离散数学-第十二章 环与域PPT课件

合集下载

离散数学ppt课件

离散数学ppt课件

02
集合论基础
集合的基本概念
总结词
集合是离散数学中的基本概念, 是研究离散对象的重要工具。
详细描述
集合是由一组确定的、互不相同 的、可区分的对象组成的整体。 这些对象称为集合的元素。例如 ,自然数集、平面上的点集等。
集合的运算和性质
总结词
集合的运算和性质是离散数学中的重要内容,包括集合的交、并、差、补等基本运算,以及集合的确定性、互异 性、无序性等性质。
生,1表示事件一定会发生。
离散概率论的运算和性质
概率的加法性质
如果两个事件A和B是互斥的,那么P(A或B)等于P(A)加上 P(B)。
概率的乘法性质
如果事件A和B是独立的,那么P(A和B)等于P(A)乘以P(B) 。
全概率公式
对于任意的事件A,存在一个完备事件组{E1, E2, ..., En}, 使得P(Ai)>0 (i=1,2,...,n),且E1∪E2∪...∪En=S,那么 P(A)=∑[i=1 to n] P(Ai)P(A|Ei)。
工程学科
离散数学在工程学科中也有着重要的 应用,如计算机通信网络、控制系统 、电子工程等领域。
离散数学的重要性
基础性
离散数学是数学的一个重要分支 ,是学习其他数学课程的基础。
应用性
离散数学在各个领域都有着广泛的 应用,掌握离散数学的知识和方法 对于解决实际问题具有重要的意义 。
培养逻辑思维
学习离散数学可以培养人的逻辑思 维能力和问题解决能力,对于个人 的思维发展和职业发展都有很大的 帮助。
详细描述
邻接矩阵是一种常用的表示图的方法,它是 一个二维矩阵,其中行和列对应于图中的节 点,如果两个节点之间存在一条边,则矩阵 中相应的元素为1,否则为0。邻接表是一 种更有效的表示图的方法,它使用链表来存 储与每个节点相邻的节点。

《离散数学图论》课件

《离散数学图论》课件
最短路径问题
实现方法:使用 队列数据结构, 将起始节点入队, 然后依次处理队 列中的每个节点, 直到找到目标节
点或队列为空
Dijkstra算法和Prim算法
Dijkstra算法:用于 求解单源最短路径问 题,通过不断更新最 短路径来寻找最短路 径。
Prim算法:用于求解 最小生成树问题,通过 不断寻找最小权重的边 来构建最小生成树。
图的矩阵表示
邻接矩阵的定义和性质
定义:邻接矩阵是一个n*n的矩阵,其 中n是图的顶点数,矩阵中的元素表示 图中顶点之间的连接关系。
性质:邻接矩阵中的元素只有0和1, 其中0表示两个顶点之间没有边相连, 1表示两个顶点之间有一条边相连。
应用:邻接矩阵可以用于表示图的连通 性、路径长度等信息,是图论中常用的 表示方法之一。
图像处理:优化图像分割, 提高图像质量
物流配送:优化配送路径, 降低配送成本
社交网络:优化社交网络 结构,提高用户活跃度
感谢您的观看
汇报人:PPT
数学:用于图论、组合数 学、代数拓扑等领域
物理学:用于量子力学、 统计力学等领域
生物学:用于蛋白质结构、 基因调控等领域
社会科学:用于社会网络 分析、经济模型等领域
图的基本概念
图的定义和表示方法
图的定义:由节点和边组成的数学结构,节点表示对象,边表示对象之间的关系
节点表示方法:用点或圆圈表示 边表示方法:用线或弧线表示 图的表示方法:可以用邻接矩阵、邻接表、关联矩阵等方式表示
顶点和边的基本概念
顶点:图中的基本元素,表示一个对象或事件 边:连接两个顶点的线,表示两个对象或事件之间的关系 度:一个顶点的度是指与其相连的边的数量 路径:从一个顶点到另一个顶点的边的序列 连通图:图中任意两个顶点之间都存在路径 强连通图:图中任意两个顶点之间都存在双向路径

离散数学关系的概念、性质及运算27页PPT

离散数学关系的概念、性质及运算27页PPT
离散数学关系的概念、性质及运算

26、我们像鹰一样,生来就是自由的 ,但是 为了生 存,我 们不得 不为自 己编织 一个笼 子,然 后把自 己关在 里面。 ——博 莱索

27、法律如果不讲道理,即使延续时 间再长 ,也还 是没有 制约力 的。— —爱·科 克

28、好法律是由坏风俗创造出来的。 ——马 克罗维 乌斯

29、在一切能够接受法律支配的人类 的状态 中,哪 里没有 法律, 那里就 没有自 由。— —洛克

30、风俗可以造就法律,也可以废除 Βιβλιοθήκη 律。 ——塞·约翰逊谢谢!
36、自己的鞋子,自己知道紧在哪里。——西班牙
37、我们唯一不会改正的缺点是软弱。——拉罗什福科
xiexie! 38、我这个人走得很慢,但是我从不后退。——亚伯拉罕·林肯
39、勿问成功的秘诀为何,且尽全力做你应该做的事吧。——美华纳
40、学而不思则罔,思而不学则殆。——孔子

离散数学PPT教学环与域

离散数学PPT教学环与域
1.质数阶的群没有非平凡子群,(<{e},*>,<G,*>称为<G,*>的 平凡子群)
2.有限群<G,*>中的任何元素a的阶可整除|G|
证:若aG的阶是r,则{e,a a2, a3 , …,ar-1}是G的子群
3.质数阶的群,一定是循环群
证:设<G,*>为质数阶群
aG,ae
由推论2知:
下一页
a的阶数可整除|G|,但是|G|为质数,所以a的阶数等于群的 阶数, {a,a2,,ar}=G
例2.1)<I,+,>是整环
2)<N4,+4,4>不是整环
下一页

二.域
1.域的定义
若代数系统<F,+,>具有 1)|F|>1,
2)<F,+>,<F-{0},>均是阿贝尔群,3)乘法对加法可 分配,则称它是域
2.域的举例
1)I为整数集,<I,+,>不是域,
2)<Q,+,>是一个域,其中Q为有理数集合
证:e e a b c
e eabc
e eabc
e eabc
a abce
a aecb
b ceab
b bcea
c ceab
c cbae
生成元为a
下一页
由拉格朗日定理知:a,b,c的阶只能为2
下一页
四.同态与同余关系
同1.同态余关与系 同余关系
定义:<A,>是一个代数系统,R是A上的等价关系,若<a,b>R, <c,d>R<ac , bd>R,称R是A上的同余关系,此同余关系将A 划分的等价类称为同余类

离散数学的ppt课件

离散数学的ppt课件

科学中的许多问题。
03
例如,利用图论中的最短路径算法和最小生成树算法
等,可以优化网络通信和数据存储等问题。
运筹学中的应用
01
运筹学是一门应用数学学科, 主要研究如何在有限资源下做 出最优决策,离散数学在运筹 学中有着广泛的应用。
02
利用离散数学中的线性规划、 整数规划和非线性规划等理论 ,可以解决运筹学中的许多问 题。
并集是将两个集合中的所有元素合 并在一起,形成一个新的集合。
详细描述
例如,{1, 2, 3}和{2, 3, 4}的并集是 {1, 2, 3, 4}。
总结词
补集是取一个集合中除了某个子集 以外的所有元素组成的集合。
详细描述
例如,对于集合{1, 2, 3},{1, 2}的 补集是{3}。
集合的基数
总结词
)的数学分支。
离散数学的学科特点
03
离散数学主要研究对象的结构、性质和关系,强调推
理和证明的方法。
离散数学的应用领域
计算机科学
01
离散数学是计重要的工具和方法。
通信工程
02
离散数学在通信工程中广泛应用于编码理论、密码学、信道容
量估计等领域。
集合的基数是指集合中元素的数量。
详细描述
例如,集合{1, 2, 3}的基数是3,即它包含三个元素。
03 图论
图的基本概念
顶点
图中的点称为顶点或节点。

连接两个顶点的线段称为边。
无向图
边没有方向,即连接两个顶点的线段可以是双向 的。
有向图
边有方向,即连接两个顶点的线段只能是从一个顶 点指向另一个顶点。
研究模态算子(如necessity、possibility)的语义和语法。

离散数学教程-王元元-第12章 群环域

离散数学教程-王元元-第12章 群环域
语言<,并置>,其中||=n。
离散数学 第12章 群、环、域
12.1 半群
12.2.1 群及其基本性质
定义12.3 称代数结构<G,>为群,如果 (1)<G, >为一半群。 (2)<G, >中有幺元e。 (3)<G, >中每一元素都有逆元。 简言之,群是每个元素都可逆的独异点。
群的载体常用字母G表示,G也常用于表示一个群。
离散数学 第12章 群、环、域
12.1 半群
12.1.1 半群及独异点
定理12.3 设<S,>为一半群,那么 (1) 存在<S,>到<SS,◦ >的半群同态h。 (2) <S,>在含有幺元时同构于<h(S),◦>, 后者是<SS,◦ >的一个子代数。 证 证(1):定义函数h:S→SS:对任意aS,h(a)= fa fa:S→S 定义如下: 对任意xS, fa(x)= ax 即将S中的一个元素a影射到一个线性变换fa。现证h为一同态。 对任何元素a,bS , h(ab)=fab (l2-1) 而对任何xS,fab(x)= abx = fa(fb(x))= fa◦fb (x),故fab= fa◦fb ,
由此及式(l2-1)即得 h(ab)= fab = fa◦fb =h(a)◦h(b)
证(2):只需证明a,bS,如果a≠b,则fa≠fb。因为<S,>含有幺元 e,a*e=a≠b*e=b,所以存在xS,fa(x)≠fb(x),定理得证。
离散数学 第12章 群、环、域 12.1 半群
12.1.1 半群及独异点
(4)S由A生成,即S中元素或者为e, 或者为A的成员,或者 为

离散数学ch12[1]环与域

离散数学ch12[1]环与域

环:定理 定理
定理 设<R,+,>是环,则 (1) a∈R, a0 = 0a = 0 (2) a,b∈R, (-a)b = a(-b) = -ab (3) a,b,c∈R, a(b-c) = ab-ac, (b-c)a = ba-ca (4)a1,a2,...,an,b1,b2,...,bm∈R(n,m≥2)
环:实例 实例
环的实例
(1)整数集、有理数集、实数集和复数集关于普通 的加法和乘法构成环,分别称为整数环 有理数 整数环Z,有理数 整数环 有理数Q, 实数环R和复数环 复数环C. 实数环 复数环 (2)n(n≥2)阶实矩阵的集合Mn(R)关于矩阵的加法 和乘法构成环,称为n阶实矩阵环 阶实矩阵环。 阶实矩阵环 (3)集合的幂集ρ(B)关于集合的对称差运算和交运 算构成环。 (4)设Zn={0,1,...,n-1}, ⊕ 和 分别表示模n的加 法和乘法,则<Zn, ⊕ , >构成环,称为模n的整数环 的整数环。 模 的整数环
环的同态
定义 设R1和R2是环。 :R1→R2, 若对于任意的x,y∈R1有 (x+y)= (x)+ (y), (xy)= (x) (y) 成立,则称是环R1到R2的同态映射 同态映射,简 同态映射 称环同态 环同态。 环同态 类似于群同态,也可以定义环的单同态, 满同态和同构等。
整环
整环
设<R,+,>是环, (1) 若环中乘法适合交换律,则称R是交换环 交换环。 交换环 (2) 若环中乘法存在单位元,则称R是含幺环 , R 含幺环 含幺环。 (3) 若 a,b∈R,ab=0 a=0∨b=0,则称R是无零因子环。 无零因子环 (4) 若R既是交换环、含幺环,也是无零因子环, 则称R是整环 整环。 整环

离散数学环和域

离散数学环和域
定理2:环<R, +, ·>是无零因子 <R, +, ·>满足可约律。 证明:(1) 必要性:∀a, b, c∈R, 且a≠0,若a·b=a·c, 则有
a·b-a·c=0, a·b-a·c=a·b+a·(-c)= a·(b-c)=0。 由于无零因子,则b=c , 可见<R, +, ·>满足可约律。 (2) 充分性:∀b, c∈R, b·c=0, 证明b=0或c=0。
又×k可交换, 所以,乘法在加法上可分配。
一、环
定理1:设<R, +, ·>为环, 0是加法么元,那么对任意a,b,cR (1) a·0 = 0·a = 0 (加法么元必为乘法零元) (2) (-a)·b = a·(-b) = -(a·b) (3) (-a)·(-b) = a·b (4) a·(b-c) = a·b-a·c (5) (b-c)·a=b·a-c·a
例2 (b) <N6,+6,×6>不是整环,因为3×62=0, 3和2是零因子。但<N7,+7,×7> 是整环,N7= {0,1,2,3,4,5,6},根据定理2,只需证明a,源自b,cN7,
a
7
b a
a 0
7
c
b
c
反证:假如b≠c,不妨设b>c,存在整数i, j使得 ab=7i+r, ac=7j+r (0<=r<=6, i>j)
三、域
域一定是整环,但整环不一定是域
例如<I,+,·>是整环但不是域,因<I- {0},·>不是阿贝尔群。
两式相减可得,a(b-c) = 7(i-j),那么7| a(b-c),但由于0<a<7, 0<b-c<7,所 以7不可能整除a(b-c),矛盾,所以b=c。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

n
n
( ai )bj aibj
i 1
i 1
当n=2时,由环中乘法对加法的分配律,等式显然成立。
n
n
假设 ( ai )bj aibj ,则有
i 1
i 1n 1nFra bibliotekn( ai )bj ( ai an1)bj ( ai )bj an1bj
i 1
i 1
i 1
n
aibj an1bj i 1
a(b-c) =a(b+(-c)) =ab+a (-c) =ab- ac 8
定理12.1(4)的证明
(4) a1,a2,...,an,b1,b2,...,bm∈R(n,m≥2)
n
m
nm
( ai )( bj ) aibj
i 1
j 1
i1 j 1
先证明 a1,a2,...,an 有 对n进行归纳。
4
环的实例
(1)整数集、有理数集、实数集和复数集关于普通的加法 和乘法构成环,分别称为整数环Z,有理数Q,实数环R 和复数环C。
(2)n(n≥2)阶实矩阵的集合Mn(R)关于矩阵的加法和乘法 构成环,称为n阶实矩阵环。
(3)集合的幂集P(B)关于集合的对称差运算和交运算构成 环。
(4)设Zn={0,1,...,n-1}, 和分别表示模n的加法和 乘法,则<Zn, , >构成环,称为模n的整数环。
5
环的运算约定
加法的单位元记作0。 乘法的单位元记作1(对于某些环中的乘法不存在单位元)。 对任何环中的元素x,称x的加法逆元为负元,记作-x。 若x存在乘法逆元的话,则将它称为逆元,记作x-1。 针对环中的加法,
– x-y表示x+(-y)。 – nx表示x+x++x(n个x相加),即x的n次加法幂。 –-xy表示xy的负元。
6
环的运算性质
定理12.1 设<R,+,·>是环,则 (1) a∈R,a0=0a=0 (2) a,b∈R,(-a)b=a(-b)=-ab (3) a,b,c∈R,a(b-c)=ab-ac,(b-c)a=ba-ca (4) a1,a2,...,an,b1,b2,...,bm∈R(n,m≥2)
n
m
nm
则x,y∈Z 有 (x+y)=(x+y)mod n
= (x)mod n (y)mod n = (x) (y)
(xy)=(xy)mod n = (x)mod n (y)mod n = (x) (y) 所以是R1到R2的同态,不难看出是满同态。
16
12.2 整环与域
定义12.4 设<R,+,·>是环, (1) 若环中乘法 · 适合交换律,则称R是交换环。 (2) 若环中乘法 · 存在单位元,则称R是含幺环。 (3) 若a,b∈R,ab=0 a=0∨b=0, 则称R是无零因子环。 (4) 若R既是交换环、含幺环,也是无零因子环, 则称R是整环。
由归纳法命题得证。 9
n 1
aibj i 1
定理12.1(4)的证明
同理可证,b1,b2,...,bm 有
m
m
ai ( bj ) aibj
j 1
j 1
于是
n
m
n
m
nm
( ai )( bj ) ai ( bj ) aibj
i 1
j 1
i 1
j 1
i1 j 1
10
例12.2
例12.2 在环中计算(a+b)3,(a-b)2
13
例12.3
(1)考虑整数环<Z,+,·>,对于任意给定的自然数n, nZ={nz|z∈Z}是Z的非空子集,且nk1,nk2∈nZ有 nk1-nk2=n(k1-k2)∈nZ nk1·nk2=n(k1nk2)∈nZ 根据判定定理,nZ
(2)考虑模6整数环<Z6,,>,不难验证 {0},{0,3},{0,2,4},Z6是它的子环。 其中{0}和Z6是平凡的,其余的都是非平凡的真子环。
14
环的同态
定义12.3 设R1和R2是环。:R1→R2,若对于任意的x,y∈R1有 (x+y)=(x)+(y),(xy)=(x)(y)
成立,则称是环R1到R2的同态映射,简称环同态。 说明 类似于群同态,可以定义环的单同态,满同态和同构等。
15
例12.4
设R1=<Z,+,·>是整数环,R2=<Zn,,>是模n的整数环。 :Z→Zn,(x)=(x)mod n
举例: 整数环Z,有理数环Q都是实数环R的真子环。 {0}和R也是实数环R的子环,称为平凡子环。
12
子环判定定理
定理12.2 设R是环,S是R的非空子集,若 (1) a,b∈S,a-b∈S (2) a,b∈S,ab∈S 则S是R的子环。
证明:由(1)S关于环R中的加法构成群。 由(2)S关于环R中的乘法构成半群。 显然R中关于加法的交换律以及乘法对加法的分配律 在S中也是成立的。 因此,S是R的子环。
第12章 环与域
本章内容
12.1 环的定义与性质 12.2 整环与域
本章总结 作业
2
12.1 环的定义与性质
环的定义 环的运算性质 环的子代数和环同态
3
环的定义
定义12.1 设<R,+,·>是代数系统,+和·是二元运算。 如果满足以下条件: (1) <R,+>构成交换群。 (2) <R,·>构成半群。 (3) ·运算关于+运算适合分配律。 则称<R,+,·>是一个环(ring)。 通常称+运算为环中的加法,· 运算为环中的乘法。
解答
(a+b)3
= (a+b)(a+b)(a+b)
= (a2+ba+ab+b2)(a+b)
= a3+ba2+aba+b2a+a2b+bab+ab2+b3
(a-b)2
= (a-b)(a-b)
= a2-ba-ab+b2
11
子环
定义12.2 设R是环,S是R的非空子集。若S关于环R的加法和 乘法也构成一个环,则称S为R的子环(subring) 。 若S是R的子环,且SR,则称S是R的真子环。
( ai )( bj ) aibj
i 1
j 1
i1 j 1
7
定理12.1的证明
(1) a∈R,a0=0a=0 a0 = a(0+0) = a0+a0
由环中加法的消去律得 a0=0。 同理可证 0a=0。 (2) a,b∈R,(-a)b=a(-b)=-ab (-a)b+ab = (-a+a)b = 0b = 0 ab+(-a)b = (a+(-a))b = 0b = 0 因此(-a)b是ab的负元。 由负元的唯一性可知 (-a)b=-ab。 同理可证 a(-b)=-ab。 (3) a,b,c∈R,a(b-c)=ab-ac,(b-c)a=ba-ca
相关文档
最新文档