离散数学第二章
合集下载
离散数学第二章关系

例9 .设A={1,2,3,4} ,B={2,4,6,8,10} 。 R={(1,2),(2,4),(3,6)}。
则 (R) = {1,2,3}A , (R) = {2,4,6}B 。
二.关系的一些关联性质 17
离散数学
定理1. 设R1,R2 A×B是两个关系。若 R1 R2 ,则
(1)保序性: (R1) (R2) ; (2)保序性: (R1) (R2) ;
注:笛卡尔(1596-1650 ),法国数学家, 1637年发表《方法论》之 一《几何学》,首次提出坐标及变量概念。这里是其概念的推广。
定义2. • 二个集合A,B的(二维或二重)叉积定义为 A×B ={(a, b): a A bB} ; •其元素——二元组(a, b)通常称为序偶或偶对(ordered
故 (R1)∩ (R2) = {1,2 }
21
离散数学
所以 (R1)∩ (R2) (R1 ∩ R2) 。
元素aA和集合A1A在关系R A×B下的关联集 (1)a的R-关联集(R-relative set of a):
R(a)={b : bBaRb }B ;
(2) A1的R-关联集(R-relative set of A1): R(A1)={b : bB (aA1)(aRb) }B 。
•当A=B时,即RA×A,则称R是A上的一个二元关 系。
例1 . 设A是西安交通大学全体同学组成的集合。 11
离散数学
R={(a,b) : aAbAa与b是同乡}A×A 于是,R是西安交通大学同学之间的同乡关系。
例2 . 设A是某一大家庭。
R1 = {(a,b) : aAbAa是b的父亲或母亲}A×A R2 = {(a,b) : aAbAa是b的哥哥或姐姐}A×A R3 = {(a,b) : aAbAa是b的丈夫或妻子}A×A 于是,
离散数学第二章

P (t1 , t2 , , tn ) 是原子公式。
32
§2.1.3 谓词逻辑公式(公式 )
定义 谓词公式由下述各条规定组成: (1)原子公式是谓词公式。 (2)若A是谓词公式,则﹁ A也是谓词公式。 (3)若A和B是谓词公式,则A ∨ B,A ∧ B,A → B, 也是谓词公式。
22
2.存在量词
注意:1.在存在量词 的作用下,x不再起变量的作用, 存在量词也“约束”了x的变量作用。 注意:2.在存在量词作用下,命题中的特性谓词与命题 变元之间必须采用联结词合取,而不能用条件。 注意:3.命题的表示形式与个体域密切相关。 例:有些狗是聪明的。 若个体域为所有狗的集合,则该命题表示为:
这种“描述主语性质的谓语结构的抽象形式或描述主语所 涉及对象之间的关系的抽象形式”就是谓词。语句中的主 语称为个体。 在原子命题中引进谓词和个体的概念,这种以命题中的谓 词为基础的分析研究,称为谓词逻辑(或称谓词演算)。
7
§2.1.1 谓词与个体
在谓词逻辑中,将原子命题分解为谓词与个体两部分。
F (a1 , a2 , , an )
例如, T(a):a是教师。 D(3,2):3大于2。 C(武汉,北京,广州):武汉位于北 京和 广州之间。 注意顺序
9
§2.1.1 谓词与个体
在一个谓词中,个体是可以变化的,如 “是大学生” 中个体是可以变化的,可以是“张华是大学生” 也可
以是“何勇是大学生” ,等等。
31
§2.1.3 谓词逻辑公式(公式 )
定义( 项 ) (1)个体常量符是项;
(2)个体变量符是项;
(3)设f是n元函数符,
t1 , t2 , , tn 为项,则
离散数学第二章

23
注意:
有些关系既不是对称的也不是反对称的;
0 1 0 1 0 1 0 0 0
可以是既是对称的,也是反对称的
如相等关系
24
定义2.10:在集合X上的关系R,如果有:
x, y R且 y, z R ,则必有 x, z R ,
即非对角线上的1, 对称位置必须是0; 而非对角线上的0 不做要求
判断方法:
1. 如果如果存在a到b的有向边,就不存在b到a的有向边。 (逆命题不成立,即可以两条有向边都不存在); 2. 关系矩阵中,如果 a j ,i 1则ai , j 0,这里i j
(注意:a j ,i 0不一定ai , j 1)
n个
容易证明: n m nm m n i: R R R , R R mn ,m,n均为正整数 0 ii: R 是相等关系,即: R0 ={(x,x)|x∈A} 1 iii: R R
13
逆关系
由于关系中的元素是有序偶,则如果将该有序偶的顺
序颠倒,会得到一个新的关系,称之为逆关系。
~ ~ ~
~
补集的逆关系
~ ~ ~
(5) R S R S , R S R S
注意,这个跟德· 摩根律不一样
(6) R S R S
~
~
~
18
关系的重要性质
定义2.6:在集合X上的关系R,如果对任意 x X , 有 x, x R ,则称R是自反的。
如:整数集合上的相等关系、" " 关系等;
如果 miq mqj 1 即mij 0 ,则 miq mqj 1 即 ai , aq R且 aq , a j R 由传递性的定义可知,如果R为传递的, 必有 ai , a j R ,即应有 mij 1 2 即:当R是A上的传递关系时,如果 M R 中的元素 bij 0 , 则必须有 mij 1 ,反之亦然
注意:
有些关系既不是对称的也不是反对称的;
0 1 0 1 0 1 0 0 0
可以是既是对称的,也是反对称的
如相等关系
24
定义2.10:在集合X上的关系R,如果有:
x, y R且 y, z R ,则必有 x, z R ,
即非对角线上的1, 对称位置必须是0; 而非对角线上的0 不做要求
判断方法:
1. 如果如果存在a到b的有向边,就不存在b到a的有向边。 (逆命题不成立,即可以两条有向边都不存在); 2. 关系矩阵中,如果 a j ,i 1则ai , j 0,这里i j
(注意:a j ,i 0不一定ai , j 1)
n个
容易证明: n m nm m n i: R R R , R R mn ,m,n均为正整数 0 ii: R 是相等关系,即: R0 ={(x,x)|x∈A} 1 iii: R R
13
逆关系
由于关系中的元素是有序偶,则如果将该有序偶的顺
序颠倒,会得到一个新的关系,称之为逆关系。
~ ~ ~
~
补集的逆关系
~ ~ ~
(5) R S R S , R S R S
注意,这个跟德· 摩根律不一样
(6) R S R S
~
~
~
18
关系的重要性质
定义2.6:在集合X上的关系R,如果对任意 x X , 有 x, x R ,则称R是自反的。
如:整数集合上的相等关系、" " 关系等;
如果 miq mqj 1 即mij 0 ,则 miq mqj 1 即 ai , aq R且 aq , a j R 由传递性的定义可知,如果R为传递的, 必有 ai , a j R ,即应有 mij 1 2 即:当R是A上的传递关系时,如果 M R 中的元素 bij 0 , 则必须有 mij 1 ,反之亦然
离散数学第二章

怎么符号化? 怎么符号化?
5
3 量词的有关概念
1. 全称量词: “所有的”,“任何一个”,“每 全称量词: 所有的” 任何一个” 一个” 凡是” 一切” 一个”,“凡是”,“一切”表示个体域中每一 表示,称为全称量词。 用符号“ 个,用符号“∀”表示,称为全称量词。
如,所有的人都要呼吸。 所有的人都要呼吸。
16
常用一阶逻辑中的基本等值式
1. 有限个体域 有限个体域D={a1, a2, … ,an }中消去量词 中消去量词 等值式: 等值式
1) ∀xA( x) ⇔ A(a1 ) ∧ A(a2 ) ∧⋯∧ A(an );
2) ∃xA( x ) ⇔ A(a1 ) ∨ A(a2 ) ∨ ⋯ ∨ A(an ).
10
指导变项( 指导变项(元)等概念
在合式公式∀ 和 在合式公式∀xA和∃xA中,称x是指导变元,称A为相应量词 中 是指导变元, 为相应量词 作用域或辖域。 的作用域或辖域。 在辖域中x的出现称为 在公式 中的约束出现 在辖域中 的出现称为x在公式 中的约束出现; 的出现称为 在公式A中的约束出现; 公式A中不是约束出现的其它变元称为该变元的自由出现. 中不是约束出现的其它变元称为该变元的自由出现 公式 中不是约束出现的其它变元称为该变元的自由出现 例1 指出下列公式中的指导变项、量词的辖域、个体变项的 指出下列公式中的指导变项、量词的辖域、 自由出现和约束出现. 自由出现和约束出现 1) 2) ∀xF(x,y)→∃x(G(x) ∧¬ ∀zP(x,z)) → ∀x ∃ y(A(x,y)→∃z(B(x) ∧P(x,z))) →
永假式 如果 在任何解释下均为假 称A为矛盾 如果A在任何解释下均为假 解释下均为假,称 为 或称永假式 式(或称永假式 ; 或称永假式); 如果存在一个解释使A为真 则称A为 为真,则称 可满足式 如果存在一个解释使 为真 则称 为 可满足式; 可满足式;
5
3 量词的有关概念
1. 全称量词: “所有的”,“任何一个”,“每 全称量词: 所有的” 任何一个” 一个” 凡是” 一切” 一个”,“凡是”,“一切”表示个体域中每一 表示,称为全称量词。 用符号“ 个,用符号“∀”表示,称为全称量词。
如,所有的人都要呼吸。 所有的人都要呼吸。
16
常用一阶逻辑中的基本等值式
1. 有限个体域 有限个体域D={a1, a2, … ,an }中消去量词 中消去量词 等值式: 等值式
1) ∀xA( x) ⇔ A(a1 ) ∧ A(a2 ) ∧⋯∧ A(an );
2) ∃xA( x ) ⇔ A(a1 ) ∨ A(a2 ) ∨ ⋯ ∨ A(an ).
10
指导变项( 指导变项(元)等概念
在合式公式∀ 和 在合式公式∀xA和∃xA中,称x是指导变元,称A为相应量词 中 是指导变元, 为相应量词 作用域或辖域。 的作用域或辖域。 在辖域中x的出现称为 在公式 中的约束出现 在辖域中 的出现称为x在公式 中的约束出现; 的出现称为 在公式A中的约束出现; 公式A中不是约束出现的其它变元称为该变元的自由出现. 中不是约束出现的其它变元称为该变元的自由出现 公式 中不是约束出现的其它变元称为该变元的自由出现 例1 指出下列公式中的指导变项、量词的辖域、个体变项的 指出下列公式中的指导变项、量词的辖域、 自由出现和约束出现. 自由出现和约束出现 1) 2) ∀xF(x,y)→∃x(G(x) ∧¬ ∀zP(x,z)) → ∀x ∃ y(A(x,y)→∃z(B(x) ∧P(x,z))) →
永假式 如果 在任何解释下均为假 称A为矛盾 如果A在任何解释下均为假 解释下均为假,称 为 或称永假式 式(或称永假式 ; 或称永假式); 如果存在一个解释使A为真 则称A为 为真,则称 可满足式 如果存在一个解释使 为真 则称 为 可满足式; 可满足式;
离散数学-第二章-谓词逻辑-变元的约束

例 I(x):表示x是整数,N(x):表示x是自然数, 假设个体域E是自然数集合,公式I(x)与N(x)在E上是 等价的。 而公式N(x)→I(x) 与N(x)∨I(x)就是与个体域无 关的等价的公式,即 N(x)→I(x)N(x)∨I(x)。
河南工业大学离散数学课程组
四、谓词公式的蕴含式定义
约束 变元
自由
(1)(x)(y)(P(x, y)∨Q(y, z))∧(x)R(x,y)
变元
指导 变元
(x)的 (y)的 指导 (x)的 辖域 辖域 变元 辖域
P(x, y)、Q(y, z)中的x, y为约束变元,z为自由变元, R(x,y)中的x为约束变元,但y为自由变元。
河南工业大学离散数学课程组
例(x)(A(x)∨B(x,y))∨C(x)∨ D(x,w) 换名: (y)(A(y)∨B(y,y))∨C(x)∨ D(x,w) 错
(w)(A(w)∨B(w,y))∨C(x)∨ D(x,w) 对 (z)(A(z)∨B(z,y))∨C(x)∨ D(x,w) 对
代入: (x)(A(x)∨B(x,y))∨C(y)∨ D(y,w) 错 (x)(A(x)∨B(x,y))∨C(w)∨ D(w,w) 错 (x)(A(x)∨B(x,y))∨C(u)∨ D(x,w) 错 (x)(A(x)∨B(x,y))∨C(u)∨ D(u,w) 对
(x)G(x) =
1, 0,
x D,G(x) = 1 x0 D,G(x0 ) = 0
(x)G(x) =
1, 0,
x0 D,G(x0 ) = 1 x D,G(x) = 0
河南工业大学离散数学课程组
例
对以下公式赋值后求真值。
(x)(P(x)→Q(f(x),a)) (x)(P(x)∧Q(x,a))
河南工业大学离散数学课程组
四、谓词公式的蕴含式定义
约束 变元
自由
(1)(x)(y)(P(x, y)∨Q(y, z))∧(x)R(x,y)
变元
指导 变元
(x)的 (y)的 指导 (x)的 辖域 辖域 变元 辖域
P(x, y)、Q(y, z)中的x, y为约束变元,z为自由变元, R(x,y)中的x为约束变元,但y为自由变元。
河南工业大学离散数学课程组
例(x)(A(x)∨B(x,y))∨C(x)∨ D(x,w) 换名: (y)(A(y)∨B(y,y))∨C(x)∨ D(x,w) 错
(w)(A(w)∨B(w,y))∨C(x)∨ D(x,w) 对 (z)(A(z)∨B(z,y))∨C(x)∨ D(x,w) 对
代入: (x)(A(x)∨B(x,y))∨C(y)∨ D(y,w) 错 (x)(A(x)∨B(x,y))∨C(w)∨ D(w,w) 错 (x)(A(x)∨B(x,y))∨C(u)∨ D(x,w) 错 (x)(A(x)∨B(x,y))∨C(u)∨ D(u,w) 对
(x)G(x) =
1, 0,
x D,G(x) = 1 x0 D,G(x0 ) = 0
(x)G(x) =
1, 0,
x0 D,G(x0 ) = 1 x D,G(x) = 0
河南工业大学离散数学课程组
例
对以下公式赋值后求真值。
(x)(P(x)→Q(f(x),a)) (x)(P(x)∧Q(x,a))
离散数学第2章ppt课件

E AA∪B∪BC
C
n
A k A 1A 2 A n
k 1
二、集合的并 (Union)
3、性质
1)幂等律 A∪A =A
2)零律
A∪U =U
3)同一律 A∪ =A
4)交换律 A∪B =B∪A
5)结合律 A∪(B∪C) =(A∪B)∪C
二、集合的并 (Union)
3、性质
, 6)
若A⊆B,C⊆D,则A∪C
是集合,没有元素
有1个元素的集合
2) ∈{}, {}
五、特殊集合
1、空集
定理 空集是任一集合A的子集,即 ⊆A。
下列命题是否为真。
1)√⊆;
2) ∈ ; 3) ⊆{}; 4) ∈{} 。
√
√
五、特殊集合
1、空集
推理 空集是唯一的。(绝对唯一)
证明: 设1,2是两个空集, 则1 2,且2 1,
证明唯一性 一般采用反
1、符号表示法
通常用大写字母A, B, C, …代表集合; 用小写字母a, b, c, …代表元素。
1)如果a是集合A的一个元素, 则记为 a∈A, 读做“a属于A”,或 “a在集合A中”。
2)如果a不是集合A的一个元素, 则记为 a∈A, 读做“a不属于A”,或 “a不在集合A中”。
注:任一元素, 对某一集合而言, 或属于该集合, 或不属于该集合, 二者必居其一, 且只居其一。
1) 若b∈A,则b是不给自己刮脸的人, 而由题意,b只给集合A中的人刮脸。 ∴b 要给b 刮脸, 即b ∈ A。
理发师问题
在一个很僻静的孤岛上,住着一些人家,岛上只 有一位理发师,该理发师专给那些并且只给那些自己 不刮脸的人刮脸。那么,谁给这位理发师刮脸?
C
n
A k A 1A 2 A n
k 1
二、集合的并 (Union)
3、性质
1)幂等律 A∪A =A
2)零律
A∪U =U
3)同一律 A∪ =A
4)交换律 A∪B =B∪A
5)结合律 A∪(B∪C) =(A∪B)∪C
二、集合的并 (Union)
3、性质
, 6)
若A⊆B,C⊆D,则A∪C
是集合,没有元素
有1个元素的集合
2) ∈{}, {}
五、特殊集合
1、空集
定理 空集是任一集合A的子集,即 ⊆A。
下列命题是否为真。
1)√⊆;
2) ∈ ; 3) ⊆{}; 4) ∈{} 。
√
√
五、特殊集合
1、空集
推理 空集是唯一的。(绝对唯一)
证明: 设1,2是两个空集, 则1 2,且2 1,
证明唯一性 一般采用反
1、符号表示法
通常用大写字母A, B, C, …代表集合; 用小写字母a, b, c, …代表元素。
1)如果a是集合A的一个元素, 则记为 a∈A, 读做“a属于A”,或 “a在集合A中”。
2)如果a不是集合A的一个元素, 则记为 a∈A, 读做“a不属于A”,或 “a不在集合A中”。
注:任一元素, 对某一集合而言, 或属于该集合, 或不属于该集合, 二者必居其一, 且只居其一。
1) 若b∈A,则b是不给自己刮脸的人, 而由题意,b只给集合A中的人刮脸。 ∴b 要给b 刮脸, 即b ∈ A。
理发师问题
在一个很僻静的孤岛上,住着一些人家,岛上只 有一位理发师,该理发师专给那些并且只给那些自己 不刮脸的人刮脸。那么,谁给这位理发师刮脸?
离散数学第二章 命题逻辑等值演算

范式存在定理
定理2.3 任何命题公式都存在着与之等值的析取范式与合 定理 取范式. 取范式. 求公式 的范式的步骤 的范式的步骤: 证 求公式A的范式的步骤: (1) 消去 中的→, ↔ 消去A中的 中的→ A→B⇔¬ ∨B ⇔¬A∨ → ⇔¬ A↔B⇔(¬A∨B)∧(A∨¬ ∨¬B) ↔ ⇔ ¬ ∨ ∧ ∨¬ (2) 否定联结词¬的内移或消去 否定联结词¬ ¬ ¬A⇔ A ⇔ ⇔¬A∧¬ ¬(A∨B)⇔¬ ∧¬ ∨ ⇔¬ ∧¬B ⇔¬A∨¬ ¬(A∧B)⇔¬ ∨¬ ∧ ⇔¬ ∨¬B
真值表法
例1 判断 ¬(p∨q) 与 ¬p∧¬q 是否等值 ∨ ∧ 解 p q 0 0 0 1 1 0 1 1 ¬p ¬q 1 1 0 0 1 0 1 0 p∨q ¬(p∨q) ¬p∧¬q ¬(p∨q)↔(¬p∧¬q) ∨ ∨ ∧ ∨ ↔¬ ∧ 0 1 1 1 1 0 0 0 1 0 0 0 1 1 1 1
实例(续)
(2) (p→q)↔(¬q→¬ → ↔ ¬ →¬ →¬p) 解 (p→q)↔(¬q→¬ → ↔ ¬ →¬ →¬p) ∨¬p) ⇔ (¬p∨q)↔(q∨¬ ¬ ∨ ↔ ∨¬ ⇔ (¬p∨q)↔(¬p∨q) ¬ ∨ ↔¬ ∨ ⇔1 该式为重言式. 该式为重言式 (蕴涵等值式) 蕴涵等值式) (交换律) 交换律)
实例(续)
(3) ((p∧q)∨(p∧¬ ∧r) ∧¬q))∧ ∧ ∨ ∧¬ 解 ((p∧q)∨(p∧¬ ∧r) ∧ ∨ ∧¬ ∧¬q))∧ (分配律) 分配律) (排中律) 排中律) (同一律) 同一律) ∨¬q))∧ ⇔ (p∧(q∨¬ ∧r ∧ ∨¬ ⇔ p∧1∧r ∧ ∧ ⇔ p∧r ∧ 成假赋值. 成假赋值 总结:A为矛盾式当且仅当 ⇔ 为重言式当且仅当A⇔ 总结 为矛盾式当且仅当A⇔0; A为重言式当且仅当 ⇔1 为矛盾式当且仅当 为重言式当且仅当 说明:演算步骤不惟一, 说明 演算步骤不惟一,应尽量使演算短些 演算步骤不惟一
离散数学第2章 谓词逻辑

例4:某些人对某些食物过敏。 设F(x,y):x对y过敏。 M(x):x是人。 G(y):y是食物。 (x) (y) (M(x) ∧ G(y) ∧ F(x,y))
33
§3 谓词公式与翻译
例5:凡是实数不是大于0,就是等于0或者小于0。 设R(x):x是实数。 P(x,0):x大于0。 Q(x,0):x等于0。 S(x,0):x小于0。 (x) (R(x) → ( P(x,0) Q(x,0) S(x,0) ) )
例:所有的人都是会死的。
设M(x):x是人。S(x):x是会死的。
个体域约定为{人类}:(x) (S(x))
全总个体域:
(x) ( M(x) → S(x) )
例:有一些人是不怕死的。
设M(x):x是人。F(x):x是不怕死的。
个体域约定为{人类}:(x) (F(x))
全总个体域:
(x) ( M(x) ∧ F(x) )
定义:在反映判断的句子中,用以刻划客体的性质或 关系的即是谓词。
5
§1 谓词的概念与表示法
客体,是指可以独立存在的事物,它可以是具体 的,也可以是抽象的,如张明,计算机,精神等。
表示特定的个体,称为客体常元,以a,b,c… 或带下标的ai,bi,ci…表示;
表示不确定的个体,称为客体变元,以x,y, z…或xi,yi,zi…表示。
4. 谓词中通常只写客体变元,因此不是命题,仅当 所有客体变元做出具体指定时,谓词才成为命题, 才有真值。
12
第二章 谓词逻辑
§1 谓词的概念与表示法 §2 命题函数与量词 §3 谓词公式与翻译 §4 变元的约束 §5 谓词演算的等价式与蕴含式 §6 前束范式 §7 谓词演算的推理理论
13
§2 命题函数与量词
33
§3 谓词公式与翻译
例5:凡是实数不是大于0,就是等于0或者小于0。 设R(x):x是实数。 P(x,0):x大于0。 Q(x,0):x等于0。 S(x,0):x小于0。 (x) (R(x) → ( P(x,0) Q(x,0) S(x,0) ) )
例:所有的人都是会死的。
设M(x):x是人。S(x):x是会死的。
个体域约定为{人类}:(x) (S(x))
全总个体域:
(x) ( M(x) → S(x) )
例:有一些人是不怕死的。
设M(x):x是人。F(x):x是不怕死的。
个体域约定为{人类}:(x) (F(x))
全总个体域:
(x) ( M(x) ∧ F(x) )
定义:在反映判断的句子中,用以刻划客体的性质或 关系的即是谓词。
5
§1 谓词的概念与表示法
客体,是指可以独立存在的事物,它可以是具体 的,也可以是抽象的,如张明,计算机,精神等。
表示特定的个体,称为客体常元,以a,b,c… 或带下标的ai,bi,ci…表示;
表示不确定的个体,称为客体变元,以x,y, z…或xi,yi,zi…表示。
4. 谓词中通常只写客体变元,因此不是命题,仅当 所有客体变元做出具体指定时,谓词才成为命题, 才有真值。
12
第二章 谓词逻辑
§1 谓词的概念与表示法 §2 命题函数与量词 §3 谓词公式与翻译 §4 变元的约束 §5 谓词演算的等价式与蕴含式 §6 前束范式 §7 谓词演算的推理理论
13
§2 命题函数与量词
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Table 1 set identities Identity A⋃ø=A, A⋂U=A A⋃U=U, A⋂ø=ø A⋃A=A, A⋂A=A (A)=A A⋃B=B⋃A, A⋂B=B⋂A A⋃(B⋃C)=(A⋃B) ⋃C A⋂(B⋂C)=(A⋂B) ⋂C A⋂(B⋃C)=(A⋂B) ⋃(A⋂C) A⋃(B⋂C)=(A⋃B) ⋂(A⋃C)
Theorem 1
For any set S, 1. ø⊆S 2. S⊆S
When we wish to emphasize that a set A is a subset of the set B but that A≠B, we write A⊂B and say that A is a proper subset of B. One way to show that two sets have the same elements is to show that each set is a subset of the other. In other words, we can show that if A and B are sets with A⊆B and B⊆A, then A=B.That is: ∀x(x∈A →x∈B) ,∀x(x∈B →x∈A)
Name
A⋃B=A⋂B ,A⋂B=A⋃B
Let A and B be sets. The difference of A and B, denoted by A-B, is the set containing those elements that are in A but not in B. The difference of A and B is also called the complement of B with respect to A. An element x belongs to the difference of A and B if and only if x∈A and x∉B. So: A-B={x|x∈A∧x∉B}.
Definition
Let S be a set, If there are exactly n distinct elements in S where n is a nonnegative integer, we say that S is a finite set and that n is the cardinality of S. The cardinality of S is denoted by |S|. A set is said to be infinite if it is not finite.
P({0,1,2})={ ø, {0},{1},{2},{0,1},{0,2},{2,1},{0,1,2}}
What is the power set of the empty set?What is the power set of the set {ø}?
Definition
The ordered n-tuple (a1,a2,...,an) is the ordered collection that has a1 as its first element, a2 as its second element, ..., and an as its nth element. We say that two ordered n-tuples are equal if and only if each corresponding pair of their elements is equal.
The Power Set
Given a set S, the power set of is the set of all subsets of the set S. The power set of S is denoted by P(S).
Example
What is the power set of set {0,1,2}?
Definition
Two set are called disjoint if their intersection is the empty set. |A⋃B|=|A|+|B|-|A⋂B|:
principle of inclusion-exclusion.
(包含排斥原理)
Definition
Example
Show that the Cartesian product B ⅹ A is not equal to the Cartesian product A ⅹ B , where A and B are as: A={1,2}, B={a,b,c}
Definition
The Cartesian product of the sets A1,A2,...,An, denoted by A1ⅹA2 ⅹ... ⅹAn, is the set of ordered n-tuples (a1,a2,...,an), where ai belongs to Ai for i=1,2,...,n, In other words A1ⅹA2 ⅹ... ⅹAn={(a1,a2,...,an)|ai∈Ai,for i=1,2,...,n}.
Definition
The set A is said to be a subset of B if and only if every element of A is also an element of B. We use the notation A⊆B to indicate that A is a subset of the set B. We see that A⊆B if and only if the quantification: ∀x(x∈A →x∈B)
Definition1
A set is an unordered collection of objects.
Definition 2
The objects in a set are also called the elements, or members, of the set. A set is said to contain its elements.
Draw a Venn diagram that represents V, the set of vowels in the English alphabet
U aei ou
Definition
A set has no elements is called the empty set, or null set, and is denoted by ø. The empty set can also be denoted by { }. You should pay attention to ø and {ø}.
Set builder notation
The set of all real numbers:
R={x | x is a real number}
Venn diagrams 文氏图
In Venn diagrams the universal set U, which contains all the objects under consideration, is represented by a rectangle. Inside this rectangle, circles or other geometrical figures are used to represent sets. Sometimes points are used to represent the particular elements of the set.
Example
What is the Cartesian product AⅹB ⅹC, where A={0,1}, B={1,2}, and C={0,1,2}?
2.2 Set Operations
Definition 1 Let A and B be sets. The union of the sets A and B, denotes by A⋃B, is the set that contains those elements that are either in A or in B, or in both. A⋃B={x|x∈A∨x∈B}.
How to describe a set?
All vowels in the English alphabet :
V={ a, e, i, o, u}
Definition 3
Two set are equal if and only if they have the same elements. Note that the order in which the elements of a set are listed does not matter.
Example
What is the Cartesian product of A={1,2} and B={a,b,c}? A ⅹ B= {(1,a),(1,b),(1,c),(2,a),(2,b),(2,c)}.
The Cartesian products A ⅹ B and B ⅹ A are not equal, unless A=ø or B=ø or unless A=B.
Name Identity laws 恒等律 Domination laws 支配律 Idempotent laws 幂等律 Complementation laws 补集律
Commutative laws交换律 Associative laws结合律
Distributive laws分配律
Identity