全国2014年10月自考概率论与数理统计(二)试题和答案【在最后】

合集下载

自考概率论与数理统计(经管类)试题及答案

自考概率论与数理统计(经管类)试题及答案

全国年月自考概率论与数理统计(经管类)试题一、单项选择题(本大题共小题,每小题分,共分)解:本题考查的是和事件的概率公式,答案为.解:()()(|)1()()P B AB P AB P B AB P AB P AB ⋂===()()()0.50.15(|)0.5()()1()0.7P BA P B P AB P B A P B P A P A --=====- ()()0.15(|)0.3()()()0.5P B AB P AB P AB B P A P B P B ⋂=====()()(|)1()()P A AB P AB P A AB P AB P AB ⋂=== ,故选.解:本题考查的是分布函数的性质。

由()1F +∞=可知,、不能作为分布函数。

再由分布函数的单调不减性,可知不是分布函数。

所以答案为。

解:选。

{||2}{2}{2}1{2}{2}1(2)(2)1(2)1(2)22(2)P X P X P X P X P X >=>+<-=-≤+<-=-Φ+Φ-=-Φ+-Φ=-Φ解:因为(2)0.20.16P Y c ===+,所以0.04c =又(2)10.80.20.02P X c d ==-==++,所以10.020.040.14d =--= ,故选。

解:若~()X P λ,则()()E X D X λ==,故 。

解:由方差的性质和二项分布的期望和方差:1512(1)()()3695276633D X Y D X D Y -+=+=⨯⨯+⨯⨯=+= ,选。

解:由切比雪夫不等式2(){|()|}1D X P X E X εε-<>-,可得21600{78008200}{|8000|200}10.96200P X P X <<=-<>-= ,选。

解:由方差的计算公式22()()()D X E X E X =-, 可得2222()()()E X D X E X nσμ=+=+ ,选。

《概率论与数理统计》习题及答案 第二章

《概率论与数理统计》习题及答案  第二章

《概率论与数理统计》习题及答案第 二 章1.假设一批产品中一、二、三等品各占60%,30%,10%,从中任取一件,发现它不是三等品,求它是一等品的概率.解 设i A =‘任取一件是i 等品’ 1,2,3i =,所求概率为13133()(|)()P A A P A A P A =,因为 312A A A =+所以 312()()()0.60.30.9P A P A P A =+=+=131()()0.6P A A P A ==故1362(|)93P A A ==. 2.设10件产品中有4件不合格品,从中任取两件,已知所取两件中有一件是不合格品,求另一件也是不合格品的概率.解 设A =‘所取两件中有一件是不合格品’i B =‘所取两件中恰有i 件不合格’ 1, 2.i = 则12A B B =+11246412221010()()()C C C P A P B P B C C =+=+, 所求概率为2242112464()1(|)()5P B C P B A P A C C C ===+. 3.袋中有5只白球6只黑球,从袋中一次取出3个球,发现都是同一颜色,求这颜色是黑色的概率.解 设A =‘发现是同一颜色’,B =‘全是白色’,C =‘全是黑色’,则 A B C =+, 所求概率为336113333611511/()()2(|)()()//3C C P AC P C P C A P A P B C C C C C ====++ 4.从52张朴克牌中任意抽取5张,求在至少有3张黑桃的条件下,5张都是黑桃的概率.解 设A =‘至少有3张黑桃’,i B =‘5张中恰有i 张黑桃’,3,4,5i =, 则345A B B B =++, 所求概率为555345()()(|)()()P AB P B P B A P A P B B B ==++51332415133********1686C C C C C C ==++. 5.设()0.5,()0.6,(|)0.8P A P B P B A ===求()P A B 与()P B A -.解 ()()()() 1.1()(|) 1.10P AB P A P B P A B P A P B A =+-=-=-= ()()()0.60.40.2P B A P B P AB -=-=-=.6.甲袋中有3个白球2个黑球,乙袋中有4个白球4个黑球,今从甲袋中任取2球放入乙袋,再从乙袋中任取一球,求该球是白球的概率。

2013~2014年全国自考概率论与数理统计试题及答案要点

2013~2014年全国自考概率论与数理统计试题及答案要点

全国2013年1月高等教育自学考试概率论与数理统计(经管类)试题一、单项选择题(本大题共10小题,每小题2分,共20分)二、填空题(本大题共15小题,每小题2分,共30分)三、计算题(本大题共2小题,每小题8分,共16分)四、综合题(本大题共2小题,每小题12分,共24分)五、应用题(10分)全国2013年1月高等教育自学考试 概率论与数理统计(经管类)答案1、本题考查的是和事件的概率公式,答案为C.2、解:()()(|)1()()P B AB P AB P B AB P AB P AB ⋂===()()()0.50.15(|)0.5()()1()0.7P BA P B P AB P B A P B P A P A --=====- ()()0.15(|)0.3()()()0.5P B AB P AB P AB B P A P B P B ⋂=====()()(|)1()()P A AB P AB P A AB P AB P AB ⋂=== ,故选B.3、解:本题考查的是分布函数的性质。

由()1F +∞=可知,A 、B 不能作为分布函数。

再由分布函数的单调不减性,可知D 不是分布函数。

所以答案为C 。

4、解:选A 。

{||2}{2}{2}1{2}{2}1(2)(2)1(2)1(2)22(2)P X P X P X P X P X >=>+<-=-≤+<-=-Φ+Φ-=-Φ+-Φ=-Φ 5、解:因为(2)0.20.16P Y c ===+,所以0.04c =又(2)10.80.20.02P X c d ==-==++,所以10.020.040.14d =--= ,故选D 。

6、解:若~()X P λ,则()()E X D X λ==,故 D 。

7、解:由方差的性质和二项分布的期望和方差:1512(1)()()3695276633D X Y D X D Y -+=+=⨯⨯+⨯⨯=+= ,选A8、解:由切比雪夫不等式2(){|()|}1D X P X E X εε-<>-,可得21600{78008200}{|8000|200}10.96200P X P X <<=-<>-= ,选C 。

《概率论与数理统计》(韩旭里 谢永钦版)习题二及答案

《概率论与数理统计》(韩旭里 谢永钦版)习题二及答案

习题二1.一袋中有5只乒乓球,编号为1,2,3,4,5,在其中同时取3只,以X 表示取出的3只球中的最大号码,写出随机变量X 的分布律. 【解】353524353,4,51(3)0.1C 3(4)0.3C C (5)0.6C X P X P X P X ==========故所求分布律为 X 3 4 5 P0.1 0.3 0.62.设在15只同类型零件中有2只为次品,在其中取3次,每次任取1只,作不放回抽样,以X 表示取出的次品个数,求: (1) X 的分布律;(2) X 的分布函数并作图; (3)133{},{1},{1},{12}222P X P X P X P X ≤<≤≤≤<<.【解】313315122133151133150,1,2.C 22(0).C 35C C 12(1).C 35C 1(2).C 35X P X P X P X ========== 故X 的分布律为(2) 当x <0时,F (x )=P (X ≤x )=0当0≤x <1时,F (x )=P (X ≤x )=P (X =0)=2235当1≤x <2时,F (x )=P (X ≤x )=P (X =0)+P (X =1)=3435当x ≥2时,F (x )=P (X ≤x )=1 故X 的分布函数0,022,0135()34,12351,2x x F x x x <⎧⎪⎪≤<⎪=⎨⎪≤<⎪⎪≥⎩(3)1122()(),2235333434(1)()(1)02235353312(1)(1)(1)2235341(12)(2)(1)(2)10.3535P X F P X F F P X P X P X P X F F P X ≤==<≤=−=−=≤≤==+<≤=<<=−−==−−=3.射手向目标独立地进行了3次射击,每次击中率为0.8,求3次射击中击中目标的次数的分布律及分布函数,并求3次射击中至少击中2次的概率. 【解】设X 表示击中目标的次数.则X =0,1,2,3.31232233(0)(0.2)0.008(1)C 0.8(0.2)0.096(2)C (0.8)0.20.384(3)(0.8)0.512P X P X P X P X ============故X 的分布律为X 0 1 2 3 P0.008 0.096 0.384 0.512分布函数0,00.008,01()0.104,120.488,231,3x x F x x x x <⎧⎪≤<⎪⎪=≤<⎨⎪≤<⎪≥⎪⎩(2)(2)(3)0.896P X P X P X ≥==+==4.(1) 设随机变量X 的分布律为P {X =k }=!kak λ,其中k =0,1,2,…,λ>0为常数,试确定常数a . (2) 设随机变量X 的分布律为P {X =k }=a/N , k =1,2,…,N ,试确定常数a . 【解】(1) 由分布律的性质知1()e !kk k P X k a a k λλ∞∞======∑∑i故 ea λ−=(2) 由分布律的性质知111()NNk k aP X k a N======∑∑即 1a =.5.甲、乙两人投篮,投中的概率分别为0.6,0.7,今各投3次,求: (1) 两人投中次数相等的概率; (2) 甲比乙投中次数多的概率.【解】分别令X 、Y 表示甲、乙投中次数,则X~b (3,0.6),Y~b (3,0.7)(1) ()(0,0)(1,1)(2,2)P X Y P X Y P X Y P X Y ====+==+==+(3,3)P X Y ==33121233(0.4)(0.3)C 0.6(0.4)C 0.7(0.3)=++22223333C (0.6)0.4C (0.7)0.3(0.6)(0.7)+ 0.32076=(2) ()(1,0)(2,0)(3,0)P X Y P X Y P X Y P X Y >===+==+==+ (2,1)(3,1)(3,2)P X Y P X Y P X Y ==+==+==12322333C 0.6(0.4)(0.3)C (0.6)0.4(0.3)=++ 33221233(0.6)(0.3)C (0.6)0.4C 0.7(0.3)++ 31232233(0.6)C 0.7(0.3)(0.6)C (0.7)0.3+=0.2436.设某机场每天有200架飞机在此降落,任一飞机在某一时刻降落的概率设为0.02,且设各飞机降落是相互独立的.试问该机场需配备多少条跑道,才能保证某一时刻飞机需立即降落而没有空闲跑道的概率小于0.01(每条跑道只能允许一架飞机降落)? 【解】设X 为某一时刻需立即降落的飞机数,则X ~b (200,0.02),设机场需配备N 条跑道,则有()0.01P X N ><即 2002002001C (0.02)(0.98)0.01k k k k N −=+<∑利用泊松近似2000.02 4.np λ==×=41e 4()0.01!kk N P X N k −∞=+≥<∑查表得N ≥9.故机场至少应配备9条跑道.7.有一繁忙的汽车站,每天有大量汽车通过,设每辆车在一天的某时段出事故的概率为0.0001,在某天的该时段内有1000辆汽车通过,问出事故的次数不小于2的概率是多少(利用泊松定理)?【解】设X 表示出事故的次数,则X ~b (1000,0.0001)(2)1(0)(1)P X P X P X ≥=−=−=0.10.11e0.1e −−=−−×8.已知在五重贝努里试验中成功的次数X 满足P {X =1}=P {X =2},求概率P {X =4}. 【解】设在每次试验中成功的概率为p ,则1422355C (1)C (1)p p p p −=−故 13p =所以 4451210(4)C ()33243P X ===. 9.设事件A 在每一次试验中发生的概率为0.3,当A 发生不少于3次时,指示灯发出信号, (1) 进行了5次独立试验,试求指示灯发出信号的概率; (2) 进行了7次独立试验,试求指示灯发出信号的概率. 【解】(1) 设X 表示5次独立试验中A 发生的次数,则X ~6(5,0.3)5553(3)C (0.3)(0.7)0.16308kk k k P X −=≥==∑(2) 令Y 表示7次独立试验中A 发生的次数,则Y~b (7,0.3)7773(3)C (0.3)(0.7)0.35293k k k k P Y −=≥==∑10.某公安局在长度为t 的时间间隔内收到的紧急呼救的次数X 服从参数为(1/2)t 的泊松分布,而与时间间隔起点无关(时间以小时计).(1) 求某一天中午12时至下午3时没收到呼救的概率;(2) 求某一天中午12时至下午5时至少收到1次呼救的概率. 【解】(1)32(0)eP X −== (2) 52(1)1(0)1e P X P X −≥=−==−11.设P {X =k }=kkkp p −−22)1(C , k =0,1,2P {Y =m }=mmmp p −−44)1(C , m =0,1,2,3,4分别为随机变量X ,Y 的概率分布,如果已知P {X ≥1}=59,试求P {Y ≥1}. 【解】因为5(1)9P X ≥=,故4(1)9P X <=. 而 2(1)(0)(1)P X P X p <===− 故得 24(1),9p −=即 1.3p =从而 465(1)1(0)1(1)0.8024781P Y P Y p ≥=−==−−=≈ 12.某教科书出版了2000册,因装订等原因造成错误的概率为0.001,试求在这2000册书中恰有5册错误的概率.【解】令X 为2000册书中错误的册数,则X~b (2000,0.001).利用泊松近似计算,20000.0012np λ==×=得 25e 2(5)0.00185!P X −=≈=13.进行某种试验,成功的概率为34,失败的概率为14.以X 表示试验首次成功所需试验的次数,试写出X 的分布律,并计算X 取偶数的概率. 【解】1,2,,,X k =113()()44k P X k −==(2)(4)(2)P X P X P X k =+=++=+ 321131313()()444444k −=++++i 213141451()4==−14.有2500名同一年龄和同社会阶层的人参加了保险公司的人寿保险.在一年中每个人死亡的概率为0.002,每个参加保险的人在1月1日须交12元保险费,而在死亡时家属可从保险公司领取2000元赔偿金.求: (1) 保险公司亏本的概率;(2) 保险公司获利分别不少于10000元、20000元的概率. 【解】以“年”为单位来考虑.(1) 在1月1日,保险公司总收入为2500×12=30000元. 设1年中死亡人数为X ,则X~b (2500,0.002),则所求概率为(200030000)(15)1(14)P X P X P X >=>=−≤由于n 很大,p 很小,λ=np =5,故用泊松近似,有514e 5(15)10.000069!kk P X k −=>≈−≈∑(2) P (保险公司获利不少于10000) (30000200010000)(10)P X P X =−≥=≤510e 50.986305!kk k −=≈≈∑ 即保险公司获利不少于10000元的概率在98%以上 P (保险公司获利不少于20000)(30000200020000)(5)P X P X =−≥=≤55e 50.615961!kk k −=≈≈∑即保险公司获利不少于20000元的概率约为62% 15.已知随机变量X 的密度函数为f (x )=A e −|x |, −∞<x <+∞,求:(1)A 值;(2)P {0<X <1}; (3) F (x ). 【解】(1) 由()d 1f x x ∞−∞=∫得||01e d 2e d 2x x A x A x A ∞∞−−−∞===∫∫故 12A =. (2) 11011(01)e d (1e )22x p X x −−<<==−∫(3) 当x <0时,11()e d e 22x x x F x x −∞==∫当x ≥0时,0||0111()e d e d e d 222x x x xx F x x x x −−−∞−∞==+∫∫∫11e 2x−=−故 1e ,02()11e 02xx x F x x −⎧<⎪⎪=⎨⎪−≥⎪⎩16.设某种仪器内装有三只同样的电子管,电子管使用寿命X 的密度函数为f (x )=⎪⎩⎪⎨⎧<≥.100,0,100,1002x x x求:(1) 在开始150小时内没有电子管损坏的概率; (2) 在这段时间内有一只电子管损坏的概率; (3) F (x ). 【解】(1) 15021001001(150)d .3P X x x ≤==∫ 33128[(150)]()327p P X =>==(2) 1223124C ()339p ==(3) 当x <100时F (x )=0当x ≥100时()()d xF x f t t −∞=∫100100()d ()d x f t t f t t −∞=+∫∫2100100100d 1xt t x==−∫ 故 1001,100()0,0x F x xx ⎧−≥⎪=⎨⎪<⎩17.在区间[0,a ]上任意投掷一个质点,以X 表示这质点的坐标,设这质点落在[0,a ]中任意小区间内的概率与这小区间长度成正比例,试求X 的分布函数. 【解】 由题意知X ~∪[0,a ],密度函数为1,0()0,x af x a⎧≤≤⎪=⎨⎪⎩其他 故当x <0时F (x )=0 当0≤x ≤a 时01()()d ()d d xx xx F x f t t f t t t a a−∞====∫∫∫当x >a 时,F (x )=1即分布函数0,0(),01,x x F x x a a x a<⎧⎪⎪=≤≤⎨⎪>⎪⎩ 18.设随机变量X 在[2,5]上服从均匀分布.现对X 进行三次独立观测,求至少有两次的观测值大于3的概率. 【解】X ~U [2,5],即1,25()30,x f x ⎧≤≤⎪=⎨⎪⎩其他5312(3)d 33P X x >==∫故所求概率为22333321220C ()C ()33327p =+=19.设顾客在某银行的窗口等待服务的时间X (以分钟计)服从指数分布1()5E .某顾客在窗口等待服务,若超过10分钟他就离开.他一个月要到银行5次,以Y 表示一个月内他未等到服务而离开窗口的次数,试写出Y 的分布律,并求P {Y ≥1}. 【解】依题意知1~()5X E ,即其密度函数为51e ,0()50,xx f x −⎧>⎪=⎨⎪≤⎩x 0该顾客未等到服务而离开的概率为25101(10)e d e 5x P X x −∞−>==∫2~(5,e )Y b −,即其分布律为225525()C (e )(1e ),0,1,2,3,4,5(1)1(0)1(1e )0.5167kk k P Y k k P Y P Y −−−−==−=≥=−==−−=20.某人乘汽车去火车站乘火车,有两条路可走.第一条路程较短但交通拥挤,所需时间X 服从N (40,102);第二条路程较长,但阻塞少,所需时间X 服从N (50,42). (1) 若动身时离火车开车只有1小时,问应走哪条路能乘上火车的把握大些? (2) 又若离火车开车时间只有45分钟,问应走哪条路赶上火车把握大些?【解】(1) 若走第一条路,X~N (40,102),则 406040(60)(2)0.977271010x P X P Φ−−⎛⎞<=<==⎜⎟⎝⎠若走第二条路,X~N (50,42),则506050(60)(2.5)0.993844X P X P Φ−−⎛⎞<=<==⎜⎟⎝⎠++故走第二条路乘上火车的把握大些.(2) 若X~N (40,102),则 404540(45)(0.5)0.69151010X P X P Φ−−⎛⎞<=<==⎜⎟⎝⎠若X~N (50,42),则504550(45)( 1.25)44X P X P Φ−−⎛⎞<=<=−⎜⎟⎝⎠1(1.25)0.1056Φ=−= 故走第一条路乘上火车的把握大些.21.设X ~N (3,22), (1) 求P {2<X ≤5},P {−4<X ≤10},P {|X |>2},P {X >3}; (2) 确定c 使P {X >c }=P {X ≤c }. 【解】(1) 23353(25)222X P X P −−−⎛⎞<≤=<≤⎜⎟⎝⎠11(1)(1)1220.841310.69150.5328ΦΦΦΦ⎛⎞⎛⎞=−−=−+⎜⎟⎜⎟⎝⎠⎝⎠=−+=433103(410)222X P X P −−−−⎛⎞−<≤=<≤⎜⎟⎝⎠770.999622ΦΦ⎛⎞⎛⎞=−−=⎜⎟⎜⎟⎝⎠⎝⎠(||2)(2)(2)P X P X P X >=>+<−323323222215151122220.691510.99380.6977X X P P ΦΦΦΦ−−−−−⎛⎞⎛⎞=>+<⎜⎟⎜⎟⎝⎠⎝⎠⎛⎞⎛⎞⎛⎞⎛⎞=−−+−=+−⎜⎟⎜⎟⎜⎟⎜⎟⎝⎠⎝⎠⎝⎠⎝⎠=+−=333(3)(1(0)0.522X P X P Φ−>=>=−=- (2) c=322.由某机器生产的螺栓长度(cm )X ~N (10.05,0.062),规定长度在10.05±0.12内为合格品,求一螺栓为不合格品的概率. 【解】10.050.12(|10.05|0.12)0.060.06X P X P ⎛−⎞−>=>⎜⎟⎝⎠1(2)(2)2[1(2)]0.0456ΦΦΦ=−+−=−=23.一工厂生产的电子管寿命X (小时)服从正态分布N (160,σ2),若要求P {120<X ≤200=≥0.8,允许σ最大不超过多少? 【解】120160160200160(120200)X P X P σσσ−−−⎛⎞<≤=<≤⎜⎟⎝⎠ 404040210.8ΦΦΦσσσ−⎛⎞⎛⎞⎛⎞=−=−≥⎜⎟⎜⎟⎜⎟⎝⎠⎝⎠⎝⎠故4031.251.29σ≤= 24.设随机变量X 分布函数为F (x )=e ,0,(0),00.xt A B x ,x λ−⎧+≥>⎨<⎩(1) 求常数A ,B ;(2) 求P {X ≤2},P {X >3}; (3) 求分布密度f (x ).【解】(1)由00lim ()1lim ()lim ()x x x F x F x F x →+∞→+→−=⎧⎪⎨=⎪⎩得11A B =⎧⎨=−⎩ (2) 2(2)(2)1eP X F λ−≤==−33(3)1(3)1(1e )e P X F λλ−−>=−=−−=(3) e ,0()()0,0x x f x F x x λλ−⎧≥′==⎨<⎩25.设随机变量X 的概率密度为f (x )=⎪⎩⎪⎨⎧<≤−<≤.,0,21,2,10,其他x x x x 求X 的分布函数F (x ),并画出f (x )及F (x ).【解】当x <0时F (x )=0当0≤x <1时0()()d ()d ()d xxF x f t t f t t f t t −∞−∞==+∫∫∫20d 2xx t t ==∫当1≤x<2时()()d xF x f t t −∞=∫1011122()d ()d ()d d (2)d 132222212xx f t t f t t f t tt t t tx x x x −∞==+=+−=+−−=−+−∫∫∫∫∫当x ≥2时()()d 1xF x f t t −∞==∫故 220,0,012()21,1221,2x x x F x x x x x <⎧⎪⎪≤<⎪=⎨⎪−+−≤<⎪⎪≥⎩26.设随机变量X 的密度函数为(1) f (x )=a e − |x |,λ>0;(2) f (x )=⎪⎩⎪⎨⎧<≤<<.,0,21,1,10,2其他x x x bx 试确定常数a ,b ,并求其分布函数F (x ).【解】(1) 由()d 1f x x ∞−∞=∫知||021e d 2e d x x aa x a x λλλ∞∞−−−∞===∫∫故 2a λ=即密度函数为 e ,02()e 02xx x f x x λλλλ−⎧>⎪⎪=⎨⎪≤⎪⎩当x ≤0时1()()d e d e 22xxx xF x f x x x λλλ−∞−∞===∫∫当x >0时0()()d e d e d 22xxxx F x f x x x x λλλλ−−∞−∞==+∫∫∫11e 2x λ−=−故其分布函数11e ,02()1e ,02xx x F x x λλ−⎧−>⎪⎪=⎨⎪≤⎪⎩ (2) 由1221111()d d d 22b f x x bx x x x ∞−∞==+=+∫∫∫得 b =1即X 的密度函数为2,011(),120,x x f x x x<<⎧⎪⎪=≤<⎨⎪⎪⎩其他当x ≤0时F (x )=0 当0<x <1时0()()d ()d ()d xxF x f x x f x x f x x −∞−∞==+∫∫∫2d 2xx x x ==∫当1≤x <2时012011()()d 0d d d x xF x f x x x x x x x −∞−∞==++∫∫∫∫312x=− 当x ≥2时F (x )=1 故其分布函数为20,0,012()31,1221,2x x x F x x x x ≤⎧⎪⎪<<⎪=⎨⎪−≤<⎪⎪≥⎩27.求标准正态分布的上α分位点, (1)α=0.01,求z α; (2)α=0.003,求z α,/2z α. 【解】(1) ()0.01P X z α>=即 1()0.01z αΦ−= 即 ()0.09z αΦ=故 2.33z α= (2) 由()0.003P X z α>=得1()0.003z αΦ−=即 ()0.997z αΦ= 查表得 2.75z α= 由/2()0.0015P X z α>=得/21()0.0015z α−Φ=即 /2()0.9985z αΦ= 查表得 /2 2.96z α= 28.设随机变量X 的分布律为 X −2 −1 0 1 3 P k1/5 1/6 1/5 1/15 11/30求Y =X 2的分布律.【解】Y 可取的值为0,1,4,91(0)(0)5117(1)(1)(1)615301(4)(2)511(9)(3)30P Y P X P Y P X P X P Y P X P Y P X =======−+==+====−=====故Y 的分布律为Y 0 1 4 9 P k1/5 7/30 1/5 11/3029.设P {X =k }=(12)k, k =1,2,…,令 1,1,.X Y X ⎧=⎨−⎩当取偶数时当取奇数时 求随机变量X 的函数Y 的分布律.【解】(1)(2)(4)(2)P Y P X P X P X k ===+=++=+242111()()(222111()/(1)443k =++++=−=2(1)1(1)3P Y P Y =−=−==30.设X ~N (0,1).(1) 求Y =e X 的概率密度; (2) 求Y =2X 2+1的概率密度; (3) 求Y =|X |的概率密度.【解】(1) 当y ≤0时,()()0Y F y P Y y =≤=当y >0时,()()(e )(ln )xY F y P Y y P y P X y =≤=≤=≤ln ()d yX f x x −∞=∫故2/2ln (),0y Y f y y −=> (2)2(211)1P Y X =+≥=当y ≤1时()()0Y F y P Y y =≤=当y >1时2()()(21)Y F y P Y y P X y =≤=+≤2P X X ⎛=≤≤≤⎜⎝()d X f x x =故()Y XX f y f f ⎤⎛=+⎥⎜⎜⎥⎝⎦(1)/4,1y y −−=>(3) (0)1P Y ≥=当y ≤0时()()0Y F y P Y y =≤=当y >0时()(||)()Y F y P X y P y X y =≤=−≤≤()d yX yf x x −=∫故d()()()()d Y Y X X f y F y f y f y y==+−2/2,0y y −=> 31.设随机变量X ~U (0,1),试求:(1) Y =e X 的分布函数及密度函数; (2) Z =−2ln X 的分布函数及密度函数. 【解】(1) (01)1P X <<=故 (1e e)1XP Y <=<= 当1y ≤时()()0Y F y P Y y =≤=当1<y <e 时()(e )(ln )XY F y P y P X y =≤=≤ln 0d ln yx y ==∫当y ≥e 时()(e )1XY F y P y =≤= 即分布函数0,1()ln ,1e 1,e Y y F y y y y ≤⎧⎪=<<⎨⎪≥⎩故Y 的密度函数为11e ,()0,Y y y f y ⎧<<⎪=⎨⎪⎩其他 (2) 由P (0<X <1)=1知(0)1P Z >=当z ≤0时,()()0Z F z P Z z =≤=当z >0时,()()(2ln )Z F z P Z z P X z =≤=−≤/2(ln )(e )2z z P X P X −=≤−=≥/21/2ed 1e z z x −−==−∫即分布函数-/20,0()1-e ,Z z z F z z ≤⎧=⎨>⎩0故Z 的密度函数为/21e ,0()20,z Z z f z z −⎧>⎪=⎨⎪≤⎩0 32.设随机变量X 的密度函数为f (x )=22,0π,π0,.xx ⎧<<⎪⎨⎪⎩其他 试求Y =sin X 的密度函数. 【解】(01)1P Y <<=当y ≤0时,()()0Y F y P Y y =≤=当0<y <1时,()()(sin )Y F y P Y y P X y =≤=≤(0arcsin )(πarcsin π)P X y P y X =<≤+−≤< arcsin π220πarcsin 22d d ππyy x x x x −=+∫∫222211arcsin 1πarcsin ππy y =+--()()2arcsin πy =当y ≥1时,()1Y F y = 故Y 的密度函数为201π()0,Y y f y ⎧<<⎪=⎨⎪⎩其他 33.设随机变量X 的分布函数如下:⎪⎩⎪⎨⎧≥<+=.)3(,)2(,)1(,11)(2x x x x F试填上(1),(2),(3)项. 【解】由lim ()1x F x →∞=知②填1。

全国自学考试概率论与数理统计二历年真题及答案

全国自学考试概率论与数理统计二历年真题及答案

全国 2010 年 7 月高等教育自学考试概率论与数理统计(二)试题课程代码: 02197一、单项选择题(本大题共 10 小题,每小题 2 分,共 20 分 )在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.设 A、B 为两事件,已知P(B)= 1,P(A B)= 2,若事件 A, B 相互独立,则P(A)=( )2 3A .1B .19 6 C.1 D .13 2 2.对于事件 A, B,下列命题正确的是( )A .如果 A,B 互不相容,则 A , B 也互不相容B.如果 A B,则 A BC.如果 A B,则 A BD.如果 A,B 对立,则 A , B 也对立3.每次试验成功率为p(0< p<1) ,则在3 次重复试验中至少失败一次的概率为( )3 B . 1-p 3A . (1-p)C. 3(1-p) D . (1- p)3+p(1- p) 2+p2(1-p)4.已知离散型随机变量X 的概率分布如下表所示:X -1 0 1 2 4P 1/ 10 1/5 1/10 1/5 2/5 则下列概率计算结果正确的是( )A . P(X=3)=0B . P(X=0)= 0C. P(X>-1)=1 D . P(X<4)= 15.已知连续型随机变量X 服从区间 [a,b] 上的均匀分布,则概率P X2a b( )3A . 0B .13C.2 D . 1 36.设 (X,Y)的概率分布如下表所示,当X 与 Y 相互独立时 ,(p,q)=( )Y-1 1 X0 1p 151 1 Q51 3 2510A.(1,1 ) B.(1,1)5 15 15 5C.(1,2) D.(2,1)10 15 15107.设 (X,Y)的联合概率密度为f(x,y)= k( xy),0 x 2,0 y 1, 则k=() 0, 其他 ,A .1B .13 2C. 1 D . 38.已知随机变量 X~ N (0, 1),则随机变量Y=2X+10 的方差为 ( ) A . 1 B . 2C. 4 D.149.设随机变量 X 服从参数为0.5 的指数分布,用切比雪夫不等式估计P(|X-2| ≥ 3) ≤ ( )A .1B .29 9C.1 D .43 910.由来自正态总体 X~ N (μ, 22)、容量为400 的简单随机样本,样本均值为45,则未知参数μ的置信度为0.95的置信区间是 (u0.025=1.96,u0.05=1.645)( )A . (44, 46)B . (44.804,45.196)C. (44.8355, 45.1645) D . (44.9, 45.1) 二、填空题 (本大题共15 小题,每小题2分,共 30 分)请在每小题的空格中填上正确答案。

概率论与数理统计2含答案

概率论与数理统计2含答案

一.填空题(共10分)已知P(A)=12,P BA c h=34,P(B) =58,则P( A ∣B ) =______ 。

设随机变量X 服从参数为 λ 的泊松分布,且已知P{ X= 7 } =P{ X= 9 },则 λ =___________。

3、样本(,,,)X X X n 12 来自总体2~(, )X N μσ,则22(1)~n n S σ- ______________;()~n X S μ- ____________。

其中X 为样本均值,S n X X n i n 22111=--=∑()。

4、设X X X n 12,, 是来自正态总体N (,)μσ2的样本,记1nn i ii Y a X ==∑,若n Y 为μ的无偏估计,则12,,...n a a a 满足的等式为 。

5、设总体~(1,)X B p ,其中未知参数01<<p , X X X n 12,, 是X 的 样本,则p的矩估计为________,样本的似然函数为_________。

(f x p p p x x(;)()=-1 为 X的 概 率 密 度 函 数 ) 二、选择题(共10分)6、4, 1, 0.6XY DX DY ρ===,则(32)D X Y -=( )。

( A ) 40 ( B ) 34 ( C ) 25.6( D ) 17.67、样本(,,,)X X X n 12 来自总体X ,已知X 服从参数λ=1的指数分布,则Max X X X n {,,,}12 的分布函数为( )。

( A )F z z e z z()=<-≥R S T - 0010 ( B ) F z z e z z n()()=<-≥R S T - 0010 ( C ) F z z e z z ()=<≥R S T - 000 ( D )0 0()n 0nzz F Z e z -<⎧=⎨≥⎩ 8、随机变量~(1,1)X N ,记X 的概率密度为f(x),分布函数为F( x ),则有( )。

历年自学考试01297概率论与数理统计(二)试题和答案

历年自学考试01297概率论与数理统计(二)试题和答案

全国2012年4月自学考试概率论与数理统计(二)试题一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1. 设A ,B 为随机事件,且A ⊂B ,则AB 等于( )A. A BB. BC. AD. A2. 设A ,B 为随机事件,则P (A-B )=( ) A. P (A )-P (B )B. P (A )-P (AB )C. P (A )-P (B )+ P (AB )D. P (A )+P (B )- P (AB ) 3. 设随机变量X 的概率密度为f (x )= ⎪⎩⎪⎨⎧<<其他,,,0,6331x 则P {3<X ≤4}=( )A. P {1<X ≤2}B. P {4<X ≤5}C. P {3<X ≤5}D. P {2<X ≤7}4. 已知随机变量X 服从参数为λ的指数分布, 则X 的分布函数为 ( )A. F (x )=⎩⎨⎧≤>-.0,00,e x x λx ,λB. F (x )=⎩⎨⎧≤>--.0,00,e 1x x λx ,λC. F (x )=⎩⎨⎧≤>--.0,00,e 1x x λx ,D. F (x )=⎩⎨⎧≤>+-.0,00,e 1x x λx ,5. 已知随机变量X~N (2,2σ), P {X ≤4}=0.84, 则P {X ≤0}= ( ) A. 0.16 B. 0.32 C. 0.68 D. 0.84 6. 设随机变量X 与Y 相互独立,且都服从标准正态分布,则2X -Y +1~ ( )A. N (0,1)B. N (1,1)C. N (0,5)D. N (1,5)7. 设随机变量X 与Y 相互独立,它们的概率密度分别为f X (x ), f Y (y ), 则(X ,Y ) 的概率密度为( )A. 21[ f X (x )+f Y (y )] B. f X (x )+f Y (y ) C.21f X (x ) f Y (y ) D. f X (x ) f Y (y )8. 设随机变量X ~B (n ,p ), 且E (X )=2.4, D (X )=1.44, 则参数n ,p 的值分别为( ) A. 4和0.6 B. 6和0.4 C. 8和0.3D.3和0.89. 设随机变量X 的方差D (X )存在,且D (X )>0,令Y =-X ,则ρXY =( ) A. -1 B.0 C. 1D.210. 设总体X ~N (2,32),x 1,x 2,…,x n 为来自总体X 的样本,x 为样本均值,则下列统计量中服从标准正态分布的是( ) A.32-x B.92-x C. nx /32-D.nx /92-二、填空题(本大题共15小题,每小题2分,共30分)请在每小题的空格上填上正确答案。

最新 年月全国自考概率论与数理统计(二)试题及答案

最新 年月全国自考概率论与数理统计(二)试题及答案

1 / 10全国2018年7月自学考试概率论与数理统计(二)课程代码:02197试卷来自百度文库 答案由绥化市馨蕾園的王馨磊导数提供一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.设A ={2,4,6,8},B ={1,2,3,4},则A -B =( ) A .{2,4} B .{6,8} C .{1,3}D .{1,2,3,4}.B AB A B A B A B A 中的元素,故本题选中去掉集合合说的简单一些就是在集的差事件,记作与事件不发生”为事件发生而解:称事件“-2.已知10件产品中有2件次品,从这10件产品中任取4件,没有取出次品的概率为( )A .15B .14C .13D .12.31789105678;844104104848410C C C P C C ,故选本题的概率件正品中取,共有从件中没有次品,则只能若种取法;件,共有件产品中任取解:从=⨯⨯⨯⨯⨯⨯== 3.设事件A ,B 相互独立,()0.4,()0.7,P A P A B =⋃=,则()P B =( ) A .0.2 B .0.3 C .0.4D .0.52 / 10()()()()()()()()()()()()()().5.04.04.07.0D B P B P B P B P A P B P A P AB P B P A P B A P B P A P AB P B A ,故选,解得代入数值,得,所以,相互独立,,解:=-+=-+=-+=⋃= 4.设某实验成功的概率为p ,独立地做5次该实验,成功3次的概率为( )A .35CB .3325(1)C p p -C .335C pD .32(1)p p -()()()()()().1335.,...2,1,0110~23355B p p C P k n n k p p C k P k A p p A n p n B X kn kk n n ,故选,所以,本题,次的概率恰好发生则事件,的概率为次检验中事件重贝努力实验中,设每定理:在,解:-====-=<<-5.设随机变量X 服从[0,1]上的均匀分布,Y =2X -1,则Y 的概率密度为( )A .1,11,()20,,Y y f y ⎧-≤≤⎪=⎨⎪⎩其他 B .1,11,()0,,Y y f y -≤≤⎧=⎨⎩其他C .1,01,()20,,Y y f y ⎧≤≤⎪=⎨⎪⎩其他D .1,01,()0,,Y y f y ≤≤⎧=⎨⎩其他()()[]()()()()()()[]()[][][]..01,121.01,1211.01,1212121.01,12121211,1212112010101110~A y y y y f y f y y h y h f y f y h y y h y y x x y x x f U X X Y X Y X 故选其他,,其他,,其他,,,得其他,,由公式,,即,其中,解得由其他,,,,,,解:⎪⎩⎪⎨⎧-∈=⎪⎩⎪⎨⎧-∈⨯=⎪⎩⎪⎨⎧-∈⎪⎭⎫ ⎝⎛+=⎩⎨⎧-∈'=='+=-∈+=-=⎪⎩⎪⎨⎧≤≤=-=3 / 106.设二维随机变量(X ,Y )的联合概率分布为( )则c =A .112B .16C .14 D .13()().611411211214161.1,...2,1,0B c c P j i P Y X jij iij ,故选,解得由性质②,得②,①:的分布律具有下列性质,解:==+++++==≥∑∑7.已知随机变量X 的数学期望E (X )存在,则下列等式中不恒成立....的是( ) A .E [E (X )]=E (X ) B .E [X +E (X )]=2E (X ) C .E [X -E (X )]=0D .E (X 2)=[E (X )]2()()()().D C B A XE X E E X E X 均恒成立,故本题选、、由此易知,即,期望的期望值不变,的期望是解:=8.设X 为随机变量2()10,()109E X E X ==,则利用切比雪夫不等式估计概率P{|X-10|≥6}≤( )A .14 B .518 C .34D .109364 / 10()()()()(){}(){}.416961091001092222A X P X D X E X P X E X E X D ,故选所以;切比雪夫不等式:,解:=≤≥-≤≥-=-=-=εε 9.设0,1,0,1,1来自X ~0-1分布总体的样本观测值,且有P {X =1}=p ,P {X =0}=q ,其中0<p <1,q =1-p ,则p 的矩估计值为( ) A .1/5 B .2/5 C .3/5D .4/5()()().53ˆ5301ˆC px p q p X E x X EX E x ,故选,所以,本题,,即估计总体均值用样本均值矩估计的替换原理是:解:===⨯+⨯== 10.假设检验中,显著水平α表示( ) A .H 0不真,接受H 0的概率 B .H 0不真,拒绝H 0的概率 C .H 0为真,拒绝H 0的概率D .H 0为真,接受H 0的概率{}.00C H H P ,故选为真拒绝即拒真,表示第一类错误,又称解:显著水平αα=二、填空题(本大题共15小题,每小题2分,共30分)请在每小题的空格中填上正确答案。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
,则 =
A.F(-∞,y) B.F(+∞,y)
C.F(y,-∞) D.F(y,+∞)
6.设二维随机变量(X,Y)的概率密度为 则X与Y
A.独立且同分布B.独立但不同分布
C.不独立但同分布D.不独立也不同分布
7.设X为随机变量,且D(5X)=50,则D(X)=
A.2 B.10
C.45 D.50
8.设随机变量x的方差存在,则Cov(X,X)=
1.设A,B为随机事件,则事件“A,B恰有一个发生”的正确表示是
2.设随机事件A与B相பைடு நூலகம்独立,P(A)>0,P(B)>0,则P(A B)=
3.下列各函数中是随机变量概率密度的为
4.设随机变量X~N(-3,2),则下列随机变量服从标准正态分布的是
5.设二维随机变量(X,Y)的分布函数为F(x,y),(X,Y)关于Y的边缘分布函数为
0.95的置信区间的长度不超过0.3,需调整测量次数,问测量次数n应不小于多少?
(附: =1.96)
27.设二维随机交量(X,Y)的分布律为
且P﹛Y=0﹜=0.4.求:(1)常数a,b;(2)(X,Y)关于X,Y的边缘分布律
四、综合题(本大题共2小题,每小题l2分。共24分)
请在答题卡上作答。
28.设随机变量X的概率密度为
29.设随机变量X与Y相互独立,X~N(0,4),Y~N(1,4),记U=X-Y+1,
3.第二部分为非选择题。必须注明大、小题号。使用0.5毫米黑色字迹签字笔作答。
4.合理安排答题空间,超出答题区域无效。
第一部分选择题
一、单项选择题(本大题共l0小题,每小题2分。共20分)
在每小题列出的四个备选项中只有一个是符合题目要求的,请将其选出并将“答题卡”的相应代码涂黑。未涂、错涂或多涂均无分。
V=X+Y.求:(1)E(U),E(V),D(U),D(V);(2)U,V的概率密度
(3)E(UV).
五、应用题(本大题共l小题,共l0分)
请在答题卡上作答。
30.测量某物体的质量9次,算得平均值 =15.4(g),已知测量数据
(单位:g).(1)求该物体质量的置信度为0.95的置信区间;(2)为了使置信度为
2014年10月高等教育自学考试全国统一命题考试
概率论与数理统计(二)试题和答案评分标准
课程代码:02197
本试卷共4页,满分l00分。考试时闻l50分钟。
考生答题注意事项:
1.本卷所有试题必须在答题卡上作答。答在试卷上无效,试卷空白处和背面均可作草稿纸。
2.第一部分为选择题。必须对应试卷上的题号使用2B铅笔将“答题卡”的相应代码涂黑。
A.E(X) B.
C. D.D(X)
9.已知二维随机变量(以y)的分布律为
A.0.8B.1.5
C.2.1 D.50
第二部分非选择题
二、填空题(本大题共l5小题,每小题2分,共30分)
请在答题卡上作答。
三、计算题(本大题共2小题,每小题8分,共16分)
请在答题卡上作答。
26.己知某专业男女生比例为2:1,在某次考试中,男生的及格率为81%,女生的及格率为90%.求:(1)此次考试的及格率;(2)及格学生中的男女生比例.
相关文档
最新文档