图形的初步认识复习题
图形认识初步练习题

图形认识初步练习题图形认识初步练习题在日常生活中,我们经常会遇到各种各样的图形,它们可以是平面上的,也可以是立体的。
图形认识是我们认识世界的一种基本能力,它不仅能够帮助我们更好地理解周围的事物,还能够培养我们的观察力和思维能力。
以下是一些图形认识的初步练习题,通过解答这些问题,我们能够更好地巩固和提升自己的图形认识能力。
练习题一:平面图形辨认1. 下面的图形中,哪个是正方形?A. △ABCB. □DEFGC. ○HIJKD. △LMN2. 以下哪个图形是矩形?A. △PQRB. □STUVC. ○WXYZD. △ABCD3. 在下面的图形中,哪个是圆形?A. △EFGB. □HIJKC. ○LMNO练习题二:立体图形辨认1. 下面的图形中,哪个是长方体?A. △ABCB. □DEFGC. ○HIJKD. △LMN2. 以下哪个图形是球体?A. △PQRB. □STUVC. ○WXYZD. △ABCD3. 在下面的图形中,哪个是圆柱体?A. △EFGB. □HIJKC. ○LMNOD. △PQRS练习题三:图形属性判断1. 以下哪个图形具有对称性?A. △ABCB. □DEFGC. ○HIJK2. 下面的图形中,哪个图形具有直角?A. △PQRB. □STUVC. ○WXYZD. △ABCD3. 在下面的图形中,哪个图形具有平行边?A. △EFGB. □HIJKC. ○LMNOD. △PQRS练习题四:图形组合与变换1. 请将下面的图形组合成一个正方形。
A. △ABCB. □DEFGC. ○HIJKD. △LMN2. 请将下面的图形组合成一个立方体。
A. △PQRB. □STUVC. ○WXYZD. △ABCD3. 请将下面的图形组合成一个圆球。
A. △EFGB. □HIJKC. ○LMNOD. △PQRS通过以上的练习题,我们可以加深对各种图形的认识和理解。
通过观察和思考,我们能够更好地辨认出不同的图形,并理解它们的特点和属性。
《图形的认识初步》测试题

《图形的认识初步》测试题学号姓名成绩一、选择题(每小题3分,共24分)1、下列说法正确的是()A、直线AB和直线BA是两条直线B、射线AB和射线BA是两条射线C、线段AB和线段BA是两条线段D、直线AB和直线a不能是同一条直线2、下列图中角的表示方法正确的个数有()A、1个B、2个C、3个D、4个3、下面图形经过折叠可以围成一个棱柱的是()4、经过任意三点中的两点可以画出()A、一条直线B、两条直线C、一条或三条直线D、三条直线5、如图,每个图片都是6个相同的正方形组成的,不能折成正方形的是()6、若∠A=20 o 18′,∠B=20 o 15′30〞,∠C=20.25 o,则()A、∠A>∠B>∠CB、∠B>∠A>∠CC、∠A>∠C >∠BD、∠C >∠A >∠B7、如左图所示的正方体沿某些棱展开后,能得到的图形是()8、下列语句正确的是()A、钝角与锐角的差不可能是钝角;B、两个锐角的和不可能是锐角;C、钝角的补角一定是锐角;D、∠α和∠β互补(∠α>∠β),则∠α是钝角或直角。
二、填空题(每空2分,共36分)1、有公共顶点的两条射线分别表示南偏东15o与北偏东25o,则这两条射线组成的角的度数为;2、如图,若CB = 4 cm,DB = 7 cm,且D是AC的中点,则AC = ;3、8:30时,时针与分针的夹角是;4、如图所示,小于平角的角有个;5、如图,从学校A到书店B最近的路线是号路线,其中的道理用数学知识解释应是;6、48 o 15′的余角是 ,补角是 ;7、一个长方体有 个顶点, 条棱, 个面。
8、一周角= 平角= 直角= o9、经过一点有 条直线,经过两点有 条直线;10、n 条直线两两相交,最少有 个交点,最多有 个交点。
三、解答题(每小题6分,共30分)1、如图,∠AOB 是直角,OD 平分∠BOC ,OE 平分∠AOC ,求∠EOD 的度数。
第6章 图形的初步认识单元测试卷(解析卷)

第6章图形的初步认识单元测试卷参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.下列现象,能说明“线动成面”的是()A.天空划过一道流星B.汽车雨刷在挡风玻璃上刷出的痕迹C.抛出一块小石子,石子在空中飞行的路线D.旋转一扇门,门在空中运动的痕迹解:A、天空划过一道流星是“点动成线”,故本选项不合题意;B、汽车雨刷在挡风玻璃上面画出的痕迹是“线动成面”,故本选项符合题意.C、扔一块小石子,石子在空中飞行的路线是“点动成线”,故本选项不合题意;D、旋转一扇门,门在空中运动的痕迹是“面动成体”,故本选项不合题意;故选:B.2.如图,有A,B,C三个地点,且AB⊥BC,从A地测得B地在A地的北偏东43°的方向上,那么从B地测得C地在B地的()A.南偏西43°B.南偏东43°C.北偏东47°D.北偏西47°解:∵AF∥DE,∴∠ABE=∠FAB=43°,∵AB⊥BC,∴∠ABC=90°,∴∠CBD=47°,∴C地在B地的北偏西47°的方向上.故选:D.3.已知AB=1.5,AC=4.5,且A,B,C三点不共线,若BC的长为整数,则BC的长为()A.3B.6C.3或6D.4或5解:当A,B,C三点在同一条直线上,点B在线段AC上,BC=AC﹣AB=3,点B在CA的延长线上,BC=AB+AC=6,∵BC边长为整数,A、B、C不共线,∴3<BC<6,∴BC=4或5.故选:D.4.将∠1、∠2的顶点和其中一边重合,另一边都落在重合边的同侧,且∠1>∠2,那么∠1的另一边落在∠2的()A.另一边上B.内部C.外部D.无法判断解:将∠1、∠2的顶点和其中一边重合,另一边都落在重合边的同侧,且∠1>∠2,那么∠1的另一边落在∠2的外部.故选:C.5.建筑工人砌墙时,经常在两个墙脚的位置分别插一根木桩,拉一条直的参照线,然后沿着线砌墙,其运用到的数学原理是()A.两点确定一条直线B.过一点有无数条直线C.两点之间,线段最短D.连接两点之间的线段叫做两点之间的距离解:建筑工人砌墙时,经常在两个墙脚的位置分别插一根木桩,拉一条直的参照线,然后沿着线砌墙,其运用到的数学原理是:两点确定一条直线.故选:A.6.嘉琪同学将一副三角板按如图所示位置摆放,其中∠α与∠B一定互补的是()A.B.C.D.解:A、∠α与∠β相等,不互补,故本选项错误;B、∠α与∠β不互补,故本选项错误;C、∠α与∠β互余,故本选项错误;D、∠α和∠β互补,故本选项正确;故选:D.7.点P为直线L外一点,点A、B、C为直线上三点,PA=6cm,PB=8cm,PC=4cm,则点P到直线l的距离为()A.4cm B.6cm C.小于4cm D.不大于4cm解:∵直线外一点与直线上各点连接的所有线段中,垂线段最短,∴点P到直线l的距离≤PC,即点P到直线l的距离不大于4.故选:D.8.下列日常现象:①用两根钉子就可以把一根木条固定在墙上;②把弯曲的公路改直,就能够缩短路程;③体育课上,老师测量某个同学的跳远成绩;④建筑工人砌墙时,经常先在两端立桩拉线,然后沿着线砌墙.其中,可以用“两点确定一条直线”来解释的现象是()A.①④B.②③C.③D.④解:①用两根钉子就可以把一根木条固定在墙上,利用了两点确定一条直线,故①正确;②把弯曲的公路改直,就能够缩短路程,利用“两点之间线段最短”故②错误;③体育课上,老师测量某个同学的跳远成绩,利用了点到直线的距离,故③错误;④建筑工人砌墙时,经常先在两端立桩拉线,然后沿着线砌墙,利用了两点确定一条直线,故④正确;故选:A.9.已知∠AOB=70°,以O端点作射线OC,使∠AOC=28°,则∠BOC的度数为()A.42°B.98°C.42°或98°D.82°解:如图,当点C与点C1重合时,∠BOC=∠AOB﹣∠AOC=70°﹣28°=42°;当点C与点C2重合时,∠BOC=∠AOB+∠AOC=70°+28°=98°.故选:C.10.如图所示,某工厂有三个住宅区,A,B,C各区分别住有职工30人,15人,10人,且这三点在一条大道上(A,B,C三点在同一直线上),已知AB=300米,BC=600米.为了方便职工上下班,该厂的接送车打算在此路段只设一个停靠点,为使所有的人步行到停靠点的路程之和最小,那么该停靠点的位置应设在()A.点A B.点B C.AB之间D.BC之间解:①以点A为停靠点,则所有人的路程的和=15×300+10×900=13500(米),②以点B为停靠点,则所有人的路程的和=30×300+10×600=15000(米),③以点C为停靠点,则所有人的路程的和=30×900+15×600=36000(米),④当在AB之间停靠时,设停靠点到A的距离是m,则(0<m<100),则所有人的路程的和是:30m+15(300﹣m)+10(900﹣m)=13500+5m>13500,⑤当在BC之间停靠时,设停靠点到B的距离为n,则(0<n<200),则总路程为30(300+n)+15n+10(600﹣n)=15000+35n>13500.∴该停靠点的位置应设在点A;故选:A.二.填空题(共6小题,满分24分,每小题4分)11.如图,若∠3:∠2=2:5,且∠2﹣∠1=12°,∠3等于32°.解:∵∠3:∠2=2:5,设∠3=2x,∠2=5x,∵∠1+∠2+∠3=180°,∠2﹣∠1=12°,可得:5x﹣12°+5x+2x=180°,解得:x=16,所以∠3=2×16°=32°,故答案为:32°12.钟表显示10点30分时,时针与分针的夹角为135度.解:∵时针在钟面上每分钟转0.5°,分针每分钟转6°,∴钟表上10点30分,时针与分针的夹角可以看成4×30°+0.5°×30=135°.故答案为:135.13.如图,已知直线AB,CD,EF相交于点O,∠1=95°,∠2=53°,则∠BOE的度数为32°.解:∵∠BOE与∠AOF是对顶角,∴∠BOE=∠AOF,∵∠1=95°,∠2=53°,∠COD是平角,∴∠AOF=180°﹣∠1﹣∠2=180°﹣95°﹣53°=32°,即∠BOE=32°.故答案为:32°14.一副三角板按如图方式摆放,若∠α=21°37',则∠β的度数为68°23′.解:∵∠1=90°,∴∠α+∠β=180°﹣90°=90°,∵∠α=21°37',∴∠β=68°23′,故答案为:68°23′.15.由东营南到德州的某一次列车,运行途中停靠的车站依次是:东营南﹣﹣滨州﹣﹣阳信﹣﹣商河﹣﹣德州,那么要为这次列车制作的火车票有20种.解:如图,设东营南﹣﹣滨州﹣﹣阳信﹣﹣商河﹣﹣德州五站分别用A、B、C、D、E 表示,则共有线段:AB、AC、AD、AE、BC、BD、BE、CD、CE、DE共10条,所以,需要制作火车票10×2=20种.故答案为:20.16.长度12cm的线段AB的中点为M,C点将线段MB分成MC:CB=1:2,则线段AC的长度为8cm.解:∵线段AB的中点为M,∴AM=BM=6cm设MC=x,则CB=2x,∴x+2x=6,解得x=2即MC=2cm.∴AC=AM+MC=6+2=8cm.三.解答题(共8小题,满分66分)17.(6分)如图,直线AB、CD相交于点O,OE⊥CD,∠AOC=50°.求∠BOE的度数.解:∵∠BOD=∠AOC=50°,∵OE⊥CD,∴∠DOE=90°,∴∠BOE=90°﹣50°=40°,18.(6分)已知点C在线段AB上,线段AC=7cm,BC=5cm,点M、N分别是AC、BC的中点,求MN的长度.解:∵AC=7cm,BC=5cm,点M、N分别是AC、BC的中点,∴MC=AC=3.5cm,CN=BC=2.5cm,则MN=MC+CN=3.5+2.5=6(cm).19.(8分)如图,蒙古包可以近似地看作由圆锥和圆柱组成的,现想用毛毡搭建底面积为9πm3,高为6m,外围高为2m的蒙古包,求至少需要多少平方米的毛毡?(结果保留π)解:∵蒙古包底面积为9πm2,高为6m,外围(圆柱)高2m,∴底面半径=3米,圆锥高为:6﹣2=4(m),∴圆锥的母线长==5(m),∴圆锥的侧面积=π×3×5=15π(平方米);圆锥的周长为:2π×3=6π(m),圆柱的侧面积=6π×2=12π(平方米).∴故需要毛毡:(15π+12π)=27π(平方米).20.(8分)(1)如图,已知三点A,B,C,按要求画图:画直线AB;画射线AC;画线段BC(2)如图,用适当的语句表述点A,B,P 与直线l 的关系解:(1)如图,(2)点A、点B在直线l上,点P在直线l外.21.(8分)如图,是A、B、C三个村庄的平面图,已知B村在A村的南偏西50°方向,C村在A村的南偏东15°方向,C村在B村的北偏东85°方向,求从C村村观测A、B 两村的视角∠ACB的度数.解:由题意∠BAC=50°+15°=65°,∠ABC=85°﹣50°=35°在△ABC中,∠ACB=180°﹣∠BAC﹣∠ABC=180°﹣65°﹣35°=80°.22.(10分)把一副三角板按如图所示放置(直角顶点重合)(1)直接写出与∠DBC互余的角;(2)写出与∠DBC互补的角,并说明理由.解:(1)与∠DBC互余的角有:∠ABD,∠CBE.(2)与∠DBC互补的角是:∠ABE,理由:∠ABE+∠DBC=∠ABC+∠CBE+∠DBC,=∠ABC+∠DBE=90°+90°=180°,所以:∠ABE与∠DBC互补.23.(10分)已知∠AOB是一个直角,作射线OC,再分别作∠AOC和∠BOC的平分线OD,OE.(1)如图①,当∠BOC=40°时,求∠DOE的度数;(2)如图②,当射线OC在∠AOB内绕O点旋转时,∠DOE的大小是否发生变化,说明理由;(3)当射线OC在∠AOB外绕O点旋转且∠AOC为钝角时,画出图形,直接写出∠DOE 的度数(不必写过程).解:(1)如图,∠AOC=90°﹣∠BOC=50°,∵OD、OE分别平分∠AOC和∠BOC,∴∠COD=∠AOC=25°,∠COE=∠BOC=20°,∴∠DOE=∠COD+∠COE=45°;(2)∠DOE的大小不变,理由是:∠DOE=∠COD+∠COE=∠AOC+∠COB=(∠AOC+∠COB)=∠AOB=45°;(3)∠DOE的大小发生变化情况为,如图3,则∠DOE为45°;如图4,则∠DOE为135°,24.(10分)如图,点C在线段AB上,点M、N分别是AC、BC的中点.(1)若AC=9cm,CB=6cm,求线段MN的长;(2)若C为线段AB上任一点,满足AC+CB=acm,其它条件不变,你能猜想MN的长度吗?并说明理由.你能用一句简洁的话描述你发现的结论吗?(3)若C在线段AB的延长线上,且满足AC﹣BC=bcm,M、N分别为AC、BC的中点,你能猜想MN的长度吗?请画出图形,写出你的结论,并说明理由.解:(1)∵AC=9cm,点M是AC的中点,∴CM=0.5AC=4.5cm,∵BC=6cm,点N是BC的中点,∴CN=0.5BC=3cm,∴MN=CM+CN=7.5cm,∴线段MN的长度为7.5cm,(2)MN=a,当C为线段AB上一点,且M,N分别是AC,BC的中点,则存在MN=a,(3)当点C在线段AB的延长线时,如图:则AC>BC,∵M是AC的中点,∴CM=AC,∵点N是BC的中点,中小学教育资源及组卷应用平台∴CN=BC,∴MN=CM﹣CN=(AC﹣BC)=b.21世纪教育网。
图形的初步认识易错点复习

图形初步认识易错点复习一、三视图与三视图还原1、如图的几何体,左视图是()2、指出下面三个平面图形是左边物体的三视图中的那个视图()()()3、如图,是由几个相同的小正方体搭成的几何体的三种视图,则搭成这个几何体的小正方体的个数是 ( )A.3 B.4C.5 D.6二、正方体的表面展开与还原1、下列图形中,是正方体的表面展开图的是()2、将如图所示的正方体沿某些棱展开后,能得到的图形是()A. B. C. D.3、在一个正方体的六个面上都写有汉字,其平面展开图如图所示,那么该正方体中和“美”字相对的汉字是()A.好B.宜C.设D.宾三、求线段长度、求角度1、如图1,已知BC=4,BD=7,且D是AC的中点,则AB= ,AC= .2、如图2,线段AB=6cm,AB=3BC,D是BC的中点.则AD= cm。
3、如图3,AB=12,C是线段AB上一点,E,F是AC,BC的中点,那么EF的长度是。
4、如果∠1+∠2 = 90°,∠1+∠3 = 90°,那么∠2 ∠3(填>,< 或=);依据是。
图1 图2 图35、解答题(1)点C在线段AB上,AC=10cm,CB=8cm,点M、N分别是AC、BC的中点,求线段MN的长。
(2)如图,AB=12cm,点C是线段AB的中点,点D是线段CB的中点,求线段AD的长。
(3)如图,点C是线段AB的中点,点D是线段BC的中点,CD=5cm,求线段AD的长度。
(4)如图,已知点O是直线AB上一点,OD,OE分别是∠AOC,∠COB的平分线,∠AOD=50°。
(1)求∠BOE的度数;(2)试判断OD与OE是否垂直,并说明理由。
(5)如图,已知A、C、B三点共线,CE,CF分别是∠BCD,∠ACD的平分线,求∠ECF的度数。
第四章《图形认识初步》综合复习检测卷(四)及答案

第四章《图形认识初步》综合复习检测卷(四)一、选择题(每小题3分,共30分)1.下列关于棱柱的说法:①棱柱的所有面都是平面;②棱柱的所有棱长都相等;③棱柱的所以侧面都是长方形或正方形;④棱柱的侧面个数与底面边数相等;⑤棱柱的上、下底面形状、大小相等其中正确的有 ( ).(A )2个 (B )3个 (C )4个 (D )5个2.下列图形中是正方体的表面展开图的是 ( ).(A) (B) (C) (D)3.如图1,点C 是线段AB 的中点,点D 线段BC 的中点,下列等式不正确的是( ).(A )CD=AC-DB (B )CD=AD-BC (C )CD=21AB-BD (D )CD=31AB图14.一个物体的从正面、左面、上面三个方向看是下面三个图形,则该物体形状的名称为 ( )(A) 圆柱 (B) 棱柱(C) 圆锥 (D) 球 正面 左面 上面5.下列判断正确的是 ( ). 图2(A )平角是一条直线 (B )凡是直角都相等(C )两个锐角的和一定是锐角 (D )角的大小与两条边的长短有关6.如图3,∠AOB =∠COD =90°,那么∠AOC=∠BOD ,这是根据 ( ).(A)直角都相等 (B) 同角的余角相等(C)同角的补角相等 (D)互为余角的两个角相等图37. 点M 、O 、N 顺次在同一直线上,射线0C 、0D 在直线MN 同侧,且∠MOC=64°,∠DON=46°,北则∠MOC 的平分线与∠DON 的平分线夹角的度数是 ( ).(A )85° (B )105° (C )125° (D )145°8. 某测绘装置上一枚指针原来指向南偏西50°(如图4), 把这枚指针按逆时针方向旋转41周,则结果指针的指向 ( ). (A )南偏东50º (B )西偏北50º(C )南偏东40º (D )南偏东45° 图49.如图5,每个长方体的六个面上分别写着1~6这六个数,并且任意两个相对的面上所写的两个数之和所写的两个数之和都等于7,靠在一起的长方体中,相连接两个面的数字之和等于8,图中打“?”的面上所写的数字是 ( ).(A )3 (B )5 (C )2 (D )110.计算180°-48°39′40″-67°41′35″的值是 ( ). 图5(A )63°38′45″ (B )58°39′40″ (C )64°39′40″ (D )63°78′65″二、填空题(每小题2分,共20分)11.如图6所示的图形绕虚线旋转一周,所围成的几何体是_____.图6 图7 12.如图7是一个正方体纸盒的展开图,在其中的四个正方形内有数字1、2、3和-3,要在其余正方形内分别填上-1、-2,使得按虚线折成正方体后,相对面上的两个数互为相反数,则A 处应填_____.13.植树时,只要定出_______个树坑的位置,就能确定同一行树坑所在直线,根据是_______.14.如图8是三个几何体的展开图,请写出这三个立体图形_________ __________ ________图815.某工程队在修筑高速公路时,有时需要将弯曲的道路改直,以缩短路程,这样作的理论依据是________.16.如图9,点C是∠AOB的边OA上一点,D、E是OB上两点,则图中共有_____条线段,_____条射线,_____个小于平角的角.图9 图1017.如果一个角的补角是150°,那么这个角的余角是________.18.乘火车从A站出发,沿途经过3个车站可到达B站,那么在A、B两站之间共有____种不同的票价.19.如图10,将一副三角板叠放在一起,使直角的定顶点重合于点0,则∠AOC+∠DOB=_____.20.在直线l上取A、B、C三点,使得AB=4cm,BC=3cm,如果0是线段AC的中点,则线段OB的长度为_________.三、解答题(1-6每小题6分,7-8分每小题7分)21.观察图11中的几何体,画出从正面、左面、上面三个方向看,得到的平面图形。
中考复习4、1.图形认识初步2023年九年级数学中考一轮复习题

中考复习4、1.图形认识初步中考一轮复习一、选择题(本大题共8小题,共24分。
)1. 用一副三角板,不可能画出的角度是( )A. 15∘B. 75∘C. 165∘D. 145∘2. 如图,OO是∠OOO的平分线,OO是∠OOO的平分线,那么下列各式中正确的是( )A. ∠OOO=12∠OOO B. ∠OOO=23∠OOOC. ∠OOO=12∠OOO D. ∠OOO=23∠OOO3. 如果点O在线段OO上,那么下列表达式中: ①OO=12OO②OO=OO ③OO=2OO④OO+OO=OO,能表示O是线段OO的中点的有( )A. 1个B. 2个C. 3个D. 4个4. 把2.36°用度、分、秒表示正确的是( )A. 2°3′6″B. 2°30′6″C. 2°21′6″D. 2°21′36″5. (对应目标15)下面是“蒙牛”牌牛奶软包装盒,其表面展开图不正确的是( )A. B. C. D.6. 如图,一副三角尺按不同的位置摆放,摆放位置中∠O=∠O的图形个数是( )A. 1B. 2C. 3D. 47. (对应目标15)如图是一个长方体纸盒表面展开图,纸片厚度忽略不计,按图中数据,这个盒子容积为( )A. 6B. 8C. 10D. 158. 钟面角是指时钟的时针与分针所成的角(这里所说的角均是指不大于平角的角),如:在3:00时的钟面角为90°,那么在3:30与5:00之间钟面角恰好为90°的次数共有( )A. 2次B. 3次C. 4次D. 5次二、填空题(本大题共8小题,共24分)9. 72.125°=度分秒.10. 下图中小于平角的角有个.11. 如图,C是线段AB上一点,M是线段AC的中点.若AB=10cm、BC=2cm,则MC=_____。
12. 已知∠AOB和∠COD是共顶点的两个角,∠COD的OC边始终在∠AOB的内部,并且∠COD的边OC把∠AOB分为1:2的两个角,若∠AOB=60°,∠COD= 30°,则∠AOD的度数是_______.13. 将一个正方体木块涂成红色,然后如图把它的棱三等分,再沿等分线把正方体切开,可以得到27个小正方体,其中三面涂色的小正方体有8个,两面涂色的小正方体有12个,一面涂色的小正方体有6个,各面都没有涂色的小正方体有1个;现将这个正方体的棱O等分,如果得到各面都没有涂色的小正方体216个,那么O的值为.14. 如图,在一次数学活动课上,张明用17个棱长为1的小正方体搭成了一个几何体,然后他请王亮用其他同样的小正方体在旁边再搭一个几何体,使王亮所搭几何体恰好可以和张明所搭几何体拼成一个无缝隙的大长方体(不改变张明所搭几何体的形状),那么王亮至少需要个小正方体,此时王亮所搭几何体的表面积为.15. 已知两个角的和是67∘56′,差是12∘40′,则这两个角的度数分别是.16. 由于钟表的表面被分成12大格,每格为30∘,而10点30分时,钟面上时针指向数字10与11的中间,分针指向数字6,则它们所夹角的度数是度.三、解答题(本大题共9小题,共72分。
图形的初步认识练习题
图形的初步认识练习题一、选择题1. 下列哪个图形不是二维图形?A. 圆形B. 正方形C. 三角形D. 立方体2. 在平面几何中,一个点可以表示为:A. 一条线段B. 一个圆C. 一个平面D. 没有长度和宽度的标记3. 直线和射线的区别在于:A. 直线有两端点,射线没有B. 直线无限长,射线有限长C. 直线可以旋转,射线不能D. 直线有方向,射线没有方向4. 一个角的度数范围是:A. 0°到90°B. 0°到180°C. 0°到360°D. 180°到360°5. 一个四边形的对角线数量是:A. 1B. 2C. 3D. 4二、填空题6. 一个平面上不共线的三点可以确定一个________。
7. 一个圆的周长公式是________。
8. 直角三角形的两个锐角之和等于________。
9. 一个平行四边形的对边是________。
10. 一个多边形的内角和公式是(n-2)×180°,其中n代表________。
三、判断题11. 所有的正方形都是矩形。
()12. 两条平行线永远不会相交。
()13. 一个圆的直径是半径的两倍。
()14. 一个三角形的内角和总是180°。
()15. 一个多边形的外角和总是360°。
()四、简答题16. 描述什么是平面图形,并给出两个例子。
17. 解释什么是对称图形,并给出一个例子。
18. 什么是相似图形?它们有哪些性质?19. 描述什么是图形的平移和旋转,并给出一个例子。
20. 什么是图形的相似比?请给出计算相似比的公式。
五、计算题21. 如果一个圆的半径是5厘米,计算它的周长和面积。
22. 一个三角形的三个内角分别是40°,60°和80°,请判断它是什么类型的三角形,并计算它的外角和。
23. 一个矩形的长是10厘米,宽是5厘米,计算它的周长和面积。
图形的初步认识复习
2、直线AB与CD交于O点,OE平分∠AOC,OF平分 ∠DOB,则点E、O、F三点在一条直线上.说明理由.
A
0
1 3 CQ,设运动时间为t(t>0)秒.
3、如图,直线AB与CD相交于点O,OE ⊥ AB,OF ⊥ CD. (1)图中∠AOF的余角是 ; (2)图中除直角相等外,还有相等的角,请写出二对: ① ;② .
1 (3)如果 EOF AOD ,求∠EOF的度数. 5
4、如图,已知∠AOB=1000,射线OE,OF分别是∠BOC、∠AOC的 平分线. (1)求∠EOF的度数. (2)若射线OF对应钟表上的时针,射线OE对应分针,且OE,OF可 以转动,但维持原角度∠EOF大小不变,如果此时为下午,OF在 4~5之间,你知道此时是下午几点几分吗?
D B
E C
如图,已知A、B、C是数轴上三点,点C表示的数为6,BC=4, AB=12. (1)写出数轴上点A、B表示的数; (2)动点P、Q分别从A、C同时出发,点P以每秒6个单位长度 的速度沿数轴向右匀速运动,点Q以每秒3个单位长度的速度 沿数轴向左匀速运动,M为AP的中点,点N在线段CQ上,且CN= ①求数轴上点M、N表示的数(用含t的式子表示); ②t为何值时,原点O恰为线段PQ的中点.
第七章图形的初步认识复习
3、过直线外一点作这条直线的垂线,这一点到垂足 之间的线段叫垂线段。垂线段的长度,叫做点到直 线的距离。 4、直线外一点与直线上各点连接的所有线段中,垂 线段最短。
一、填空题 1、 2、东北和西北方向所成的角的大小是( )。
3、在植树造林活动中,为了使所栽的小树整齐成 行,小明建议先确定两个树坑的位置,然后就能确 定同一行树坑的位置,其理由是( )。 4、时钟八点整时,时针与分针所夹的较小的角的 大小是( )。
经过两点有一条直线,并且只有一条直线。
线段的中点:
线段的中点把线段分成两条长度 相等的线段。
角的平分线:
角的平分线把角分成两个度数相等的角。
A A
C
B
OCLeabharlann B线段长度的比较:
(1)度量法(先量出长度,再比较长度大小)
(2)重合法(两同条线段放在一条直线上,一个端点
重合,观察另一端点位置。)
初一年级举行拔河比赛,想在两根绳子中选出 一根比较长的绳子,你有什么好的办法吗?
二、判断题 5、两条射线所组成的图形叫做角。 ( ) × 6、互补的两个角中一定有一个是锐。 ( × ) 7、两条直线不平行,必定相交。 ( ) × 8、平角是一条直线。 ( ) × 9、两条射线或线段平行,是指它们所在的直线 平行。 ( ) √ 10、过一点有且只有一条直线与已知直线平行。 × ( ) 11、两条直线相交,有且只有一个交点。 ( √ ) 12、过一点有且只有一条直线与已知直线垂直。 ( ) ×
请同学们回忆一下这一章我们 学习了哪些知识。
1、线段、射线、直线的概念及表示方法,线段 的性质、直线的性质。
2、线段的比较、角的比较 。 3、角的两种定义及表示方法,角的度量。 4、线段的中点、角的平分线。 5、平面内两条直线的位置关系:平行和垂直。
2024年七年级数学上册第二章几何图形的初步认识复习题及答案解析章末整合集训
且 MC ∶ CB =1∶2,则线段 AC 的长度为(
A. 8 cm
B. 6 cm
A
)
C. 4 cm
D. 2 cm
【解析】因为长度为12 cm的线段 AB 的中点为 M ,所以 AM = BM =6 cm.
因为点 C 将线段 MB 分成 MC ∶ CB =1∶2,所以 MC =2 cm, CB =4 cm.
A. 2个
1
B. 3个
2
3
4
5
C. 4个
6
7
8
9
10
D. 5个
11
12
13
14
15
16
17
章末整合集训
【解析】柱体包括圆柱、棱柱,所以柱体的两个底面一样大,故①说法
正确;
圆柱、圆锥的底面都是圆,故②说法正确;
棱柱的底面可以为任意多边形,故③说法错误;
长方体符合柱体的特征,一定是柱体,故④说法正确;
因为 AB =60, BC =48,所以 AC =12.
因为 AE = AC ,所以 AE =3, CE =9.
因为 CF =2 FB , BC = BF + CF ,
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
章末整合集训
所以 BF =16, CF =32.
因为 EF = EC + CF ,所以 EF =41;
线,故②说法正确;
三条直线两两相交时,可能有1个交点,也可能有3个交点,故③说
法错误;
两点之间线段最短,所以 AB < AC + BC ,故④说法正确.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§4.1-4.6 图形的初步认识复习
姓名_______、班级_______
一、课前热身:通过以下几个问题回顾说学的知识。
1、常见几何体分为_______、_______、球体
2、正多面体正_____面体、正方体、正____面体、正____面体,正二十面体。
3、三视图都相同的常见的几何有____、____。
4、圆锥的表面展开图为_______和圆,圆柱的表面展开图为_______和_____个圆。
5、多边形是由若干个_______组成的_______的封闭图形。
6、线段的比较和角的比较的方法位度量法和_______。
两点之间,_____最短。
过两点有且______直线。
7、角是有公共端点的两条_______组成的图形,从一个角的顶点引出的一条_______,•把这个角分成两个相等的角,•这条______叫做这个角的_______.
8、如果两个角的和是90°,那么两角____;如果两个角的和是180°,那么两角____。
对顶角______。
9、说出下图的射线的方向:OA : ____偏西____ ;OB:北偏____ ____ 度;OC:____偏____ 20°
二、研讨探究
例1:画图题
1、在直线l上,点Q在直线l外,过点Q的直线m交直线l于点R
2、直线a过点P,且点P在直线b上。
例2:已知线段AB=5cm ,在直线AB 上画线段BC=3cm ,求AC 的长。
例3、如图,已知OB 平分∠AOC,且∠2:∠3:∠4=2:5:3,求∠1,∠2,∠3,∠4的度数.
4321
D
C
A
B O
三、 课后强化练习
1、直线有 个端点,射线有 个端点,线段有 个端点。
2、过一点有 条直线,过两点有 条直线,过平面内三点中的每两点有 条直线。
3、用一个钉子把一根细木条钉在木板上,用手拨木条,木条能转动,这说明 ;用两个钉子把细木条钉在木板上,就能固定细木条,这说明 。
4、在下列立体图形中,不属于多面体的是( )
A .正方体
B .三棱柱
C .长方体
D .圆锥体
D C
A B O
E 5、一个角的余角比它的补角29
还多1°,求这个角的度数。
6、画图:直线a 、b 、c 都经过点M ,直线l分别交直线a 、b 、c 于点A 、B 、C 。
7、 按要求画出下列立体图形的视图.
8、如图,已知∠AOB:∠BOC=3:5,又OD,OE 分别是∠AOB 和
∠BOC 的平分线,•若∠DOE=60°,求∠AOB 和∠BOC 的度。