基于空间矢量控制(SVPWM)技术的三相电压型整流器设计

合集下载

三相电压型SVPWM整流器仿真研究

三相电压型SVPWM整流器仿真研究

三相电压型SVPWM整流器仿真研究一、概述随着电力电子技术的快速发展,三相电压型SVPWM(空间矢量脉宽调制)整流器作为一种高效、可靠的电能转换装置,在新能源发电、电机驱动、电网治理等领域得到了广泛应用。

SVPWM技术以其独特的调制方式,能够实现输出电压波形的高精度控制,提高整流器的电能转换效率,降低谐波污染,成为现代电力电子技术的研究热点。

三相电压型SVPWM整流器的基本工作原理是通过控制整流器的开关管通断,将交流电源转换为直流电源,为负载提供稳定、可靠的直流电能。

在SVPWM调制策略下,整流器能够实现对输入电压、电流的高效控制,使电网侧的功率因数接近1,从而减小对电网的谐波污染,提高电能质量。

为了深入了解三相电压型SVPWM整流器的性能特点,本文将对其仿真研究进行深入探讨。

通过建立整流器的数学模型,利用仿真软件对其进行仿真分析,可以直观地了解整流器在不同工作条件下的运行特性,为实际工程应用提供有力支持。

仿真研究还可以为整流器的优化设计、参数选择等提供理论依据,推动三相电压型SVPWM整流器技术的进一步发展。

三相电压型SVPWM整流器作为一种高效、可靠的电能转换装置,在现代电力电子技术中具有重要的应用价值。

通过仿真研究,可以深入了解其性能特点,为实际应用提供有力支持,推动相关技术的不断发展。

1. 研究背景:介绍三相电压型SVPWM整流器的研究背景及其在电力电子领域的应用价值。

能源转换效率的提升:在当前的能源结构中,电力是最主要的能源形式之一。

电力在传输和分配过程中往往存在损耗和污染。

三相电压型SVPWM整流器作为一种能够实现AC(交流)到DC(直流)高效转换的装置,能够显著提高能源转换效率,降低能源浪费,从而满足日益增长的能源需求。

电网稳定性的改善:随着可再生能源的快速发展,电网的稳定性问题日益突出。

三相电压型SVPWM整流器具有快速响应和精准控制的特点,能够有效地改善电网的电能质量,提高电网的稳定性。

基于SVPWM的三电平整流器的研究

基于SVPWM的三电平整流器的研究
21 0 0年 第 l 2期




基于 S P V WM 的 三 电平 整 流 器 的 研 究
王 大伟 ,岳 云 涛
( 北京建筑工程学 院 电气与信息工程学 院 ,北京 104 0 0 4)

要 :论 文讨论 了三相 三电平二极 管 中点箝位 型 P WM 整 流 器电路拓 扑 ,详 细 分析 了空 间 矢
Ab t a t sr c :T e p p rd s u s d t e cr u t o oo y o e t r ep a e h e e e , d o e n u rl—p it lmp d P M h a e ic s e h i i t p lg f h e h s .t r e lv l id e ta c t h on —ca e W
W ANG Da— we . YUE n — to i Yu a
( col f lc cadIfr tnE gne n ,B in nvri fCvl nier gadAc icue e ig104 S ho et n n mai n ier g eigU i syo i g e n n rht tr,B in 00 4,C ia oE r i o o i j e t iE n i e j hn )
rc i e n n deala ay e heba i i c p e o he S W M . Thet r e VS c n rls se wo d ha e av ha e a d e tf ra d i t i n lz d t scprn i l ft VP i h e R o to y tm ul v o g n
it r r n e c p ct n t e d a t g s a l a ih p a t a i t . n e e e c a a i a d o h ra v n a e swel sa hg r ci b l y f y c i

基于空间电压矢量的三相电压型PWM整流器的研究

基于空间电压矢量的三相电压型PWM整流器的研究



T 封
2 空 间电压 矢量 ( V WM) 制原 理 SP 控
斗,
2 1 扇 区 判 断 . 由图 1 根据功率管不同的开通 和关 断状态 , 整流 器有 8



种导通模 式 , 对应 8个 空 间 电压矢 量状 态 ( 0 00—11 , 1 ) 矢
量 分 布 如 图 3所 示 。
‰ =一
() 3
分析 P WM整流器要从其数学模 型人手 , 推导整 流器 的数 在 学模 型之前 , 先作 出以下假设 : 1 )忽略分布参 数的影响 ;
2 )三 相 电 源 为 理 想 电 压 源 ;

3 )主回路 等效 电阻和电感相等 ;
4 )忽略功率器件的导通压降和开关损耗 ;
中图分类号 :M 6 T 41
文献标识码 : A
0 引言
随着电力电子装 置在各个领 域的广泛应用 , 中大量低 其 功率因数的不控整流设备 只能实现能量的单向传输 , 并且对 电网的谐波污染 十分严 重 。而新 型 P WM 整流 装置具 有高 功率因数 、 输入 电流 波形 为正 弦 、 低谐 波 污染 、 能量双 向流 动、 小容量储能环节和恒定 直流 电压控 制等优点 , 正实现 真
了“ 色 电能 变 换 ” 在 电 力 系 统 有 源 滤 波 、 功 补 偿 、 阳 绿 , 无 太 能 发 电 以及 交 直 流传 动系 统 等 领 域 , 来 越 具 有 广 阔 的 应 用 越 前 景 0 , 中 S P 其 J V WM ( 间矢 量 调 制 ) 具 有 直 流 电 压 利 空 因
律 , 以列 写 如 下 方 程 : 可
三相静 止坐标系 下 的数 学模型物理 意义清 晰、 观 , 直 但 由于整流器交流侧均为时变交流量 , 不利于控制系统的设 计 。三 相静止 坐标系到两 相静 止坐标系的变换矩 阵 c s 2 3/ s ,

三相电压型SVPWM整流器的SIMULINK建模与仿真(精)

三相电压型SVPWM整流器的SIMULINK建模与仿真(精)

23三相电压型SVPWM 整流器的SIMULINK建模与仿真毛文喜罗隆福(湖南大学电气与信息工程学院,长沙 410082)摘要:在建立了三相PWM 整流器数学模型的基础上,将双闭环工程设计方法结合矢量控制策略应用于PWM 整流器。

通过MATLAB 的SIMULINK 工具箱得到系统仿真结果,验证了该模型和控制方法的可行性。

关键词:PWM 数学模型空间矢量 SIMULINK中图分类号: TM 461.5 文献标识码:A 文章编号:1003-4862(2007)01-0023-04The Modeling and Simulation of Three-phase Voltage SVPWM RectifierMao Wenxi, Luo Longfu(College of Electrical and Information Engineering Hunan University, Changsha 410082, ChinaAbstract: Based on the mathematical model of PWM rectifier,the dual-close-loop engineering design with vector control is applied in the 3-phase PWM rectifier. The validity of the mathematical model and its control method are confirmed by both MATLAB/SIMULINK simulation and experiment. Key words: PWM ;mathematical model;space vector;SIMULINK1 引言在电能变换中,电压型PWM 整流器(简称“VSR”功率因数可调、输入电流波形为正弦波、可实现能量的双向流动,真正实现了“绿色电能变换”。

基于空间矢量控制的PWM整流器建模与仿真

基于空间矢量控制的PWM整流器建模与仿真
姨 姨 姨 姨 姨 姨 姨 姨 姨 姨 姨 姨 姨
Vβ 为 V* 在 а 、 β 轴上的坐标值,定义以下变 设Vα、 A=Vα
%
B= 姨 3 Vα-Vβ
%
C=- 姨 3 Vα-Vβ
令H=sgn(A)+2sgn(B)+4sgn(C), 可以得出H与各扇区的 表1 H与扇区号对应关系 Tab.1 H and sector number corresponding relationship
同步旋转坐标系中电流调节器输出的任意一个 空间电压矢量指令V*, 均可由8条空间电压矢量合成。 * 稳态时, V 在复平面上以某一步进速度旋转,其端点 运动轨迹为一多边形准圆形轨迹, PWM 开关频率越 高, 多边形准圆轨迹就越接近圆, 由于空间电压矢量 不断跟踪V*, 从而使三相桥的输入为等效正弦波, 实 现了电流控制的目的。 2.1 扇区的确定 量:
给控制器设计造成了一定困难。为了实现d、 q轴的独 立控制, 采用前馈解耦控制策略 。 当电流调节器采用 PI调节器时, vd、 vq的控制方程如下: KiI * vd=(Kip+ ) (id-id ) +ωLiq+ed s (3 ) KiI * vq=(Kip+ ) (iq-iq ) -ωLid+eq s
! # # # # # # " # # # # # # $
图4
电压外环控制结构
KiI 为电流内环比例调节增益和积分调节增 式中 Kip、 * * 益; i d、 i q为id、 iq电流指令值。 由于电网电动势矢量定向在 d 轴上, 故 (3 ) 式中 eq=0。电流内环的解耦控制再加上外环的电压控制, 就构成了PWM整流器的双闭环控制系统, 如图2。

基于空间矢量控制的三相PWM整流器研究的开题报告

基于空间矢量控制的三相PWM整流器研究的开题报告

基于空间矢量控制的三相PWM整流器研究的开题报告一、研究背景和意义随着电气化水平的提高,三相PWM整流器在工业中的应用越来越广泛。

但是,传统的三相整流器存在一些问题,如功率因数低、谐波较多等,难以满足现代工业的需求。

空间矢量控制(SVPWM)作为一种先进的控制方法,可以有效地提高三相PWM整流器的性能。

因此,研究基于SVPWM的三相PWM整流器具有非常重要的现实意义。

二、研究内容1. 研究SVPWM的基本原理和特点;2. 研究三相PWM整流器的工作原理和主要问题;3. 基于SVPWM控制算法,设计三相PWM整流器;4. 分析设计结果,评估控制算法的性能和可靠性。

三、研究方法1. 文献综述,深入了解空间矢量控制和三相PWM整流器在现代工业中的应用;2. 借助MATLAB/Simulink对SVPWM控制算法进行建模和仿真,分析控制算法的性能;3. 根据仿真结果,设计三相PWM整流器硬件电路,并进行实际测试;4. 对测试结果进行分析,评估控制算法的可行性和优劣。

四、预期成果1. 研究SVPWM控制算法在三相PWM整流器中的应用;2. 设计可靠、高效的三相PWM整流器;3. 提出针对三相PWM整流器性能优化的控制策略和方法;4. 发表论文1-2篇,申请专利1项。

五、研究团队本研究立项由XX高校组织,并邀请相关领域的专业人士与学者组成研究团队。

团队组成如下:1. 主持人:XXX,博士,教授,电气工程领域专家;2. 技术骨干:XXX,博士,副教授,电气工程领域专家;3. 研究生:XXX,电气工程专业硕士研究生,协助主持人完成实验及数据分析工作。

六、进度安排1. 前期调研和文献综述:3个月;2. SVPWM控制算法的仿真建模和分析:9个月;3. 三相PWM整流器硬件电路设计和实验:6个月;4. 数据分析、论文撰写和专利申请:6个月。

三相svpwm整流电路

三相svpwm整流电路

三相svpwm整流电路三相SVPWM整流电路是一种常用的电力电子装置,广泛应用于交流电到直流电的转换过程中。

它通过控制电路中的功率晶体管,使得输出电压的波形能够尽可能接近纯直流电压,从而满足工业和民用领域对直流电的需求。

在三相SVPWM整流电路中,SVPWM是指空间矢量脉宽调制技术(Space Vector Pulse Width Modulation),它是一种通过调节脉冲宽度的方式来实现对交流电压的控制。

通过合理的脉冲宽度调制,可以使得输出的电压波形更加接近于直流电压,从而提高整流效率和减小输出的谐波含量。

三相SVPWM整流电路的基本原理是将输入的三相交流电压转换为直流电压输出。

它由三个单相全桥逆变器组成,每个逆变器由两个功率晶体管和两个反并联的二极管组成。

逆变器的输入端接收来自三相交流电源的输入信号,经过SVPWM调制后,控制逆变器中的晶体管开关,使得输出电压的波形接近于直流电压。

在SVPWM调制过程中,需要确定一个虚拟矢量和一个参考矢量,通过对虚拟矢量和参考矢量之间的插值来生成实际的输出电压。

虚拟矢量是通过对三相交流电压进行矢量分解得到的,而参考矢量是由控制算法确定的。

通过对虚拟矢量和参考矢量之间的插值,可以得到实际的输出电压波形。

SVPWM调制技术具有高精度、高可靠性和高效率等优点,能够有效地降低电压和电流的谐波含量,提高整流电路的功率因数和效率。

同时,SVPWM调制技术还可以实现对输出电压的精确控制,使得输出电压的幅值和频率可以根据实际需求进行调节。

在实际应用中,三相SVPWM整流电路广泛应用于电力电子变流器、电动机驱动器、UPS电源、电网接入逆变器等领域。

它不仅可以实现对交流电到直流电的转换,还可以实现对电压和电流的精确控制,满足不同领域的电力需求。

总结起来,三相SVPWM整流电路是一种通过控制脉冲宽度来实现对交流电压的转换和控制的电力电子装置。

它具有高精度、高效率和高可靠性的特点,在工业和民用领域有着广泛的应用前景。

基于空间电压矢量法(SVPWM)的三电平逆变器的研究的开题报告

基于空间电压矢量法(SVPWM)的三电平逆变器的研究的开题报告

基于空间电压矢量法(SVPWM)的三电平逆变器的研
究的开题报告
一、选题背景
三电平逆变器作为一种新型的逆变器拓扑结构,因其具有更低的谐波含量、更小的开关损耗以及更高的输出电压质量等优势受到了广泛关注。

而空间电压矢量法(SVPWM)则是一种广泛使用的控制方法,其控制策略简单、实现方便、控制精度高等特点,使其成为了三电平逆变器控制的一种重要方法。

因此,本文将研究基于SVPWM的三电平逆变器控制方法,以期能够更加深入地了解其控制原理和性能特点,为三电平逆变器的实际应用提供技术支持。

二、研究目的
本文的研究目的是通过对三电平逆变器的控制方法进行深入的分析和研究,探讨其控制原理和特性,为提高三电平逆变器控制器性能和应用贡献一份力量。

三、研究内容
本文将以以下内容为主要研究内容:
1. 对三电平逆变器的基本原理进行分析和介绍,包括三电平逆变器的拓扑结构和控制方法等。

2. 对SVPWM控制方法进行介绍,包括其基本原理、控制策略和实现方法等,以及与传统PWM控制方法的比较。

3. 基于SVPWM控制方法,对三电平逆变器进行仿真模拟,研究其输出电压波形和谐波含量等性能指标,并与传统PWM控制方法进行对比分析。

4. 在仿真模拟基础上,进一步设计和实现基于SVPWM的三电平逆变器控制系统,对其性能进行实际测试和验证。

四、研究意义
通过本文的研究,不仅能够深入了解三电平逆变器的控制方法和SVPWM技术的特点,还能提高三电平逆变器控制器的性能,为其在实际工程应用中的推广和应用提供技术支持。

同时,本文的研究也为其他相关领域的研究提供了借鉴和参考。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基于空间矢量控制(SVPWM)技术的三相电压型整流器设计
作者:佚名来源:本站整理发布时间:2010-9-9 10:54:01 [收藏] [评论]
传统的变压整流器和非线性负载的大量使用使电网中电流谐波含量较高,对飞机供电系统和供电质量造成很大影响。

消除电网谐波污染、提高整流器的功率因数是电力电子领域研究的热点。

空间矢量PWM(SVPWM)控制具有直流侧电压利用率高、动态响应快和易于数字化实现的特点。

本文采用空间矢量技术对三相电压型整流器进行研究,使其网侧电压与电流同相位,从而实现高功率因数整流。

1 空间矢量控制技术
SVPWM控制技术通过控制不同开关状态的组合,将空间电压矢量V控制为按设定的参数做圆形旋转。

对任意给定的空间电压矢量V均可由这8条空间矢量来合成,如图1所示。

任意扇形区域的电压矢量V均可由组成这个区域的2个相邻的非零矢量和零矢量在时间上的不同组合来得到。

这几个矢量的作用时间可以一次施加,也可以在一个采样周期内分多次施加。

也就是说,SVPWM通过控制各个基本空间电压矢量的作用时间,最终形成等幅不等宽的PWM脉冲波,使电压空间矢量接近按圆轨迹旋转。

主电路功率开关
管的开关频率越高,就越逼近圆形旋转磁场。

为了减少开关次数,降低开关损耗,对于三相VSR某一给定的空间电压矢量
,采用图2所示的合成方法。

在扇区I中相应开关函数如图3所示。

零矢量均匀地分布在矢量
的起、终点上,除零矢量外,
由V1、V2、V4合成,且中点截出2个三角形。

一个开关周期中,VSR上桥臂功率开关管共开关4次,由于开关函数波形对称,谐波主要集中在整数倍的开关频率上。

2 直接电流控制策略
三相VSR的电流控制策略主要分为直接电流控制和间接电流控制。

直接电流控制采用网侧电流闭环控制,提高了网侧电流的动、静态性能,并增强电流控制系统的鲁棒性。

而在直接控制策略中固定开关频率的PWM电流控制因其算法简单、实现较为方便,得到了较好应用,在三相静止坐标系中,固定开关频率的PWM电流控制电流内环的稳态电流指令是一个正弦波信号,其电流指令的幅值信号来源于直流电压调节器的输出,频率和相位信号来源于电网;PI电流调节器不能实现电流无静差控制,且对有功电流和无功电流的独立控制很难实现。

在两相同步旋转坐标系(d,q)中的电流指令为直流时不变信号,且其PI电流调节
器实现电流无静差控制,也有利于分别对有功电流
和无功电流
独立进行控制。

3 三相VSR数字控制系统
三相VSR数字控制系统结构如图4所示,控制系统采用电压外环和两个电流内环组成双环控制结构,电压环控制三相VSR直流侧电压,通过输出直流侧电压Vdc与给定参考电压
差值经过PI调节产生电流参考信号
,起到跟踪控制输出直流电压的目的;电流环用来按照电压环调节器输出的电流指令进行电流控制,按照电
压外环输出的电流信号
对输入电流进行控制,利用SVPWM算法产生开关信号控制整流器来实现单位功率因数。

三相PWM整流器是采用电机矢量控制的思想通过控制电流来调节电压。

采样后的三相电流通过CLA RK和PARK坐标变换获得两相旋转坐标系下的id、iq分量,将电压误差信号经PI调节作为有功电流指令
值,而无功电流
的指令值可以直接设为零,通过解耦得到三相VSR的指令电压,并通过SVPWM算法得到三相整流器的控
制信号。

3.1 交流侧电压调理电路
系统网侧给定输入电压为三相交流115 V,对电压进行采样时通过变压器进行降压采样,然后调理电压信号,使电压信号值在TMS320F281 2的数据采集端要求的0~3 V之间,电压调理电路如图5所示。

3.2 直流电压调理电路
直流侧输出电压约350 V,为实现对直流侧电压的数据采集,采用运算放大器组成双输入放大电路,通过选择合理的参数值将直流侧的输出电压转换到O~3 V范围之内,然后送入DSP的AD接口。

3.3 TMS320F2812程序初始化流程
通过对空间矢量脉宽调制技术控制算法的详细分析和三相VSR的建模与仿真发现,SVPWM的控制算法具有便于数字化实现的特点。

选用目前已经开发比较成熟的低功耗、低成本且具有相当集成度的定点T MS320F2812作为核心控制器。

该器件是Tl公司推出的新一代低价格、高性能的32位定点数字信号处理器DSP。

数字信号处理器是三相高功率因数整流器的重要组成部分。

TMS320F2812实现的软件部分主要包括主程序和中断子程序。

主程序主要是完成系统的初始化工作,包括系统时钟设置、初始化寄存器的值和开全局中断以及开事件管理器中断进入工作状态。

其程序流程如图6所示。

4 试验结果
根据三相VSR的数学模型和相关原理,在实验室中搭建了实验电路并进行了试验。

试验中电源为115 V/400 Hz三相交流电源,当负载为217Ω时,测得网侧A相输入电压与A相输入电流波形如图7所示,由图7中可以看出输入电压与输入电流同相位,从而实现了高功率因数整流。

5 结论
为了满足航空整流器对整流电源低谐波、高功率因数、快速响应、直流输出稳定等要求,利用输入电压空间矢量定向,提出了一种新的便于数字实现的SVPWM控制策略。

由试验结果可以看出,采用空间矢量控制技术设计的整流器网侧电流很好地跟随网侧电压,实现了高功率因数整流,达到设计要求。

相关文档
最新文档