
uBOiBO
uCOiCO )
3 2
k2
p
三相瞬时功率 p=u i AO AO uBOiBO uCOiCO
按空间矢量功率与三相瞬时功率相等的原则
k 2 3
空间矢量表达式
空间矢量的定义
交流电动机绕组的电压、电流、磁链等物 理量都是随时间变化的,如果考虑到它们所 在绕组的空间位置,可以定义为空间矢量。 定义三相定子电压空间矢量
uAO kuAO uBO kuBOe j uCO kuCOe j2
2
3
k为待定系数
空间矢量的合成
三相合成矢量
us uAO uBO uCO kuAO kuBOe j kuCOe j2
合成空间矢量表示的定子电压方程式
us
Rs i s
dψ s dt
忽略定子电阻压降,定子合成电压与合成 磁链空间矢量的近似关系为
us
dψ s dt
或 ψs usdt
电压与磁链空间矢量的关系
当 电 动 机 由 三 相 平 衡 正 弦 电 压 供 电 时 ,
电动机定子磁链幅值恒定,其空间矢量以
恒速旋转,磁链矢量顶端的运动轨迹呈圆