习题课-热力学基础

合集下载

2016第十章 热力学习题课

2016第十章 热力学习题课

第 九 章 气 体 动 理 论
m i 3 E RT 10 8.311 124.7( J ) M 2 2
Q E W 124.7 209 84.3(J )
31
普 通 物 理 教 程
第十章 热力学习题
6. 一定量的某种理想气体在等压过程中对外作 功为 200 J.若此种气体为单原子分子气体 ,则该过程中需吸热___________ J;若为 双原子分子气体,则需吸热___________ J. 【分析与解答】
第 九 章 气 体 动 理 论
1
普 通 物 理 教 程
第十章 热力学习题
【分析与解答】 m i 因为 QV R T
M 2
第 九 章 气 体 动 理 论
m pV = RT M
氧气和水蒸气的自由度不同,吸收热量相等 则温度升高不同,压强增加亦不同。 正确答案是B。

2
普 通 物 理 教 程
第十章 热力学习题
WN2 WHe
p(V2 V1 ) TN2 5 p(V2 V1 ) THe 7
正确答案是B。
10
普 通 物 理 教 程
第十章 热力学习题
6. 一定量的理想气体,由初态a经历a c b过程到达终态b(如 图10-19示),已知a、b两状态处于同一条绝热线上,则 ______. (A)内能增量为正,对外作功为正,系统吸热为正。 (B)内能增量为负,对外作功为正,系统吸热为正。 (C)内能增量为负,对外作功为正,系统吸热为负。 (D)不能判断。
内能增加了ΔE = | W2 |
E = ;
Q=
第 九 章 气 体 动 理 论
29
普 通 物 理 教 程
第十章 热力学习题

热力学习题课

热力学习题课
A.< ', Q< Q ' ; √B.< ', Q> Q ' ; C.>', Q< Q ' ; D.>', Q>Q ' ;
27
例20. 双原子分子气体 1 mol 作图示曲 线 1231 的循环过程。其中1-2 为直线过程, 2-3 对应的过程方程为 PV1/2=常数, 3-1 对应的是等压过程。
九、卡诺循环:
P
T1 1 T2 P T1
T1
1 e T1 1
T2
T2
V
十、热力学第二定律:
文字表述:
开氏表述:功 热转化不可逆
克氏表述:热 传导不可逆
T2
V
等价。
7
数学表述:S kn (玻氏熵公式)
热力学第二定律的实质:一切与热现象有 关的实际宏观过程都是不可逆的。
无摩擦的准静态过程才是可逆的
例9.一定量的理想气体,其状态改变在P-T图 上沿着一条直线从平衡态a到b。这是一个()
P
A.绝热压缩过程
P2
b
B.等体吸热过程
P1
a
C.吸热压缩过程
T1
T2
T √D.吸热膨胀过程 19
例10:判断下列图1-2-3 -1各过程中交换 的热量, 内能的变化,作功的正负? 并画 出在 p - V 图上对应的循环过程曲线。
Mi
E
RT
Mmol 2
Mi
E
RT
Mmol 2
1
四、准静态过程,系统对外做的功:
dW PdV W V2 PdV V1
P
P
W0
0 V1
V2
W0

习题课—热力学第一定律及其应用

习题课—热力学第一定律及其应用

W = −∆U = 3420.0 J
'
[P26 例1-4]
1-29 求25℃、Pθ下反应 ℃
4 NH 3 ( g ) + 5O2 ( g ) = 4 NO ( g ) + 6 H 2O ( g )
的△rHmθ(298.15k)。已知下列数据 △ 298.15k)。 )。已知下列数据
(1)2 NH 3 ( g ) = N 2 ( g ) + 3H 2 ( g ) (2)2 H 2 ( g ) + O2 ( g ) = 2 H 2O ( l ) (3) H 2O ( l ) = H 2O ( g ) (4) N 2 ( g ) + O2 ( g ) = 2 NO ( g )
∆ H ( 298.15k ) = −5154.19 KJ ⋅ mol c m
θ
−1
, CO ( g ) 、H O ( l ) 的标准摩尔 2 2
分别为-393.51KJ﹒mol-1、 生成焓 ∆ f H m ( 298.15k ) 分别为 试求C (s)的标准摩尔生成焓 -285.84KJ﹒mol-1,试求C10H8(s)的标准摩尔生成焓 θ ∆ H ( 298.15k ) 。 f m
解:原式可由(1)×2+ (2)× 3+ (3)× 6+ (4)× 2所得 原式可由 × × × × 所得
θ θ θ θ θ ∴∆ r H m = 2∆ r H m (1) + 3∆ r H m ( 2 ) + 6∆ r H m ( 3) + 2∆ r H m ( 4 )
= 2 × 92.38 + 3 × ( −571.69 ) + 6 × 44.02 + 2 ×180.72 = −904.69kJ ⋅ mol

4习题课热学

4习题课热学

6
例2 若气体分子的速率分布曲线如图,图中A、B两 部分面积相等,则图中V0的物理意义为何? 1.最可几速率;2.平均速率;3.方均根速率; 4.大于和小于速率v0的分子各占一半。 解:由f(v)-v曲线下面积物理意义可知, A、B两部分面 积相等意味着大于和小于速率v0的分子各占一半。 注:最可几速率的物理 意义是曲线的最大值所 对应的速率值。 应选(4)
P dp 得斜率 = − v dv T 由 热线 pvγ = C 绝
P P1 O A
P dp 得 率 = −γ 斜 v dv Q
B
v1
v2
13
v
P dp − dv 由题意 T v = 1 = 0.714 = P γ dp −γ dv Q v 1 得 γ= =1.4 0.714 γ γ 再由绝热方程 p1v1 = p2v2
T2 卡诺循环 η卡 =1− T 1 T2 ω卡 = T −T2 1
2
过程 特征
参量关系
Q
A
∆E
等容 V 常量 (P/T)=常量 ) 常量
νcV ∆T
0
p∆V ∆
νcV ∆T νcV ∆T
V1
) 常量 等压 P 常量 (V/T)=常量 ν c p ∆ T
νR∆T ∆
V1
νRT ln V2
T 常量
PV = 常量
V2 νRT ln
等温
νRT ln
p1
p2
νRT ln
p1
0
p2
绝热
PV = 常量 dQ γ −1 V T = 常量 =0 γ −1 − γ = P T 常量
γ
− νcV ∆T
0
p2V2 − p1V1 ν cV ∆T 3 1− γ

大学物理课后答案第5章

大学物理课后答案第5章

第五章 热力学基础5-1 在水面下50.0 m 深的湖底处(温度为4.0℃),有一个体积为1.0×10-5 m 3的空气泡升到湖面上来,若湖面的温度为17.0℃,求气泡到达湖面的体积。

(大气压P 0 = 1.013×105 Pa ) 分析:将气泡看成是一定量的理想气体,它位于湖底和上升至湖面代表两个不同的平衡状态。

利用理想气体物态方程即可求解本题。

位于湖底时,气泡内的压强可用公式gh p p ρ+=0求出,其中ρ为水的密度(常取ρ = 1.0⨯103 kg·m -3)。

解:设气泡在湖底和湖面的状态参量分别为(p 1,V 1,T 1)和(p 2,V 2,T 2)。

由分析知湖底处压强为ghp gh p p ρρ+=+=021。

利用理想气体的物态方程可得空气泡到达湖面的体积为()3510120121212m 1011.6-⨯=+==T p V T gh p T p V T p V ρ5-2 氧气瓶的容积为3.2×10-2 m 3,其中氧气的压强为1.30×107 Pa ,氧气厂规定压强降到1.00×106 Pa 时,就应重新充气,以免经常洗瓶。

某小型吹玻璃车间,平均每天用去0.40 m 3 压强为1.01×105 Pa 的氧气,问一瓶氧气能用多少天?(设使用过程中温度不变) 分析:由于使用条件的限制,瓶中氧气不可能完全被使用。

从氧气质量的角度来分析。

利用理想气体物态方程pV = mRT /M 可以分别计算出每天使用氧气的质量m 3和可供使用的氧气总质量(即原瓶中氧气的总质量m 1和需充气时瓶中剩余氧气的质量m 2之差),从而可求得使用天数321/)(m m m n -=。

解:根据分析有RT V Mp m RT V Mp m RT V Mp m 333122111===;;则一瓶氧气可用天数()()5.933121321=-=-=V p V p p m m m n5-3 一抽气机转速ω=400r ּmin -1,抽气机每分钟能抽出气体20升。

大学物理热学习题课

大学物理热学习题课

dN m 32 4 ( ) e Ndv 2kT
v2
对于刚性分子自由度 单原子 双原子 多原子
i tr
(1)最概然速率
2kT 2 RT RT vp 1.41 m
(2)平均速率
i=t=3 i = t+r = 3+2 = 5 i = t+r = 3+3 =6
6、能均分定理
8kT 8 RT RT v 1.60 m
M V RT ln 2 M mol V1
QA
绝热过程
PV 常量
M E CV T M mol
(2)由两条等温线和两条绝热线 组成的循环叫做 卡诺循环。 •卡诺热机的效率
Q0
Q2 T2 卡诺 1 1 Q1 T1
M P1V1 P2V2 A CV T M mol 1
E 0
•热机效率
A Q1 Q2
M E CV T M mol M Q C P T M mol
A Q1 Q2 Q2 1 Q1 Q1 Q1
A=P(V2-V1) 等温过程
A
E 0
Q1 Q2 •致冷系数 e W Q1 Q2
热机效率总是小于1的, 而致冷系数e可以大于1。
定压摩尔热容
比热容比
CP ( dQ )P dT i2 i
8、平均碰撞次数 平均自由程
z
2d v n
2
CV •对于理想气体:

Cp
v z
1.热力学第一定律
1 2 2d n
二、热 力 学 基 础
Q ( E2 E1 ) A dQ dE dA
准静态过程的情况下
4. 摩尔数相同的两种理想气体 一种是氦气,一种是氢气,都从 相同的初态开始经等压膨胀为原 来体积的2倍,则两种气体( A ) (A) 对外做功相同,吸收的热量 不同. (B) 对外做功不同,吸收的热量 相同. (C) 对外做功和吸收的热量都不 同. (D) 对外做功和吸收的热量都相 同. A=P(V2-V1)

热力学习题课2013

热力学习题课2013

C. △H1< △H2 D. 无法确定
6. 已知在298K时,H2O(g)的标准摩尔生成焓和H2(g)的标准摩尔 燃烧焓的数据如下
f Hm ( H 2O, g ) 241.82kJ mol 1
则在298K和标准压力下,平衡 H 2O(l ) H 2O( g ) A. -44.01kJ/mol C. 241.82 kJ/mol B. 44.01kJ/mol D. 285.83kJ/mol
B. △U< △ H, △A< △G, △S>0 C. △U> △ H, △A> △G, △S<0 D. △U< △ H, △A< △G, △S<0
4
5. 一定量的理想气体从同一始态出发,分别经如下两个过程达到 相同压力的终态,(1)等温压缩,其焓变为△H1,(2)绝热 压缩,其焓变为△H2,两者之间的关系为 A. △H1> △H2 B. △H1= △H2
2. 液体苯在一绝热刚性的氧弹中燃烧,其化学反应为 C6H6(l)+7.5O2(g)=6CO2(g)+ 3H2O(g), 则下面表示准确的是 ( ) A.△U=0,△H<0,Q=0 B. △U=0,△H>0,W=0
C. △U=0,△H=0,Q=0
D. △U ≠ 0,△H ≠ 0,Q=0
3
3. 对于一定量的理想气体,下列不可能发生的过程是()
(1)恒温下绝热膨胀;(2)恒压下做绝热膨胀;
(3)同时对外做功并放热; (4)不做非膨胀功,恒容下发生绝热过程,使系统温度上升 A. (1),(2) B. (3),(4) C. (1),(3) D. (2),(4) 4. 一定量的液态环己烷在其正常沸点时变为同温、同压的蒸 气,则()

热力学第一定律习题课 (1)全

热力学第一定律习题课 (1)全

= 1.3%
(5)
P
qm ws
220 t/h103 kg/t 3600 s/h
1.1361 03
kJ/kg
=
6.94 104
kW
讨论
(1)本题的数据有实际意义,从计算中可以看到,忽略进出 口的动、位能差,对输轴功影响很小,均不超过3%,因此在实 际计算中可以忽略。 (2)蒸汽轮机散热损失相对于其他项很小,因此可以认为一 般叶轮机械是绝热系统。
m2u2 m1u1 m2 m1 h 0
u2
m2
m1 h
m2
m1u1
方法三 取充入气罐的m2-m1空气为闭口系
Q U W
Q 0 ? W ? U ?
U m2 m1 u2 u
W W1 W2 m2 m1 pv W2
2
则 Q23 U23 W23 U3 U2 87.5 kJ175 kJ 87.5 kJ
U1 U3 U123 87.5 kJ (77.5 kJ) 165 kJ
讨论
热力学能是状态参数,其变化只决定于初 终状态,于变化所经历的途径无关。
而热与功则不同,它们都是过程量,其变 化不仅与初终态有关,而且还决定于变化所 经历的途径。
1 2
(cf23
c22 )
ws
因为w3 0,所以
燃烧室 压 气 机
cf 3' 2 q (h3' h2 ) cf22
2 670103 J/kg- (800 - 580) 103 J/kg + (20 m/s)2 = 949 m/s
( 4 ) 燃气轮机的效率
取燃气轮机作为热力系,因为燃气在
( 5 ) 燃气轮机装置的总功率 装置的总功率=燃气轮机产生的功率-压气机消耗的功率
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解:(1)
0
1 T2 T1
1
300 600
50%
1
Q2 Q1
1
2.09 3.34
104 104
37.4%
0
不是可逆热机
(2)
A Q10
3.34104 50% 1.67 104 (J)

3. 把质量为5kg、比热容(单位质量物质的热容)为 544J/kg的铁棒加热到300℃然后浸入一大桶27℃的水 中。求在这冷却过程中铁的熵变。
解:(1)
2(n N )2
S k ln w k[
2 ln
2]
N
N
(2)
2(0.5N N )2
S k[
2 ln
2]
N
N
2(0 N )2
k[
2 ln
2]
N
N
k[
2(0
N 2
)2
]
k
N
N
2
(3)
S k N 2
1.381023 6 1023 2
4.14(J/K)

5. 有2mol的理想气体,经过可逆的等压过程,体积 从V0膨胀到3V0。求这一过程中的熵变。提示:设理 想气体从初态到终态是先沿等温曲线,然后沿绝热曲 线(在这个过程中熵没有变化)进行的。
1. 两部可逆机串联起来,如图所示。
可逆机1工作于温度为T1的热源1与温度 为T2=400K的热源2之间。可逆机2吸收 可逆机1放给热源2的热量Q2,转而放 热给T3=300K的热源3。在(1)两部热机 效率相等(2)两部热机作功相等的情况
下求T1。
解:(1) 1 2 1 T2 1 T3
T1
解:设冷却过程中降温是可逆过程,则其熵变
S
dQ
T
T2
T1
MCdT T
MC ln T2 T1
5 544 ln 273 27 273 300
1760(J/K)

4. 一房间有N个气体分子,半个房间的分子数为n的
概率为:
w(n)
2(n N )2 / N
2e 2
N
(1)写出这种分布的熵的表达式S=klnw; (2)n=0状态与n=0.5N状态之间的熵变是多少? (3)如果N=61023,计算这个熵差。
T2
T1
T22 T3
4002 300
533(K)
T1
1A Q2
T2 Q2
2 A Q3
T3
(2) Q22 Q11
1
1
2 2
Q22
1
Q2
1
1
1 T3
1 T2 T1
1
1
T2 T3
T2
T1 1
T2 T2 T3
1
400 400 300
500(K)
2T2 T3
2 400 300

2. 一热 机每秒 从高温 热源 ( T1=600K) 吸取热 量 Q1=3.34104J , 做 功 后 向 低 温 热 源 ( T2=300K ) 放 出 热量Q2=2.09104J,(1)问它的效率是多少?它是不是 可逆机?(2)如果尽可能地提高热机的效率,问每秒从 高温热源吸热3.34104J,则每秒最多能做多少功?
解: 1→3的可逆等压过
p
程的熵变等于1→2等温过
程和2→3绝热过程(熵不
1
变)的总熵变,则等温过
程的熵变
S
dQ
T
V2
V1
pdV T
V0
3
2V 3V0
V2ห้องสมุดไป่ตู้
V1
2RdV V
2R lnV2 V1
由等温方程和绝热方程
p1V1 p2V2
p3V3 p2V2
由于 V1 V0 , V3 3V0 所以上两式变为
p1V0 p2V2
p1(3V0 ) p2V2
由上两式得 lnV2 ln 3 C p ln 3
V0 1
R
代入熵变结果,得
S 2R lnV2
V1
2R
Cp R
ln
3
2C
p
ln
3

相关文档
最新文档