电压空间矢量调制

合集下载

(完整)SVPWM的原理及法则推导和控制算法详解第五修改版

(完整)SVPWM的原理及法则推导和控制算法详解第五修改版

一直以来对SVPWM 原理和实现方法困惑颇多,无奈现有资料或是模糊不清,或是错误百出。

经查阅众多书籍论文,长期积累总结,去伪存真,总算对其略窥门径。

未敢私藏,故公之于众。

其中难免有误,请大家指正,谢谢!空间电压矢量调制 SVPWM 技术SVPWM 是近年发展的一种比较新颖的控制方法,是由三相功率逆变器的六个功率开关元件组成的特定开关模式产生的脉宽调制波,能够使输出电流波形尽 可能接近于理想的正弦波形。

空间电压矢量PWM 与传统的正弦PWM 不同,它是从三相输出电压的整体效果出发,着眼于如何使电机获得理想圆形磁链轨迹。

SVPWM 技术与SPWM 相比较,绕组电流波形的谐波成分小,使得电机转矩脉动降低,旋转磁场更逼近圆形,而且使直流母线电压的利用率有了很大提高,且更易于实现数字化。

下面将对该算法进行详细分析阐述。

SVPWM 基本原理SVPWM 的理论基础是平均值等效原理,即在一个开关周期内通过对基本电压矢量加以组合,使其平均值与给定电压矢量相等。

在某个时刻,电压矢量旋转到某个区域中,可由组成这个区域的两个相邻的非零矢量和零矢量在时间上的不同组合来得到。

两个矢量的作用时间在一个采样周期内分多次施加,从而控制各个电压矢量的作用时间,使电压空间矢量接近按圆轨迹旋转,通过逆变器的不同开关状态所产生的实际磁通去逼近理想磁通圆,并由两者的比较结果来决定逆变器的开关状态,从而形成PWM 波形。

逆变电路如图 2-8 示.设直流母线侧电压为dc U ,逆变器输出的三相相电压为AO U 、BO U 、CO U ,其分别加在空间上互差120°的三相平面静止坐标系上,可以定义三个电压空间矢量AO u 、BO u 、CO u ,它们的方向始终在各相的轴线上,而大小则随时间按正弦规律做变化,时间相位互差120°。

假设m U 为相电压基波峰值,f 为电源频率,则有:(23)(23)(23)(23)()cos ()2()cos(2[]2()cos(23)[]2j tj t m AO m j t j t m BO m j t j t m CO m U U t U t e e UU t U t e e U U t U t e e ωωωπωπωπωπωωπωπ----+-+==+=-=+=+=+ (1-1) 在三相静止坐标系下,0232()() ()=()()()j AO AO j BO BO j CO CO t U t e t U t e t U t eππ-==u u u三相电压空间矢量相加的合成空间矢量s ()t u 为02323s (2(23)2(2(23)23(23)(2()()()()()()()()[]22[]2[]232j j j AO BO CO AO BO CO j t j t j t j t j m m j t j t j m j t j t j t j t j t j t m m t t t t U t e U t e U t e U U e e e e e U e e e U e e e e e e U e ππωωωπωππωπωππωωωωπωωπ-----+-+---+--=++=++=+++++=+++++=u u u u j tω在αβ坐标系下(此处用到的clark 变换或称3/2变换为等幅值变换), α轴和β轴合成适量的分量如下,11cos 1cos 222cos(23)sin 3cos(23)022m r m m r m U t u t U t U u t U t αβωωωπωωπ⎡⎤⎡⎤--⎢⎥⎡⎤⎡⎤⎢⎥⎢=-=⎢⎥⎢⎥⎢⎥⎢⎣⎦⎣⎦⎢⎥+-⎣⎦⎢⎣⎦此坐标系下,三相电压空间矢量相加的合成空间矢量s ()t u 为s ()j t m t U e ω=u (1-2)在αβ坐标系下(此处用到的clark 变换或称3/2变换为等功率变换)11cos 1222cos(23)333cos(23)022cos 3sin 2m r m r m m U t u U t u U t t U t αβωωπωπωω⎡⎤⎡⎤--⎢⎥⎡⎤⎢⎥⎢⎥=-⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥+-⎣⎦⎢⎥⎣⎦⎡⎤=⎢⎥⎣⎦此坐标系下,三相电压空间矢量相加的合成空间矢量s ()t u 为s 3()2j tm t U e ω=u (1-3) 可见s ()t u 是一个旋转的空间矢量,且以角频率ω=2πf 按逆时针方向匀速旋转的空间矢量,而空间矢量s ()t u 在三相坐标轴(a,b ,c )上的投影就是对称的三相正弦量.图 1—1 逆变电路由于逆变器三相桥臂共有6个开关管,为了研究各相上下桥臂不同开关组合时逆变器输出的空间电压矢量,特定义开关函数Sx (x=a 、b 、c) 为:⎩⎨⎧=下桥臂导通上桥臂导通01x S (1—4) (Sa 、Sb 、Sc )的全部可能组合共有八个,包括6个非零矢量 Ul(001)、U2(010)、U3(011)、U4(100)、U5(101)、U6(110)、和两个零矢量 U0(000)、U7(111),下面以其中一种开关组合为例分析,假设Sx(x=a 、b 、c )=(100),此时矢矢U4矢100矢⎪⎩⎪⎨⎧=++=-=--===0,,0,cN bN aNc d cN aN dc bN aN dc ca bc dc ab U U U U U U U U U U U U U U (1-5) 求解上述方程可得:Uan=2Ud/3、UbN=-Ud/3、UcN=-Ud/3。

T型三电平逆变器空间电压矢量调制技术研究

T型三电平逆变器空间电压矢量调制技术研究

T型三电平逆变器空间电压矢量调制技术研究摘要:T 型三电平逆变器的电路具有传导损耗低、器件数目少、成本低、输出波形质量高等优点,是很有发展前景的一种三电平逆变器拓扑,因此本文以T型三电平光伏并网逆变器为研究对象。

关键词:T 型三电平逆变器,优点1、三电平控制技术概述对于要求比较高的电力电子系统中,PWM控制技术是系统所使用的是其共用技术也是其核心技术,把半导体器件的开通和关断作为条件,把直流电压变成一定形状的电压脉冲序列,这就是其基本原理,最后实现变频、变压并且有效地抑制和消除谐波。

对于PWM技术在三电平逆变器中的应用主要表现为两点:1、对输出电压要能进行约束,2、对逆变器自己的运行状况要能进行约束。

几种主要的控制策略:1、阶梯波脉宽调制法2、正弦脉宽调制法3、特定谐波消去法4、开关频率优化法5、空间电压矢量调制法。

以上几种方法中最后一种方法在应用上十分广泛。

它在应用时相比于其他方法有以下几条优势:1、传导损耗低2、易于数字化3、输出波形质量高4、对于合理布局的空间电压矢量,能够使开关频率降低,由此导致开关损耗减少。

2、空间电压矢量分布根据其电路结构图能够推出其中在每一相桥臂含有4个开关设备,这里用Sym 代表各个开关管和其对应的开关状况,这里 y= A / B/C, m = 1/ 2/3/ 4,Sym =1 表示相应的开关管开通,Sym =0则表示关断。

根据前文的论述能够推出,每一相桥臂上的开关设备可以根据开关的不同组合得到不同的输出状况,可是无论怎样每一相中的开关设备Sy1 和Sy3以及Sy2以及Sy4必须是相互补充不可同时导通,初此之外开关设备Sy1 和Sy4不可以直接通过电路直接接通,所以可以得到所有开关状况中只有三个开关状况组合能够使用。

3、参考电压矢量合成原则对于三电平逆变器输出图形的形状,要让其得以接近圆形,且最后得出的旋转磁通是圆形,这里可以利用的策略即为利用输出电平也即逆变器输出的值与其作用的时间进行有限次组合,由此使得多边形朝圆形无限接近。

空间电压矢量调制svpwm技术

空间电压矢量调制svpwm技术

空间电压矢量调制svpwm技术
空间电压矢量调制(Space Vector Pulse Width Modulation,简称SVPWM)是一种在电机控制中得到普遍应用的一种技术。

它具有传统占空比调制(Pulse Width Modulation,简称PWM)电流良好的性能和空间矢量调制(Space Vector Modulation,简称SVM)的矢量控制优势。

SVPWM的动作变的更为温和,不会出现PWM的跳变峰值,也不会出现SVM的明显的数字步进现象。

同时,SVPWM可以实现更高的转矩精度。

SVPWM技术是由角度切换极坐标系和占空比调制矢量矢量组成,用以驱动同步电机的一种方法。

其特点是:采用多相电容网络,根据外部控制计算输出控制矢量,通过最小二乘算法,得到三相电压控制矢量,可以在模拟和数字单元之间进行无损变换。

最后,再将计算出的三控制矢量分解为二级占空比和重迭开关信号,在这个过程中不需要使用任何滤波器或步进正弦发生器,也可以实现电流的控制。

弱磁控制与空间电压矢量调制及相关实验研究

弱磁控制与空间电压矢量调制及相关实验研究

异步电机弱磁控制方案研究众所周知,在整个电机的运行区间,按照速度可以划分为两个区间,一个是 基速以下区域,一个是基速以上区域。

当电机运行在基速以下区间时, 稳态时整 个电机磁场保持不变,由转矩公式 T e p n L mi sq rd 可以看出,在这个区间,输出L r转矩是保持不变的,所以该区间又称为恒转矩调速区。

当电机要求运行在基速以 上时,由于直流母线电压的限制和反电动势的影响, 就需要转子磁场随着转速的 上升而下降,即所谓的弱磁运行。

一、弱磁运行的电压和电流限制条件在研究电机的稳态方程时,必须要考虑到两个限制条件,一个是逆变器的母线电压,由于母线电压一般是将工业用电经整流得到,所以,其大小是相对固定的,而电机所能用到的电压是与 PW 碉制策略相关的,本文使用的是基于空间电电机和逆变器的额定电流I smax 的限制。

由上所述,调速系统的限制条件可表示 为:e 2e :V qs V ds.e 2 . e 2 i qsi ds2 2V s max| 2smaxV dc,・ 3弱磁区电机稳态方程为:e V qs Rsi ; e L s i dse VdsRJ ds■ ' i ee L s i qs其中:L sL 2L s L smL r高速运行时,定子电阻的压降可以忽略不计,此时,稳态方程为:ee L s i ds由此,电流限制条件改写为:压矢量的PWM B 制,因此可利用的电压最大为 '-e L S i qsVmax另一个限制条件是 e Vqse在d-q 坐标系中,电流限制公式为一个椭圆,电压限制公式为一个圆 为了方便起见,用|U sd|代替U sd ,这样用四分之一圆表示整个运行范围,如 下图所示:图中电压限制曲线和电流限制曲线的公共部分即是电压矢量的 d 轴分量和q轴分量的可运行区域(图中所示的阴影部分)。

图中所示的三条椭圆形曲线是以压以保证有足够的电流产生。

由上式表明:最大F 值的点就是最大转矩点,由此可以找到最大转矩的运行区域重写电压限制条件:vdse 增加的方向向外展开,即,随着同步频率的增加, 需要逆变器提供更多的电电机转矩方程为:T e23£L mi :s 2 2 L r・ei qs电流i ds i ;s 可以用v ds V ;s 代替,写成:T e ke eV ds V qs其中:k 3卫2 2 L r L s LL ;— ' 2 s eeV qse L se 2 e 22e图 弱磁运行时电压和电流限制曲线,弱磁区域划分及各区间分析图弱磁区域的划分(1)基速一下区(e base ):电机在基速以下运行时,所需电压矢量V;ds 的幅值是不大于V smax的,因此有能力保证i qs、i ds达到其额定值,并获得最大转矩。

三电平逆变器空间电压矢量调制算法的研究与实现

三电平逆变器空间电压矢量调制算法的研究与实现
扇 区矢量 变换过 程变化 最小 ,本文 选用 以 Ⅳ小矢 量 为 起始矢量 ;为 了尽 量 减 小 输 出电 压 中共模 电 压 含 量 ,
()一 个采样 周期 内各个 电压空 间矢量作用 时间 3 当参考适 量 落在小 扇 区 C内时 ,按 照电压空 间 矢 量等 效原则 。
{ 【 , r 0
陈世浩 (93 18 一)男 ,河南新野人 ,硕士生 ( 收稿 日期 :20 —0 0 ) 08 9— 3
7 0
铁 道 机 车 车 辆
第 2 卷 8
靶 …
图 7 定 子 三 相 电流 仿 真 结 果
图 4 空 间 电压 矢 量 的 合 成
()合 成矢 量选 择 以及 矢量发 送方式 2 采用 7 式 P M 发 送方式 ,由上 述扇 区判断方 法 段 W 可知参考 电压矢 量所 在 的扇 区号 ,根 据扇 区 号可 以确 定 由哪些基 本适 量合 成 参考 电压矢 量 。 为 了保 证 不 同
第 2 卷 增刊 8 2 0 年 1 月 0 8 2 文章编号 :10 74 20 )S 09— 2 08— 82(08 一06 0
铁 道 机 车 车 辆
RA WA I 0M0ⅡV & C Ⅱl Y DC E AR
Vo .8 S p l 1 2 u p
De . c
2o 08
U = 2 u+ v+ u ) 3 ( w / () 1
式 中 :
。 当三 相对 称 电压 为正 弦变 化 时 ,电 压
空 间 矢 量 为 圆形旋 转 矢 量 。当 三 电 平 逆 变器 输 人 为恒 定 直流 电压 且 U l 时 ,其 电压 空 间矢 量 可 能 c=U
实 验验证 。 1 三 电平逆变 器 空间 电压矢量 原 理 对 电机供 以三 相对称 电压 为 “ ,“ u 与 “ w时 ,按

电压空间矢量调制

电压空间矢量调制
U k 则 在1 3 αU -βd 平S 面a c 上 ,S 三b 电 平2 变S c 换 器U 26 7d 组 开2 c S 关a 状 态S b 所 对S c 应 的空j间3 矢S b 量 如S 图c
所示。
-
在正常情况下,以图中o点为变换器零电位参考点,则三电平电路的 一个桥臂只有UDC/2,0和-UDC/2三种可能输出电压值(或称为电平),即 每相输出分别有正P、零0、负n三个开关状态。电位参考点,此时每 相桥臂的可能输出电平值表示为U- DC/2,0和-UDC/2,对应的每相输出表
电压空间矢量调制推导过程
电压空间矢量调制
-
电压空间矢量调制推导过程
多电平变换器空间矢量PWM控制由三电平变换器空间矢量PWM控制发展而来,因此 首先介绍三电平空间矢量PWM控制方法。
以交流电机为负载的三相对称系统,当在电机上加三相正弦电压时,电机气隙磁通在。 α-β静止坐标平面上的运动轨迹为圆形。设三相正弦电压瞬时值表达式为
且u s 有 3 2 u a N u bN u cN 2 3 2 u a o u bo u c2 o u s js u
u aN u ao u No
u
bN
ubo
u No
u
bN
u b-o
u No
电压空间矢量调制推导过程
理想的三电平变换器电路的开关模型如图所示,每相桥臂的电路结 构可以简化为一个与直流侧相通的单刀三掷开关S
定义开关变量Sa、Sb、Sc代表各相桥臂的输出状态,则各相电压表示 为
uaU 2 dc Sa,ubU 2 dc Sb,ucU 2 dc Sc
其中
SX为1即第X相输出电平P NhomakorabeaSX为0即第X相输出电平0

电压空间矢量PWM(SVPWM)控制技术

电压空间矢量PWM(SVPWM)控制技术
的应用场景
高压直流输电(HVDC)
适用于高压直流输电系统的电压调节 和电流控制。
电机控制
用于无刷直流电机(BLDC)、永磁 同步电机(PMSM)等电机的控制。
不间断电源(UPS)
用于不间断电源系统的电压调节和能 量转换。
智能电网
用于智能电网中的分布式电源接入和 能量调度。
电压空间矢量PWM(SVPWM)的特点
高电压输出
高效节能
易于数字化实现
降低谐波干扰
能够实现高电压的输出, 适用于高压直流输电
(HVDC)等应用场景。
通过优化PWM脉冲宽度 和角度,实现更高的电 压输出和更低的损耗。
基于数字信号处理(DSP)等 数字技术,实现SVPWM算法
的快速计算和控制。
通过优化PWM脉冲的形 状和角度,降低对电网
电磁干扰
SVPWM控制技术产生的 电磁干扰较小,对周围环 境的影响较小。
04
电压空间矢量 PWM(SVPWM)控制优 化策略
电压空间矢量分配优化
考虑电机参数
根据电机的具体参数,如电感、 电阻等,优化电压空间矢量的分 配,以提高控制精度和响应速度。
降低谐波影响
通过优化电压空间矢量的分配,降 低PWM控制过程中产生的谐波, 减小对电机和整个系统的负面影响。
电压空间矢量 PWM(SVPWM) 控制技术
目录
• 电压空间矢量PWM(SVPWM)技 术概述
• 电压空间矢量PWM(SVPWM)控 制算法
• 电压空间矢量PWM(SVPWM)控 制性能分析
目录
• 电压空间矢量PWM(SVPWM)控 制优化策略
• 电压空间矢量PWM(SVPWM)控 制技术发展趋势
电流输出精度

电压空间矢量脉宽调制技术的研究及其实现

电压空间矢量脉宽调制技术的研究及其实现

电压空间矢量脉宽调制技术的研究及其实现一、本文概述随着电力电子技术的快速发展,电压空间矢量脉宽调制技术(Space Vector Pulse Width Modulation,SVPWM)已成为电机控制领域中的一项重要技术。

该技术以其高效、稳定、易于实现等优点,在电力转换、电机驱动、新能源发电等领域得到了广泛应用。

本文旨在对电压空间矢量脉宽调制技术进行深入研究,分析其原理、特点以及实现方法,并探讨其在现代电力电子系统中的应用前景。

本文首先介绍了电压空间矢量脉宽调制技术的基本原理,包括其理论基础、空间矢量的定义与分类、以及SVPWM的实现过程。

接着,文章详细分析了SVPWM技术的特点,包括其调制范围宽、电压利用率高、谐波含量低等优势,并与其他脉宽调制技术进行了比较。

随后,本文着重探讨了电压空间矢量脉宽调制技术的实现方法,包括硬件电路设计和软件编程实现。

在硬件电路设计方面,文章介绍了基于SVPWM技术的电机驱动电路的设计原则和方法;在软件编程实现方面,文章给出了SVPWM算法的具体实现步骤和程序代码示例。

本文还探讨了电压空间矢量脉宽调制技术在现代电力电子系统中的应用前景,包括其在新能源发电、电动汽车、工业自动化等领域的应用,以及未来的发展趋势和挑战。

通过本文的研究,希望能够为电力电子领域的研究人员和工程师提供有益的参考和借鉴。

二、电压空间矢量脉宽调制技术基础电压空间矢量脉宽调制技术(Space Vector Pulse Width Modulation,简称SVPWM)是一种先进的PWM控制技术,它主要应用在三相电压源型逆变器的控制中。

SVPWM技术的核心思想是将三相逆变器的输出电压看作是一个在三维空间中旋转的电压矢量,通过控制这个电压矢量的幅值和旋转速度,来实现对输出电压和电流的精确控制。

SVPWM技术具有许多优点。

SVPWM可以提高电压利用率,使得在相同的直流电压下,输出的线电压峰值可以达到直流电压的根号三倍,提高了逆变器的输出电压能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电压空间矢量调制推导过程

定义开关变量Sa、Sb、Sc代表各相桥臂的输出状态,则各相电压表示 为
U dc U dc U dc ua S a , ub S b , uc Sc 2 2 2

其中 SX为1即第X相输出电平P SX为0即第X相输出电平0


SX为-1即第X相输出电平N
这里X为a,b和c
电压空间矢量调制推导过程

因此,三相三电平变换器就可以翰出33 = 27种电压状态组合,对应 27组不同的变换器开关状态。此时,仍定义电压空间矢量为
U dc 1 2 2S a Sb Sc j 3 Sb Sc U k U dc S a Sb S c 3 6 组开关状态所对应的空间矢量如图 则在 α-β平面上,三电平变换器27
所示。





理想的三电平变换器电路的开关模型如图所示,每相桥臂的电路结 构可以简化为一个与直流侧相通的单刀三掷开关S


在正常情况下,以图中o点为变换器零电位参考点,则三电平电路的 一个桥臂只有UDC/2,0和-UDC/2三种可能输出电压值(或称为电平),即 每相输出分别有正P、零0、负n三个开关状态。电位参考点,此时每 相桥臂的可能输出电平值表示为UDC/2,0和-UDC/2,对应的每相输出表
电压空间矢量调制
电压空间矢量调制推导过程

多电平变换器空间矢量PWM控制由三电平变换器空间矢量 PWM 控制发展而来,因此 首先介绍三电平空间矢量PWM控制方法。
以交流电机为负载的三相对称系统,当在电机上加三相正弦电压时,电机气隙磁通在。 α-β静止坐标平面上的运动轨迹为圆形。设三相正弦电压瞬时值表达式为

u a U m sin(t ) ub U m sin(t 2 / 3) u U sin(t 2 / 3) m c
2 u u a ub 2 u c 3



则它们对应的空间电压矢量定义为
电压空间矢量调制推导过程

设此时逆变器输出端电压为Uan,Ubn,Ucn,电动机上的相电压为Uao, Ubo,Uco,电动机中性点对逆变器参考点电压为 UNo,也就是零序电 压。这里N为电机中性点,O为逆变器直流侧零电位参考点,此时, 前述电机的定子电压空间矢量为

2 2 2 u s uaN ubN ucN uao ubo uco 2 u s jus 且有 3 3
来自u aN u ao u No ubN ubo u No u u u bo No bN
电压空间矢量调制推导过程
相关文档
最新文档