数列大题专题训练1(老师版)
数列训练(1) 数列通项的归纳

1 数列训练(1) 数列通项的归纳
数列通项的归纳:
1.图(1),(2),(3),(4)分别包含1,5,13和25个互不重叠的单位正方形,按同样的方式构造图形,则第50个图包含 个互不重叠的单位正方形. 答案 4901
2.右图是一个有n 层()2n ≥的六边形点阵.它的中心是一个点,算作第一层,第2层每边有2个点,第3层每边有3个点 ,…,第n 层每边有n 个点,则这个点阵的点数共有 个.【解析】2331n n -+。
3.已知数列:1213214321,,,,,,,,,,...,1121231234依它的前10项的规律,这个数列的第2010项2010a 满足( )
A .20101010a <<
B .20101110
a ≤< C .2010110a ≤≤ D . 201010a > 解析:将数列分组:1213214321,,,,,,,,,,...1121231234⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭
⎝⎭⎝⎭⎝⎭设2010a 位于第n 组,由(1)(1)201022
n n n n -+<<,解得63n =,所以2010a 位于第63组中的第63622010572⨯-=项,故2010757
a =,选B .
{}______.a ......654,32,1.410321=++=+==则中,数列a a a a n 50555...4746a 10=+++=。
高中数学第一章数列1.1数列1.1.2习题精选北师大版必修5

1.2数列的函数特性课后篇巩固探究A组1.数列{n2-4n+3}的图像是()A.一条直线B.一条直线上的孤立的点C.一条抛物线D.一条抛物线上的孤立的点解析:a n=n2-4n+3是关于n的二次函数,故其图像是抛物线y=x2-4x+3上一群孤立的点.答案:D2.已知数列{a n}的通项公式是a n=,则这个数列是()A.递增数列B.递减数列C.摆动数列D.常数列解析:∵a n+1-a n==>0,∴a n+1>a n,∴数列{a n}是递增数列.答案:A3.若数列{a n}的通项公式a n=,则在数列{a n}的前20项中,最大项和最小项分别是()A.a1,a20B.a20,a1C.a5,a4D.a4,a5解析:由于a n==1+,因此当1≤n≤4时,{a n}是递减的,且a1>0>a2>a3>a4;当5≤n≤20时,a n>0,且{a n}也是递减的,即a5>a6>…>a20>0,因此最大的是a5,最小的是a4.答案:C4.已知{a n}的通项公式a n=n2+3kn,且{a n}是递增数列,则实数k的取值范围是()A.k≥-1B.k>-C.k≥-D.k>-1解析:因为{a n}是递增数列,所以a n+1>a n对n∈N+恒成立.即(n+1)2+3k(n+1)>n2+3kn,整理得k>-,当n=1时,-取最大值-1,故k>-1.答案:D5.给定函数y=f(x)的图像,对任意a n∈(0,1),由关系式a n+1=f(a n)得到的数列{a n}满足a n+1>a n(n ∈N+),则该函数的图像是()解析:由a n+1>a n可知数列{a n}为递增数列,又由a n+1=f(a n)>a n可知,当x∈(0,1)时,y=f(x)的图像在直线y=x的上方.答案:A6.已知数列{a n}的通项公式是a n=,其中a,b均为正常数,则a n+1与a n的大小关系是.解析:∵a n+1-a n==>0,∴a n+1-a n>0,故a n+1>a n.答案:a n+1>a n7.已知数列{a n}的通项公式为a n=2n2-5n+2,则数列{a n}的最小值是.解析:∵a n=2n2-5n+2=2,∴当n=1时,a n最小,最小为a1=-1.答案:-18.导学号33194002已知数列{a n}满足a n+1=若a1=,则a 2017=.解析:a1=,a2=2a1-1=,a3=2a2-1=,a4=2a3=,…,所以{a n}是周期为3的周期数列,于是a2 017=a672×3+1=a1=.答案:9.已知数列{a n}的通项公式为a n=n2-21n+20.(1)-60是否是该数列中的项,若是,求出项数;该数列中有小于0的项吗?有多少项?(2)n为何值时,a n有最小值?并求出最小值.解(1)令n2-21n+20=-60,得n=5或n=16.所以数列的第5项,第16项都为-60.由n2-21n+20<0,得1<n<20,所以共有18项小于0.(2)由a n=n2-21n+20=,可知对称轴方程为n==10.5.又n∈N+,故n=10或n=11时,a n有最小值,其最小值为112-21×11+20=-90.10.已知函数f(x)=(x≥1),构造数列a n=f(n)(n∈N+).(1)求证:a n>-2;(2)数列{a n}是递增数列还是递减数列?为什么?(1)证明由题意可知a n=-2.∵n∈N+,∴>0,∴a n=-2>-2.(2)解递减数列.理由如下:由(1)知,a n=-2.∵a n+1-a n==<0,即a n+1<a n,∴数列{a n}是递减数列.B组1.若函数f(x)满足f(1)=1,f(n+1)=f(n)+3(n∈N+),则f(n)是()A.递增数列B.递减数列C.常数列D.不能确定解析:∵f(n+1)-f(n)=3(n∈N+),∴f(n+1)>f(n),∴f(n)是递增数列.答案:A2.设函数f(x)=数列{a n}满足a n=f(n),n∈N+,且数列{a n}是递增数列,则实数a 的取值范围是()A.(1,3)B.(2,3)C.D.(1,2)答案:B3.导学号33194003若数列{a n}的通项公式为a n=7·-3·,则数列{a n}的()A.最大项为a5,最小项为a6B.最大项为a6,最小项为a7C.最大项为a1,最小项为a6D.最大项为a7,最小项为a6解析:令t=,n∈N+,则t∈(0,1],且=t2.从而a n=7t2-3t=7.又函数f(t)=7t2-3t在上是减少的,在上是增加的,所以a1是最大项,a6是最小项.故选C.答案:C4.若数列{a n}的通项公式为a n=-2n2+13n,关于该数列,有以下四种说法:①该数列有无限多个正数项;②该数列有无限多个负数项;③该数列的最大值就是函数f(x)=-2x2+13x的最大值;④-70是该数列中的一项.其中正确的说法有.(填序号)解析:令-2n2+13n>0,得0<n<,故数列{a n}中有6项是正数项,有无限个负数项,所以①错,②正确;当n=3时,数列{a n}取到最大值,而当x=3.25时,函数f(x)取到最大值,所以③错;令-2n2+13n=-70,得n=10或n=-(舍去),即-70是该数列的第10项,所以④正确.答案:②④5.若数列中的最大项是第k项,则k=.解析:已知数列最大项为第k项,则有即由k∈N+可得k=4.答案:46.已知数列{a n}满足a n=+…+.(1)数列{a n}是递增数列还是递减数列?为什么?(2)证明:a n≥对一切正整数恒成立.(1)解因为a n=+…+,所以a n+1=+…+=+…+.所以a n+1-a n=,又n∈N+,所以.所以a n+1-a n>0.所以数列{a n}是递增数列.(2)证明由(1)知数列{a n}是递增数列,所以数列的最小项为a1=,所以a n≥a1=,即a n≥对一切正整数恒成立.7.导学号33194004已知数列{a n}的通项公式为a n=n2-n-30.(1)求数列的前三项,60是此数列的第几项?(2)n为何值时,a n=0,a n>0,a n<0?(3)该数列前n项和S n是否存在最值?说明理由.解(1)由a n=n2-n-30,得a1=1-1-30=-30,a2=22-2-30=-28,a3=32-3-30=-24.设a n=60,则n2-n-30=60.解得n=10或n=-9(舍去),即60是此数列的第10项. (2)令n2-n-30=0,解得n=6或n=-5(舍去).∴当n=6时,a n=0.令n2-n-30>0,解得n>6或n<-5(舍去).∴当n>6(n∈N+)时,a n>0.令n2-n-30<0,解得-5<n<6.又n∈N+,∴0<n<6,∴当0<n<6(n∈N+)时,a n<0.(3)由a n=n2-n-30=-30(n∈N+),知{a n}是递增数列,且a1<a2<…<a5<a6=0<a7<a8<a9<…,故S n存在最小值S5=S6,S n不存在最大值.。
专题:数列试题1[答案版]
![专题:数列试题1[答案版]](https://img.taocdn.com/s3/m/ed0fadce6137ee06eff9180d.png)
专题 数列第1讲 数列的基本概念1.已知数列{a n }对任意的p ,q ∈N *满足a p +q =a p +a q ,且a 2=-6,那么a 10等于( )A .-165B .-33C .-30D .-212.已知数列{a n }的前n 项和S n 满足S n =n 2+2n -1,则( ) A .a n =2n +1(n ∈N *) B .a n =2n -1(n ∈N *)C .a n =⎩⎪⎨⎪⎧ 2,(n =1),2n +1,(n ≥2,n ∈N *) D .a n =⎩⎪⎨⎪⎧2,(n =1),2n -1,(n ≥2,n ∈N *) 3.在数列{a n }中,已知a 1=1,且当n ≥2时,a 1a 2…a n =n 2,则a 3+a 5等于( ) A.73 B.6116 C.3115 D.1144.(2010年安徽)设数列{a n }的前n 项和S n =n 2,则a 8的值为( ) A .15 B .16 C .49 D .645.(2011年江西)已知数列(a n )的前n 项和S n 满足:S n +S m =S n +m ,且a 1=1,那么a 10=( )A .1B .9C .10D .556.已知数列{a n }满足:a 4n -3=1,a 4n -1=0,a 2n =a n ,n ∈N *,则a 2 009=________,a 2014=________.7.我们可以利用数列{a n }的递推公式a n =2,n n n a n ⎧⎪⎨⎪⎩,为奇数时,为偶数时,(n ∈N *)求出这个数列各项的值,使得这个数列中的每一项都是奇数.则a 24+a 25=________;研究发现,该数列中的奇数都会重复出现,那么第8个5是该数列的第________项.8.(2011年浙江)若数列⎩⎨⎧⎭⎬⎫n (n +4)(23)n 中的最大项是第k 项,则k =__________.9.(2011年广东广州)数列{a n }的前n 项和记为S n ,a 1=1,a n +1=2S n +1(n ≥1),求{a n }的通项公式.第2讲等差数列1.(2011年重庆)在等差数列{a n}中,a2=2,a3=4,则a10=()A.12 B.14 C.16 D.182.(2011届广东汕头)在等差数列{a n}中,a2+a12=32,则2a3+a15的值是()A.24 B.48 C.96 D.无法确定3.(2011年广东湛江测试)等差数列{a n}前17项和S17=51,则a5-a7+a9-a11+a13=()A.3 B.6 C.17 D.514.已知S n为等差数列{a n}的前n项和,若a1+a7+a13是一确定的常数,下列各式:①a21;②a7;③S13;④S14;⑤S8-S5.其结果为确定常数的是()A.②③⑤ B.①②⑤ C.②③④ D.③④⑤5.(2010年福建)设等差数列{a n}的前n项和为S n,若a1=-11,a4+a6=-6,则当S n 取最小值时,n等于()A.6 B.7 C.8 D.96.(2011年全国)设S n为等差数列{a n}的前n项和,若a1=1,公差d=2,S k+2-S k=24,则k=()A.8 B.7 C.6 D.57.等差数列{a n},{b n}的前n项和分别为S n,T n.若S nT n=7n+14n+27(n∈N*),则a7b7=________.8.(2011年辽宁)S n为等差数列{a n}的前n项和,S2=S6,a4=1,则a5=______.9.(2011年福建)已知等差数列{a n}中,a1=1,a3=-3.(1)求数列{a n}的通项公式;(2)若数列{a n}的前k项和S k=-35,求k的值.10.已知S n为等差数列{a n}的前n项和,S n=12n-n2.求数列的通项公式。
人教A版高中数学选修二第四章《数列》提高训练题 (1)(含答案解析)

(2)至少操作多少次,A、B两容器内的盐水浓度之差小于1%?(取lg 2=0.301 0,lg 3=0.477 1);
(3)求an,bn的表达式.
34.已知数列{an}的通项公式是 ,求其前n项和Sn.
35.设等差数列 的前 项和为 , , , .其中 且 ,则数列 的前 项和的最大值为________.
只有最大值,没有最小值,故B错误;
因为当 时, ,∴ ,故C正确;
因为 , ,所以满足条件的 的最大值为32,故D错误.
故选:AC.
11.ABC
【解析】
分 和 两种情况讨论,即可求解.
∵等差数列 , 的前n项和为 , ,
∴ ,
∴ ,又
∴
故选:A.
9.D
【解析】
推导出 , ,由 ,得 ,从而 ,进而 或 .由此利用分类讨论思想和递推思想能求出满足条件的 的值的个数.
解:由题意知 , ,
由 ,得 , , 或 .
①当 时, , , 或 , 或 .
②若 ,则 , 或 ,
当 时, ,此时, 或 ,
50.设数列 满足 .
(1)求数列 的通项公式;
(2)令 ,求数列 的前n项和 .
【答案与解析】
1.A
【解析】
根据等比数列的通项公式、求和公式求解即可.
设等比数列{an}的公比为q,则q>0.
∵a1+3a3= ,S3= ,
∴a1+3a1q2= ,a1(1+q+q2)= ,联立解得a1=2,q= .
则a4=2× =
20.已知数列{an}中,a1=1, ,则数列{an}的通项公式an=________.
21.如图,将数列 中的所有项按每一行比上一行多两项的规则排成数表已知表中的第一列 构成一个公比为2的等比数列,从第2行起,每一行都是一个公差为 的等差数列,若 ,则 ________.
(常考题)北师大版高中数学必修五第一章《数列》测试题(含答案解析)(1)

一、选择题1.设等比数列{}n a 的前n 项和为n S ,且4331S S S =-,若11a >,则( ) A .13a a <,24a a < B .13a a >,24a a < C .13a a <,24a a >D .13a a >,24a a >2.已知数列{}n a 中,12a =,()*,N n m n m a a a n m +=⋅∈,若1234480k k k k a a a a +++++++=,则k =( )A .3B .4C .5D .63.已知等差数列{}n a 满足3434a a =,则该数列中一定为零的项为( )A .6aB .7aC .8aD .9a4.记n S 为等比数列{}n a 的前n 项和.若2342S S S =+,12a =,则2a =( ) A .2B .-4C .2或-4D .45.在等差数列{}n a 中,0n a ≠,()21102n n n a a a n -+-+=≥,若2138n S -=,则n =( ).A .38B .20C .10D .96.数列{}n a 的前n 项和为()21n S n n =-(*n ∈N ),若173a a ka +=,则实数k 等于( ) A .2B .3C .269D .2597.我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的底层共有灯( ) A .64盏B .128盏C .192盏D .256盏8.若{}n a 是等比数列,其公比是q ,且546,,a a a -成等差数列,则q 等于( ) A .-1或2B .1或-2C .1或2D .-1或-29.已知函数()()31f x x x =-+,数列{}n a 中各项互不相等,记()()()12n n S f a f a f a =+++,给出两个命题:①若等差数列{}n a 满足55S =,则33a =;②若正项等比数列{}n a 满足33S =,则21a <;其中( )A .①是假命题,②是真命题B .①是真命题,②是假命题C .①②都是假命题D .①②都是真命题10.设等差数列{}n a 的前n 项和为n S ,523S =,360n S =,5183n S -=,则n =( ) A .18B .19C .20D .2111.等差数列{}n a 中,10a >,310S S =,则当n S 取最大值时,n 的值为 ( ) A .6B .7C .6或7D .不存在12.已知数列{}n a 为等差数列,10a <且1231990a a a a +++⋅⋅⋅+=,设()*12n n n n b a a a n N ++=∈,当{}n b 的前n 项和n S 最小时,n 的值有( )A .5个B .4个C .3个D .2个二、填空题13.数列{}n a 中,16a =,29a =,且{}1n n a a +-是以2为公差的等差数列,则n a =______.14.数列{}n a 中,11a =,212a =,11211(2)n n n n a a a +-=+≥,则{}1n n a a +⋅的前n 项和n S =__________.15.已知公差不为0的等差数列的首项12a =,前n 项和为n S ,且________(①1a ,2a ,4a 成等比数列;②(3)2n n n S +=;③926a =任选一个条件填入上空).设3n n a b =,n n n a c b =,数列{}n c 的前n 项和为n T ,试判断n T 与13的大小. 16.已知数列{}n a 与{}n b 满足11222n n a a a ++++=-,1(1)(1)nn n n a b a a +=--,数列{}n b 的前n 项的和为n S ,若n S M ≤恒成立,则M 的最小值为_________.17.数列{}n a 满足:112a =,212n n a a a n a ++⋯+=⋅,则数列{}n a 的通项公式n a =___________.18.设无穷数列{a n }的前n 项和为S n ,下列有三个条件: ①m n m n a a a +⋅=; ②S n =a n +1+1,a 1≠0;③S n =2a n +1p(p 是与n 无关的参数).从中选出两个条件,能使数列{a n }为唯一确定的等比数列的条件是______.19.已知数列{}n a 的前n 项和为n S ,且11a =,()112n n a S n -=+≥,则4a =______. 20.我们知道,斐波那契数列是数学史上一个著名数列,在斐波那契数列{}n a 中,()*12211,1,n n n a a a a a n ++===+∈N .用n S 表示它的前n 项和,若已知2020S m =,那么2022a =_______.三、解答题21.已知各项均为正数的数列{}n a 的前n 项和满足1n S >,且()()*612,n n n S a a n =++∈N .(1)求{}n a 的通项公式: (2)设数列{}n b 满足,2n n na nb n ⎧=⎨⎩是奇数,是偶数,并记n T 为{}n b 的前n 项和,求2n T . 22.从①()*123(1)2n n n b b b b n +++++=∈N ,②{}n b 为等差数列且215227b b b =+=,,这两个条件中选择一个条件补充到问题中,并完成解答.问题:已知数列{}{},n n a b 满足2n bn a =,且___________. (1)证明:数列{}n a 为等比数列;(2)若m c 表示数列{}n b 在区间()0,m a 内的项数,求数列{}m c 前m 项的和m T . 23.已知数列{}n a 的首项为4. (1)若数列{}2nn a -是等差数列,且公差为2,求{}na 的通项公式.(2)在①3248a a -=且20a >,②364a =且40a >,③20212201716a a a =这三个条件中任选一个,补充在下面的问题中并解答. 问题,若{}n a 是等比数列,__________,求数列(){}31nn a -的前n 项和nS.24.已知数列{}n a 的前n 项和n S 满足()*224n n S a a n N =-∈,且1a ,2a ,31a-成等差数列.(1)求数列{}n a 的通项公式; (2)设()()222221log log +=n n n b a a ,{}n b 的前项和为n T ,对任意*n N ∈,23n m T >恒成立,求m 的取值范围.25.在①222n n S n a =+,②3516a a +=且3542S S +=,③2142n n S n S n +=+且756S =这三个条件中任选一个,补充在下面的问题中,并加以解答.问题:设数列{}n a 为等差数列,其前n 项和为n S ,_________.数列{}n b 为等比数列,11b a =,23b a =.求数列1n n b S ⎧⎫+⎨⎬⎩⎭的前n 项和n T . 26.若数列{}n a 对任意连续三项12,,i i i a a a ++,均有()()2210()i i i i a a a a i N *+++-->∈,则称该数列为“跳跃数列”.(1)判断下列两个数列是否是跳跃数列: ① 等差数列:1,2,3,4,5,;② 等比数列:11111,,,,24816--;(2)跳跃数列{}n a 满足对任意正整数n 均有21195nn a a +-=,求首项1a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】首先根据题中所给的条件4331S S S =-,11a >利用等比数列求和公式求出0q <,分情况讨论求得10q -<<,从而可以得到项之间的大小关系. 【详解】设等比数列{}n a 的公比为q , 由4331S S S =-可得431a S =-, 若1q =,则1113a a =-显然不成立,所以1q ≠, 所以()312111q a a q q -++=,即()232111q q a q +=-+, 因为22131024q q q ⎛⎫++=++> ⎪⎝⎭,210a >,所以30q <,所以0q <,当1q ≤-时,31q ≤-,211q q ++≥,因为11a >,则()232111q q a q +=-+不可能成立,所以10q -<<,()213110a a a q -=->,()224110a a a q q -=-<,所以13a a >,24a a <, 故选:B. 【点睛】关键点点睛:本题解题的关键是利用等比数列求和公式将已知条件化简得到()232111q q a q +=-+,结合11a >求出q 的范围.2.B解析:B 【分析】由已知,取1m =,则112n n n a a a a +=⋅=,得出数列{}n a 是以2为首项,2为公差的等比数列,根据等比数列的通项公式建立方程得可求得解. 【详解】因为数列{}n a 中,12a =,()*,N n m n m a a a n m +=⋅∈,所以取1m =,则112n n n a a a a +=⋅=,所以数列{}n a 是以2为首项,2为公差的等比数列,所以2nn a =,又1234480k k k k a a a a +++++++=,即12344220282k k k k +++++++=,即040238k ⨯=,解得4k =, 故选:B . 【点睛】关键点点睛:解决本题的问题的关键在于令1m =,得出数列{}n a 是以2为首项,2为公差的等比数列,利用等比数列的通项公式建立方程得解.3.B解析:B 【分析】由条件可得34a d =-,进而得n a (7)n d =-,从而得解. 【详解】33a 44a =,33a ∴()33444a d a d =+=+, 34d a ∴=-n a ∴3(3)a n d =+-⋅4(3)d n d =-+- (7)n d =- 70a ∴=,故选:B 【点睛】本题主要考查了等差数列的通项公式,等差数列的性质,属于基础题.4.B解析:B 【分析】利用等比数列的前n 项和公式求出公比,由此能求出结果. 【详解】∵n S 为等比数列{}n a 的前n 项和,2342S S S =+,12a =,∴()()()34212122211q q q qq--+=+--,解得2q =-,∴214a a q ==-,故选B . 【点睛】本题主要考查等比数列的性质以及其的前n 项和等基础知识,考查运算求解能力,是基础题.5.C解析:C 【分析】由2110n n n a a a -+-+=,可得2112n n n n a a a a -++==,得到2n a =,再根据等差数列的求和公式,得到2138(21)n n n S a --==,代入即可求解,得到答案. 【详解】由题意,等差数列{}n a 中,()21102n n n a a a n -+-+=≥,可得2112n n n n a a a a -++==,又0,n a ≠解得2n a =, 又由12121(21)()(2)3812n n n n a a n a S ---+==-=,即(21)823n -⨯=,解得10n =,故选C . 【点睛】本题主要考查了等差数列的性质,以及等差数列的求和公式的应用,其中解答中熟记等差数列的性质,求得2n a =和2138(21)n n n S a --==是解答本题的关键,着重考查了推理与运算能力,属于基础题.6.C解析:C 【分析】由已知结合递推公式可求n a ,然后结合等差数列的通项公式即可求解. 【详解】因为()21n S n n =-, 所以111a S ==,当2n ≥时,()()()12112343n n n a S S n n n n n -=-=----=-,111a S ==适合上式,故43n a n =-,因为173a a ka +=, ∴1259k +=, 解可得269k = 故选:C.本题主要考查了由数列前n 项和求数列的通项公式,考查来了运算能力,属于中档题.7.C解析:C 【分析】设塔的顶层共有1a 盏灯,第n 层的灯有n a 盏,则数列{}n a 是公比为2的等比数列,利用等比数列的前n 项和公式可求得1a 的值,进而可求得塔的底层的灯的盏数7a . 【详解】设塔的顶层共有1a 盏灯,第n 层的灯有n a 盏,则数列{}n a 是公比为2的等比数列, 由题意可知,一座7层塔所挂的灯的盏数为()71711212738112a S a -===-,解得13a =.因此,塔的底层的灯的盏数为6732192a =⨯=. 故选:C. 【点睛】本题考查等比数列及其前n 项和基本量的计算,考查推理能力与计算能力,属于中等题.8.A解析:A 【解析】分析:由546,,a a a -成等差数列可得5642a a a -+=,化简可得()()120q q +-=,解方程求得q 的值. 详解:546,,a a a -成等差数列,所以5642a a a -+=,24442a q a q a ∴-+=,220q q ∴--=,()()120q q ∴+-=,1q ∴=-或2,故选A.点睛:本题考查等差数列的性质,等比数列的通项公式基本量运算,属于简单题. 等比数列基本量的运算是等比数列的一类基本题型,数列中的五个基本量1,,,,,n n a q n a S ,一般可以“知二求三”,通过列方程组所求问题可以迎刃而解,解决此类问题的关键是熟练掌握等比数列的有关性质和公式,并灵活应用.9.A解析:A 【分析】先确定函数()f x 对称性与单调性,再结合等差数列的等距性确定3a ;结合基本不等式将等比数列性质转化到等差数列性质上,解不等式即得结果.因为()()()3311(1)1f x x x x x =-+=-+-+,而3y x x =+关于原点对称且在R 上单调递增,所以()f x 关于(1,1)对称且在R 上单调递增, 先证明下面结论:若()g x 为奇函数且在R 上单调递增,{}n a 为等差数列,123g()()()()0n a g a g a g a ++++=,则1230n a a a a ++++=.证明:若1230n a a a a ++++>,则当n 为偶数时,1211220n n n n a a a a a a -++=+==+>111()()()()+()0n n n n a a g a g a g a g a g a >-∴>-=-∴>同理21+122()()0,,()+()0n n n g a g a g a g a -+>>,即123g()()()()0n a g a g a g a ++++>与题意矛盾,当n 为奇数时,1211220n n n a a a a a -++=+==>类似可得12112()()0,()(),,()0n n n g a g a g a g a g a -++>+>,即123g()()()()0n a g a g a g a ++++>,与题意矛盾同理可证1230n a a a a ++++<也不成立,因此1230n a a a a ++++=再引申结论:若()f x 为关于(,)a b 函数且在R 上单调递增,{}n a 为等差数列,123()()()()n f a f a f a f a nb ++++=,则123n a a a a na ++++=证明过程只需令()()g x f x a b =+-,再利用上面结论即得.①若等差数列{}n a 满足55S =,即 12345()()()()()5f a f a f a f a f a ++++=,则123453555a a a a a a ++++=∴=, 31a ∴=,故①是假命题,②若正项等比数列{}n a 满足33S =, 即123()()()3f a f a f a ++= 因为数列{}n a 中各项互不相等,所以公比不为1,不妨设公比大于1,即123123()()()a a a f a f a f a <<∴<<,因为1322a a a +>=∴2()1f a <,()3222111a a a -+<∴<故②是真命题 故选:A 【点睛】本题考查函数()f x 对称性与单调性、等差数列性质、基本不等式应用,考查综合分析判断能力,属中档题.10.A解析:A 【分析】根据题意,由等差数列的前n 项和公式可得()155355232a a S a+⨯===,变形可得3235a =,又由5432125360183177n n n n n n n n S S a a a a a a ------++-=+===+-,变形可得21775n a -=,结合等差数列的性质分析可得答案. 【详解】根据题意,等差数列{}n a 中,523S =,则()155355232a a S a+⨯===,变形可得3235a =, 又由360n S =,5183n S -=,则5432125360183177n n n n n n n n S S a a a a a a ------++-=+===+-,则21775n a -=, 又由360n S =,则()()()13223177203602210n n n a a n a a n n S n -+⨯+⨯+⨯=====,解可得18n =. 故选:A. 【点睛】本题考查利用等差数列求和公式求参数,同时也考查了等差数列基本性质的应用,考查计算能力,属于中等题.11.C解析:C 【解析】设等差数列{}n a 的公差为d ∵310S S = ∴()()113319913922a d a d ⨯-⨯-+=+∴160a d += ∴70a = ∵10a >∴当n S 取最大值时,n 的值为6或7 故选C12.B解析:B 【分析】根据等差数列的性质可知1000a ,从而判断数列{}n a 是单调递增数列,即可判断当{}n b 的前n 项和n S 最小时,n 可取的值. 【详解】数列{}n a 为等差数列,119921981002a a a a a ,1231990a a a a +++⋅⋅⋅+=,则1001990a ,即1000a ,10a <,可以判断数列{}n a 是单调递增数列,991010,0a a , 12n n n n b a a a ++=,12323412nn n n S a a a a a a a a a ,当{}n b 的前n 项和n S 最小时,n 可取的值为97,98,99,100共4个. 故选:B. 【点睛】本题主要考查等差数列的性质,属于中档题.二、填空题13.【分析】由是以2为公差的等差数列可得:再利用累加求和方法等差数列的求和公式即可得出【详解】∵是以2为公差的等差数列∴∴故答案为:【点睛】本题考查了等差数列的通项公式与求和公式累加求和方法考查了推理能 解析:25n +【分析】由{}1n n a a +-是以2为公差的等差数列,可得:121n n a a n --=-,再利用累加求和方法、等差数列的求和公式即可得出. 【详解】∵{}1n n a a +-是以2为公差的等差数列, ∴()()1212221n n a a a a n n --=-+-=-,∴()()()12116321n n n a a a a a a n -=+-+⋯⋯+-=++⋯⋯+-()2121552n n n +-=+=+, 故答案为:25n +. 【点睛】本题考查了等差数列的通项公式与求和公式、累加求和方法,考查了推理能力与计算能力,属于中档题.14.【分析】根据利用等差中项得到是等差数列然后由利用裂项相消法求和【详解】∵∴是等差数列又∴∴∴∴故答案为:【点睛】本题主要等差中项以及裂项相消法求和还考查了运算求解的能力属于中档题 解析:1n n + 【分析】 根据11211(2)n n n n a a a +-=+≥,利用等差中项得到1n a ⎧⎫⎨⎬⎩⎭是等差数列,然后由 1111(1)1n n a n n a n n +==-++⋅,利用裂项相消法求和.【详解】 ∵11211(2)n n n n a a a +-=+≥, ∴1n a ⎧⎫⎨⎬⎩⎭是等差数列, 又11a =,212a =, ∴21111d a a =-=, ∴1nn a ,1n a n=,∴1111(1)1n n a n n a n n +==-++⋅∴11111111 (1111)1223341n nS n n n n -+-+-++--=+=+=+. 故答案为:1nn + 【点睛】本题主要等差中项以及裂项相消法求和,还考查了运算求解的能力,属于中档题.15.选①:;选②:当时;当时;当时;选③:【分析】任选一个条件求出数列公差及通项利用错位相减法求和再比较大小可得解【详解】若选①设公差为因为成等比数列所以解得或0(不合舍去)所以所以利用错位相减可得;若解析:选①:13n T <;选②:当1n =时,12193T =<;当2n =时,21133T ==;当3n ≥时,3311813n T T ≥=>;选③:13n T <.【分析】任选一个条件,求出数列{}n a 公差及n b ,n c 通项,利用错位相减法求和,再比较大小可得解. 【详解】若选①,设公差为d ,因为1a ,2a ,4a 成等比数列,所以2(2)2(23)d d +=+,解得2d =或0(不合,舍去),所以2n a n =,9n n b =所以29n n nc =,利用错位相减可得1991213232993n n n n T +=-⨯-<; 若选②,因为(3)2n n n S +=,所以公差1d =,所以1n a n =+,13n n b +=所以113n n n c ++=,利用错位相减可得11515()()24312n n T n +=--⨯+当1n =时,12193T =<; 当2n =时,21133T ==;当3n ≥时,3311813n T T ≥=>; 若选③,因为926a =,所以公差3d =,所以31n a n =-,所以31313n n n c --=, 利用错位相减可得1652346911676676273n n n T -=-⨯<. 【定睛】本题考查等差数列通项及错位相减法求和,属于基础题.16.【分析】由已知式写出为的式子相减求得检验是否相符求得用裂项相消法求得和由表达式得的范围从而得最小值【详解】∵所以时两式相减得又所以有从而显然所以的最小值为1故答案为:1【点睛】方法点睛:本题主要考查 解析:1【分析】由已知式写出n 为1n -的式子,相减求得n a ,检验1a 是否相符,求得n b ,用裂项相消法求得和n S ,由n S 表达式得M 的范围,从而得最小值. 【详解】 ∵11222n n a a a ++++=-,所以2n ≥时,12122n n a a a -+++=-,两式相减得1222n n nn a +=-=,又21222a =-=,所以*n N ∈,有2nn a =,从而11211(21)(21)2121n n n n n n b ++==-----,122231111111212121212121n n n n S b b b +⎛⎫⎛⎫⎛⎫=+++=-+-++- ⎪ ⎪ ⎪------⎝⎭⎝⎭⎝⎭11121n +=--,显然1n S <,所以1M ≥,M 的最小值为1.故答案为:1. 【点睛】方法点睛:本题主要考查求数列的通项公式,考查裂项相消法求和,数列求和的常用方法有:(1)公式法,(2)错位相减法,(3)裂项相消法,(4)分组(并项)求和法,(5)倒序相加法.17.【分析】当时作差即可得到再利用累乘法求出数列的通项公式即可;【详解】解:因为①;当时②;①减②得即所以所以所以所以……所以所以又所以当时也成立所以故答案为:【点睛】对于递推公式为一般利用累乘法求出数 解析:21n n+ 【分析】当2n ≥时,()212111n n a a a n a --++⋯+=-⋅,作差即可得到111n n a n a n --=+,再利用累乘法求出数列的通项公式即可; 【详解】解:因为212n n a a a n a ++⋯+=⋅①;当2n ≥时,()212111n n a a a n a --++⋯+=-⋅②;①减②得()2211n n n a n a n a -=⋅-⋅-,即()()22111n n n a n a -⋅-⋅-=,所以()()()21111n n n n a n a --+=⋅-⋅,所以()()111n n n a n a -⋅-⋅+=,所以111n n a n a n --=+ 所以2113a a =,3224a a =,4335a a =,……,111n n a n a n --=+,所以324211312313451n n a a a a n a a a a n --⋅⋅⋅⨯⨯⨯=⨯+,所以()121n a a n n =+,又112a =,所以()11n a n n =+,当1n =时()11n a n n =+也成立,所以()11n a n n =+故答案为:()11n n +【点睛】对于递推公式为()1nn a f n a -=,一般利用累乘法求出数列的通项公式,对于递推公式为()1n n a a f n --=,一般利用累加法求出数列的通项公式;18.①③【分析】选①②在①中令在②中令联立方程由方程无解推出矛盾;选①③在③中由通项与前项和之间的关系求出公比在①中令在③中用表示出联立方程求出确定数列;选②③由通项与前项和之间的关系即可作出判断【详解解析:①③ 【分析】选①②,在①中令1m n ==,在②中令1n =联立方程,由方程无解推出矛盾;选①③,在③中由通项与前n 项和之间的关系求出公比,在①中令1m n ==,在③中用12,a a 表示出12,S S 联立方程,求出1,a p 确定数列{}n a ;选②③,由通项与前n 项和之间的关系即可作出判断. 【详解】在①中,令1m n ==,得221a a =;在②中,11n n S a +=+,当2n ≥时, 11n n S a -=+,两式相减,得1n n n a a a +=-,即12n n a a +=;在③中,11112,2n n n n S a S a p p++=+=+,两式相减,得 1122n n n a a a ++=-,即 12n n a a +=,若选①②,则22112,1a a a a ⎧=⎨=+⎩即 2211111,10a a a a =--+=, 2(1)41130∆=--⨯⨯=-<,方程无解,故不能选①②作为条件;若选①③,则由12n n a a +=知,数列{}n a 的公比为2,由 221111221212a a a a p a a a p ⎧⎪=⎪⎪=+⎨⎪⎪+=+⎪⎩得1212a p =⎧⎪⎨=-⎪⎩,所以数列 {}n a 是首项为2,公比为2的等比数列; 若选②③作为条件,则无法确定首项,数列{}n a 不唯一,故不能选②③作为条件. 综上所述,能使数列{}n a 为唯一确定的等比数列的条件是①③. 故答案为:①③ 【点睛】思路点睛:本题考查利用递推关系求数列中的项,涉及等比数列的判定和通项公式,遇到和与项的递推关系时,一般有两种方法:(1)消去和,得到项的递推关系;(2)消去项,得到和的递推关系.19.8【分析】根据可得两式相减可得利用递推关系即可求解【详解】①②②①得当时故答案为:8【点睛】本题主要考查了数列的项与前n 项和的关系考查了利用递推关系求数列的项属于中档题解析:8 【分析】根据()112n n a S n -=+≥可得11n n a S +=+,两式相减可得12n n a a +=(2)n ≥,利用递推关系即可求解. 【详解】()112n n a S n -=+≥①,11n n a S +∴=+②,②-①得,12n n a a +=(2)n ≥, 当2n =时,211112a S a =+=+=,3224a a ∴==, 4328a a ∴==,故答案为:8 【点睛】本题主要考查了数列的项n a 与前n 项和n S 的关系,考查了利用递推关系求数列的项,属于中档题.20.【分析】由已知利用累加法即可得到答案【详解】由已知各式相加得即又所以故答案为:【点睛】本题考查了累加求和方法斐波那契数列的性质考查了推理能力与计算能力属于中档题 解析:1m +【分析】由已知,123a a a +=,234,a a a +=202020212022a a a +=,利用累加法即可得到答案. 【详解】由已知,123a a a +=,234,a a a +=202020212022a a a +=,各式相加得1234202020222a a a a a a +++++=,即220202022a S a +=,又21a =,2020S m =,所以20221a m =+. 故答案为:1m + 【点睛】本题考查了“累加求和”方法、“斐波那契数列”的性质,考查了推理能力与计算能力,属于中档题.三、解答题21.(1)31n a n =-;(2)1224433n n T n n +-=+-.【分析】(1)令1n =,结合111a S =>可得12a =,由()()612n n n S a a =++,*n ∈N 可得()()111612n n n S a a +++=++,两式相减可得13n n a a +-=即可求{}n a 的通项公式;(2)24221321()(222)nn n T a a a -=++⋅⋅⋅++++⋅⋅⋅+,利用分组并项求和,以及等差和等比数列求和公式即可求解. 【详解】 (1)由()()11111126a S a a ==++,即()()11210a a --=, 因为111a S =>,所以12a =, 由()()612n n n S a a =++,*n ∈N 可得()()111612n n n S a a +++=++,两式相减可得()()()()11161212n n n n n a a a a a +++=++-++, 得()()1130n n n n a a a a +++--=, 又0n a >,得13n n a a +-=,所以{}n a 是首项为2公差为3的等差数列, 故{}n a 的通项公式为31n a n =-.(2)24221321()(222)nn n T a a a -=++⋅⋅⋅++++⋅⋅⋅+()242(28146222)4n n ++⋅⋅⋅+=++++-+12(264)4(14)4432143n n n n n n ++---=+=+--.【点睛】方法点睛:数列求和的方法(1)倒序相加法:如果一个数列{}n a 的前n 项中首末两端等距离的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可以用倒序相加法(2)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n 项和即可以用错位相减法来求;(3)裂项相消法:把数列的通项拆成两项之差,在求和时,中间的一些项可相互抵消,从而求得其和;(4)分组转化法:一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组转换法分别求和再相加减;(5)并项求和法:一个数列的前n 项和可以两两结合求解,则称之为并项求和,形如()()1nn a f n =-类型,可采用两项合并求解.22.条件选择见解析;(1)证明见解析;(2)122m m T m +=--.【分析】(1)选择①,可得(1)(1),22n n n n n b n +-=-=从而可得2,nn a =进而利用等比数列的定义可得结论;选择②,列出首项与公差的方程可得n b n =,从而可得2nn a =,进而利用等比数列的定义可得结论;(2)若选择①,则2nn a =,可得21m m c =-,利用分组求和法,结合等比数列的求和公式可得答案;选择②,则2nn a =,利用分组求和法,结合等比数列的求和公式可得答案; 【详解】(1)选择①,因为()*123(1)2n n n b b b b n N +++++=∈, 当1n =时,11b =, 当2n ≥时,(1)(1),122n n n n n b n n +-=-==时也成立,故n b n =. 所以1122,22n nn n n n a a a ++===, 所以数列{}n a 是以2为首项,2为公比的等比数列. 若选择②,设数列{}n b 公差为d , 由题意1112247b d b b d +=⎧⎨++=⎩,,得111b d =⎧⎨=⎩,,得n b n =,即2log n a n =,得2nn a =,所以11222n n n n a a ++==. 所以数列{}n a 是以2为首项,2为公比的等比数列.(2)若选择条件①,则2nn a =,所以1c 对应的区间为(0,2),则121c c =;对应的区间为(0,4),则23c =;3c 对应的区间为(0,8),则37c =;m c 对应的区间为()0,2m ,则21m m c =-;所以()1212122121212212m mm mT m m +-=-+-+-=-=---.若选择条件②,则2nn a =,所以1c 对应的区间为(0,2),则121c c =;对应的区间为(0,4),则23c =;3c 对应的区间为(0,8),则37c =;m c 对应的区间为()0,2m ,则21m m c =-;所以()1212122121212212m m m m T m m +-=-+-+-=-=---.【点睛】方法点睛:数列求和的常见方法:1、公式法;2、错位相减法;3、裂项相消法;4、分组求和法;5、倒序相加法. 23.(1)22nn a n =+;(2)()132483n n n S +-+=【分析】 (1)求出{}2nn a -首项,即可求出{}2n na-通项公式,得出{}n a 的通项公式;(2)设出公比,建立关系求出公比,再利用错位相减法即可求出n S . 【详解】解:(1)因为14a =,所以122a -=, 因为数列{}2nn a -是等差数列,且公差为2,所以()22212nn a n n -=+-=,则22n n a n =+.(2)选①:设公比为q ,由3248a a -=,得24448qq -=,解得4q =或3-,因为20a >,所以4q =. 故4nn a =.()22454314n n S n =⨯+⨯++-⨯, ()23142454314n n S n +=⨯+⨯++-⨯,两式相减得()()231383444314n n nS n +-=++++--,即()2114438313414n n n S n ++--=+⨯+--()12348n n +=--,故()132483n nn S +-+=. 选②:设公比为q ,由364a =,得2464q=,解得4q =±,因为20a >,所以4q =. 故4nn a =.()22454314n n S n =⨯+⨯++-⨯, ()23142454314n n S n +=⨯+⨯++-⨯,两式相减得()()231383444314n n nS n +-=++++--,即()2114438313414n n n S n ++--=+⨯+--()12348n n +=--,故()132483n nn S +-+=. 选③:设公比为q ,由20212201716a a a =,得20211201820181664a a a a ==,则364q =,所以4q =.故4nn a =.()22454314n n S n =⨯+⨯++-⨯, ()23142454314n n S n +=⨯+⨯++-⨯,两式相减得()()231383444314n n nS n +-=++++--,即()2114438313414n n n S n ++--=+⨯+--()12348n n +=--,故()132483n nn S +-+=. 【点睛】方法点睛:数列求和的常用方法:(1)对于等差等比数列,利用公式法可直接求解;(2)对于{}n n a b 结构,其中{}n a 是等差数列,{}n b 是等比数列,用错位相减法求和; (3)对于{}+n n a b 结构,利用分组求和法; (4)对于11n n a a +⎧⎫⎨⎬⎩⎭结构,其中{}n a 是等差数列,公差为d ,则111111n n n n a a d a a ++⎛⎫=- ⎪⎝⎭,利用裂项相消法求和. 24.(1)12n n a ;(2)233m <. 【分析】(1)根据题设中的递推关系有12n n a a -=,算出1a 后可求{}n a 的通项. (2)利用裂项相消法可求n T ,求出n T 的最小值后可得m 的取值范围. 【详解】(1)因为()*224n n S a a n N=-∈,故11224n n Sa a --=-,所以1244n n n a a a -=-即12n n a a -=,其中2n ≥,所以322a a =且212a a =, 因为1a ,2a ,31a -成等差数列,故21321a a a =+-即111441a a a =+-,故11a =且10a ≠,故0n a ≠,故12nn a a -=即{}n a 为等比数列且公比为2,故12n na .(2)()()()()2222211111log log 212122121n n n b a a n n n n +⎛⎫===- ⎪-+-+⎝⎭,所以1111111111213352121221n T n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-++-=- ⎪ ⎪ ⎪ ⎪⎢⎥-++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦, 因为0n b >,故{}n T 为增数列,故()1min 13n T T ==,故1323m>即233m <. 【点睛】方法点睛:数列求和关键看通项的结构形式,如果通项是等差数列与等比数列的和,则用分组求和法;如果通项是等差数列与等比数列的乘积,则用错位相减法;如果通项可以拆成一个数列连续两项的差,那么用裂项相消法;如果通项的符号有规律的出现,则用并项求和法. 25.见解析 【分析】根据选择的条件求出{}n a 的通项,再利用分组求和可得n T . 【详解】若选①,由222n n S n a =+可得1122a a =+,故12a =,又22422S a ⨯=+,故()222224a a =+⨯+,故24a =, 故等差数列的公差422d =-=,故()2212n a n n =+-=, 所以()()2212n n n S n n +==+, 所以12b =,26b =,所以等比数列{}n b 的公比为3q =,故123n n b -=⨯故()111111=232311n n n n b S n n n n --++⨯=-+⨯++, 故11111111131=231223341131n n n T n n n -⎛⎫⎛⎫⎛⎫⎛⎫-+-+-++-+⨯=- ⎪ ⎪ ⎪ ⎪+-+⎝⎭⎝⎭⎝⎭⎝⎭. 若选②,由题设可得11126163351042a d a d a d +=⎧⎨+++=⎩,解得122a d =⎧⎨=⎩,同①可得131nn T n =-+. 若选③,由题设可得1213S S =即212a a =,故1d a =,故1n a na =, 而74567S a ==,故48a =,故12a =,故2n a n =,同①可得131n n T n =-+. 【点睛】 方法点睛:等差数列或等比数列的处理有两类基本方法:(1)利用基本量即把数学问题转化为关于基本量的方程或方程组,再运用基本量解决与数列相关的问题;(2)利用数列的性质求解即通过观察下标的特征和数列和式的特征选择合适的数列性质处理数学问题.另外求和注意根据通项的特征选择合适的求和方法.26.(1)①不是跳跃数列;②是跳跃数列;(2)()()2,23,21-. 【分析】(1)①根据定义可直接判断其不是跳跃数列;②根据定义可直接判断其是跳跃数列; (2)根据条件分1n n a a +>和1n n a a +<两种情况求出n a 的取值范围,再求出首项1a 的取值范围.【详解】(1)①等差数列:1,2,3,4,5,,不满足()()2210()i i i i a a a a i N *+++-->∈,所以不是跳跃数列;②等比数列:11111,,,,24816--,满足()()2210()i i i i a a a a i N *+++-->∈,所以是跳跃数列;(2)由()2111955n n n n a a a a +-=--,得()()22211519195125n n n n n n a a a a a a ++-=----, ()()()22123195125n n n n n n a a a a a a +-=----.若1n n a a +>,则12n n n a a a ++>>,此时2n a ⎫∈⎪⎪⎝⎭;若1n n a a +<,则12n n n a a a ++<<,此时n a ⎛∈ ⎝⎭.若2n a ⎫∈⎪⎪⎝⎭,则21195n n a a +⎛-=∈ ⎝⎭,所以()12,2a ∈-;若53,2n a ⎛+∈ ⎝⎭,则()21192,25n n a a +-=∈-,所以(1a ∈, 所以()()12,23,21a ∈-. 【点睛】 求解等差等比的综合问题,需要分析清楚条件,根据条件描述的等差数列的性质还是等比数列的性质列式,然后再根据数列{}n a 是等差或者等比数列,将式子表示为基本量1,a d 或者1,a q 进行化简计算.。
(常考题)北师大版高中数学必修五第一章《数列》测试题(有答案解析)(1)

一、选择题1.设首项为1的数列{}n a 的前n 项和为n S ,且113,2,23,21,n n n a n k k N a a n k k N *-*-⎧+=∈=⎨+=+∈⎩,若4042m S >,则正整数m 的最小值为( )A .14B .15C .16D .172.数列{}n a 中,11a =,113,3,3n n n n a N a n a N *+*-⎧+∉⎪⎪=⎨⎪∈⎪⎩,使2021n a <对任意的()n k k *≤∈N 恒成立的最大k 值为( ) A .1008B .2016C .2018D .20203.2020年12月17日凌晨1时59分,嫦娥五号返回器携带月球样品成功着陆,这是我国首次实现了地外天体采样返回,标志着中国航天向前又迈出了一大步.月球距离地球约38万千米,有人说:在理想状态下,若将一张厚度约为0.1毫米的纸对折n 次其厚度就可以超过到达月球的距离,那么至少对折的次数n 是( )(lg 20.3≈,lg3.80.6≈) A .40B .41C .42D .434.已知数列{}n a 中,12a =,()*,N n m n m a a a n m +=⋅∈,若1234480k k k k a a a a +++++++=,则k =( )A .3B .4C .5D .65.在正项等比数列{}n a 中,若3788a a a =,2105a a +=,则公比q =( ) A .122B .122或1212⎛⎫ ⎪⎝⎭C .142D .142或1412⎛⎫ ⎪⎝⎭6.已知数列{}n a 中,其前n 项和为n S ,且满足2n n S a =-,数列{}2n a 的前n 项和为n T ,若20n n S T λ+>对*n N ∈恒成立,则实数λ的取值范围是( )A .(3,)+∞B .(1,3)-C .93,5⎛⎫⎪⎝⎭D .(1,)-+∞7.已知等差数列{}n a 的公差为2,前n 项和为n S ,且1S ,2S ,4S 成等比数列.令21n n n b a a +=,数列{}n b 的前n 项和为n T ,若对于*n N ∀∈,不等式n T λ<恒成立,则实数λ的取值范围是( ) A .13λ≥B .15λ>C .15λ≥D .0λ>8.已知椭圆2222x y a b +=1(a>b>0)与双曲线2222x y m n-=1(m>0,n>0)有相同的焦点(-c ,0)和(c ,0),若c 是a ,m 的等比中项,n 2是2m 2与c 2的等差中项,则椭圆的离心率是 ( )A B C .14 D .129.公元1202年意大利数学家列昂纳多·斐波那契以兔子繁殖为例,引入“兔子数列”:1,1,2,3,5,8,13,21,34,55,…,即121a a ==,12n n n a a a --=+(*3,n n ≥∈N ).此数列在现代物理、准晶体结构、化学等领域都有着广泛的应用.若记212n n n n b a a a ++=-(*n ∈N ),数列{}n b 的前n 项和为n S ,则2020S =( ) A .0B .1C .2019D .202010.若a ,b 是函数()()20,0f x x px q p q =-+>>的两个不同的零点,a ,b ,2-这三个数适当排序后可成等比数列,点(),2a b 在直线2100x y +-=上,则p q +的值等于( ) A .6B .7C .8D .911.已知等差数列{}n a 的前n 项和为n S ,满足28a =-,390n S -=,228n S =,则n =( ) A .10B .11C .12D .1312.已知数列{}n a 满足12a =,*11()12n na n N a +=-+∈,则2020a =( ) A .2B .13C .12-D .3-二、填空题13.给定*1log (2)()n n a n n N +=+∈,则使乘积12k a a a 为整数的()*k k ∈N 称为“和谐数”,则在区间内[1,2020]的所有“和谐数”的和为_______. 14.已知111,2n n a a a +==,若(1)n n n b a n =+-⋅,则数列{}n b 的前10项的和10S =______.15.已知等差数列{}n a 的前n 项和为n S ,若12020OB a OA a OC =+(向量OA 、OC 不平行),A 、C 、B 共线,则2020S =_________. 16.等比数列{}n a 的各项均为正数,且2414a a =,则2122232425log log log log log a a a a a ++++=___________.17.已知公差不为0的等差数列的首项12a =,前n 项和为n S ,且________(①1a ,2a ,4a 成等比数列;②(3)2n n n S +=;③926a =任选一个条件填入上空).设3n n a b =,n n n a c b =,数列{}n c 的前n 项和为n T ,试判断n T 与13的大小. 18.在数列{}n a 中, 11a =,212(2)n n n a a n ---=≥,则n a =_____.19.数列{}n a 满足:112a =,212n n a a a n a ++⋯+=⋅,则数列{}n a 的通项公式n a =___________.20.已知数列{}n a 的首项12a =,且满足132n n a a +=+(*N n ∈),则{}n a 的前n 项和n S =___________.三、解答题21.已知{}n a 是公差不为0的等差数列,若1313,,a a a 是等比数列{}n b 的连续三项. (1)求数列{}n b 的公比;(2)若11a =,数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 和为n S 且99200n S >,求n 的最小值. 22.已知数列{}n a 的前n 项和为n S ,首项11a =,121n n S S +=+. (1)求数列{}n a 的通项公式;(2)设n n b na =,记数列{}n b 的前n 项和为n T ,是否存在正整数n ,使得2021n T =?若存在,求出n 的值;若不存在,说明理由.23.在①2n an n b a =⋅,②10n n b a =-,③21n n n b a a +=这三个条件中任选一个,补充在下面问题中,并完成问题的解答.问题:已知数列{}n a 是各项均为正数的等差数列,22a =,且11a +、4a 、8a 成等比数列. (1)求数列{}n a 的通项公式;(2)记_____________,求数列{}n b 的前n 项和n S . 24.已知数列{}n a 的前n 项和为n S .()*22n n S a n N =-∈.(1)求数列{}n a 的通项公式;(2)从下面两个条件中选择一个填在横线上,并完成下面的问题.①24b =,48b =;②2b 是1b 和4b 的等比中项,872T =.若公差不为0的等差数列{}n b 的前n 项和为n T ,且______,求数列n n T na ⎧⎫⎨⎬⎩⎭的前n 项和n A .25.设等差数列{}n a 的首项1a 为()0a a >,其前n 项和为n S . (Ⅰ)若1S ,2S ,4S 成等比数列,求数列{}n a 的通项公式;(Ⅱ)若对任意的*n ∈N ,恒有0n S >,问是否存在()*2,k k k ≥∈N ,使得ln k S 、1ln k S +、2ln k S +成等比数列?若存在,求出所有符合条件的k 值;若不存在,请说明理由.26.在①121n n S S +=+,②214a =,③112n n S a +=-这三个条件中选择两个,补充在下面问题中,给出解答.已知数列{}n a 的前n 项和为n S ,满足____,____;又知正项等差数列{}n b 满足13b =,且1b ,32b -,7b 成等比数列.(1)求{}n a 和{}n b 的通项公式; (2)设nn nb c a =,求数列{}n c 的前项和n T .【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】根据已知递推关系求出数列{}n a 的奇数项加9成等比数列,偶数项加6成等比数列,然后求出2n S 后,检验141615,,S S S 可得. 【详解】当n 为奇数时,122232(3)329n n n n a a a a ---=+=++=+,所以292(9)n n a a -+=+,又1910a +=,所以1359,9,9,a a a +++成等比数列,公比为2,1219102n n a --+=⨯,即1211029n n a --=⨯-,当n 为偶数时,122323326n n n n a a a a ---=+=++=+,所以262(6)n n a a -+=+,又2134a a =+=,所以2469,9,9,a a a +++成等比数列,公比为2,126102n n a -+=⨯,即121026n n a -=⨯-,所以210(12)10(12)9620220151212n n n n S n n n --=-+-=⨯----,714202201572435S =⨯--⨯=,816202201584980S =⨯--⨯=, 7151415243510293706S S a =+=+⨯-=,所以满足4042m S >的正整数m 的最小值为16. 故选:C .【点睛】关键点点睛:本题考查由数列的递推关系求数列的和.解题关键是分类讨论,确定数列的奇数项与偶数项分别满足的性质,然后结合起来求得数列的偶数项的和2n S ,再检验n 取具体数值的结论.2.C解析:C 【分析】根据数列的通项公式,列出各项,找数列的规律,判断到哪一项是大于2021,即可得答案. 【详解】由已知可得,数列{}n a :1,4,7,4,7,10,7,10,13,,可得规律为1,4,7,4,7,10,7,10,13……此时将原数列分为三个等差数列:1,4,7,n a n =,{}31,n n n m m N ∈=+∈;4,7,10,2n a n =+,{}32,n n n m m N ∈=+∈;7,10,13,4n a n =+,{}33,n n n m m N ∈=+∈,当673m =时,312020n m =+=,即2020202120222020,2023,2026a a a ===. 而672m =时,312017n m =+=,即2017201820192017,2020,2023a a a ===, 所以满足2021n a <对任意的()n k k *≤∈N 恒成立的最大k 值为2018.故选:C. 【点睛】关于数列的项的判断,一般有两种题目类型,一种是具有周期的数列,可以通过列出前几项找出数列的周期,利用周期判断;另一种是数列的项与项之间存在规律,需要通过推理判断项与项之间的规律从而得数列的通项.3.C解析:C 【分析】设对折n 次时,纸的厚度为n a ,则{}n a 是以10.12a =⨯为首项,公比为2的等比数列,求出{}n a 的通项,解不等式460.12381010n n a =⨯≥⨯⨯即可求解【详解】设对折n 次时,纸的厚度为n a ,每次对折厚度变为原来的2倍, 由题意知{}n a 是以10.12a =⨯为首项,公比为2的等比数列,所以10.1220.12n nn a -=⨯⨯=⨯,令460.12381010n n a =⨯≥⨯⨯,即122 3.810n ≥⨯,所以lg 2lg 3.812n≥+,即lg 20.612n ≥+,解得:12.6420.3n ≥=, 所以至少对折的次数n 是42,故选:C 【点睛】关键点点睛:本题解题的关键是根据题意抽象出等比数列的模型,求出数列的通项,转化为解不等式即可.4.B解析:B 【分析】由已知,取1m =,则112n n n a a a a +=⋅=,得出数列{}n a 是以2为首项,2为公差的等比数列,根据等比数列的通项公式建立方程得可求得解. 【详解】因为数列{}n a 中,12a =,()*,N n m n m a a a n m +=⋅∈,所以取1m =,则112n n n a a a a +=⋅=,所以数列{}n a 是以2为首项,2为公差的等比数列,所以2nn a =,又1234480k k k k a a a a +++++++=,即12344220282k k k k +++++++=,即040238k ⨯=,解得4k =, 故选:B . 【点睛】关键点点睛:解决本题的问题的关键在于令1m =,得出数列{}n a 是以2为首项,2为公差的等比数列,利用等比数列的通项公式建立方程得解.5.D解析:D 【分析】由等比数列的性质可得出关于2a 、10a 的方程组,进而可求得等比数列{}n a 的公比. 【详解】由3788a a a =得()326753111168a q a q a q a q a ⋅⋅===,即62a =.22106()4a a a ∴==,又2105a a +=,解得21014a a =⎧⎨=⎩或21041a a =⎧⎨=⎩,0q >,11181084242a q a ⎛⎫∴=== ⎪⎝⎭或1111884104211242a q a -⎛⎫⎛⎫⎛⎫==== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.故选:D. 【点睛】关键点点睛:本题的解题关键就是利用等比数列下标和的性质建立有关2a 、10a 的方程组,通过求出2a 、10a 的值,结合等比数列的基本量来进行求解.6.D解析:D 【分析】由2n n S a =-利用1112nn n S n a S S n -=⎧=⎨-≥⎩ ,得到数列{}n a 是以1为首项,12为公比的等比数列,进而得到{}2n a 是以1为首项,14为公比的等比数列,利用等比数列前n 项和公式得到n S ,n T ,将20n n S T λ+>恒成立,转化为6321nλ-<-+,从而得出答案. 【详解】当1n =时,112S a =-,得 11a =;当2n ≥时,由2n n S a =-,得112n n S a --=-,两式相减得112n n a a -=, 所以数列{}n a 是以1为首项,12为公比的等比数列. 因为112n n a a -=,所以22114n n a a -=.又211a =,所以{}2n a 是以1为首项,14为公比的等比数列,所以1112211212n n n S ⎛⎫- ⎪⎡⎤⎛⎫⎝⎭==-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦-,11414113414nn n T ⎛⎫- ⎪⎡⎤⎛⎫⎝⎭==-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦-, 由20n n S T λ+>,得()()321210nnλ-++>,所以()()321321663212121n nn n n λ-+--<==-+++, 所以6332121λ-<-=-=+, 所以1λ>-.综上,实数λ的取值范围是(1,)-+∞. 故选: D 【点睛】方法点睛:数列与不等式知识相结合的考查方式主要有三种: 一是判断数列问题中的一些不等关系; 二是以数列为载体,考查不等式的恒成立问题;三是考查与数列问题有关的不等式的证明.在解决这些问题时,往往转化为函数的最值问题.7.A解析:A 【分析】根据1S ,2S ,4S 成等比数列,所以2214S S S =⋅,根据d =2,即可求得1a 的值,即可求得n a ,进而可得211111()(21)(23)42123n n n b a a n n n n +===--+-+,利用裂项相消法即可求得n T 的表达式,分析即可得答案. 【详解】因为1S ,2S ,4S 成等比数列,所以2214S S S =⋅ 所以2141214()()[]2a a a a a ++=⋅,整理可得2111(22)2(26)a a a +=⋅+ 解得11a =,所以*12(1)21,n a n n n N =+-=-∈,所以211111()(21)(23)42123n n n b a a n n n n +===--+-+, 所以1111111111(1+++)45375923212123n T n n n n =-+-+-⋅⋅⋅---+-+=11111111(1)()432123342123n n n n +--=-+++++, 因为对于*n N ∀∈,不等式n T λ<恒成立, 所以111()042123n n +>++,即13n T <, 所以13λ≥. 故选:A【点睛】解题的关键是熟练掌握等差数列、等比数列的性质,并灵活应用,易错点为:在利用裂项相消法求和时,需注意是相邻项相消还是间隔项相消,考查分析理解,计算化简的能力,属中档题.8.D解析:D 【解析】由题意可知2n 2=2m 2+c 2. 又m 2+n 2=c 2, ∴m=2c . ∵c 是a ,m 的等比中项,∴2c am =, ∴22ac c =, ∴12c e a ==.选D . 9.A解析:A 【分析】由1n nb b +用递推式可得到值为-1,{}n b 是等比数列,再求前2020项和. 【详解】 由题意可知()2221121213221212n n n n n n n n n n n n n n n a a a a b a a a b a a a a a a ++++++++++++-+-===--()222211212212121n n n n n n n n n n n n n a a a a a a a a a a a a a ++++++++++---==---, 又212131b a a a =-=-,因此()1nn b =-,故()()()20201111110S =-++-+++-+=,故选:A. 【点睛】本题考查了通过递推数列揭示数列存在的规律即等比数列,还考查了数列求和,属于中档题.10.D解析:D 【分析】由零点定义得,a b p ab q +==得0,0a b >>,因此2-只能是等比数列的中间项,从而得4ab =,由点(),2a b 在直线2100x y +-=上,得5a b +=,这样可得,p q 值.从而得出结论. 【详解】∵a ,b 是函数()()20,0f x x px q p q =-+>>的两个不同的零点,∴,a b p ab q +==,∴0,0a b >>,而a ,b ,2-这三个数适当排序后可成等比数列,只能是2-是,a b 的等比中项,即4ab =,点(),2a b 在直线2100x y +-=上,则22100a b +-=,得5a b +=, 由45ab a b =⎧⎨+=⎩,∴5,4p q ==,9p q +=.故选:D . 【点睛】本题考查函数零点的概念,考查等比数列的定义,考查韦达定理,关键是由题意分析出0,0a b >>.11.C解析:C 【分析】根据数列是等差数列,结合等差数列的性质得313n n n S S a ---=,从而求得146n a -=,然后由121()()22n n n n a a n a a S -++==求解. 【详解】由题意得322890138n n S S --=-=, 所以13138n a -=. 所以146n a -=. 所以121()()1922822n n n n a a n a a S n -++====, 解得12n =. 故选:C 【点睛】本题主要考查等差数列的前n 项和公式和等差数列的性质的应用,属于中档题.12.D解析:D 【分析】先利用题中所给的首项,以及递推公式,将首项代入,从而判断出数列{}n a 是周期数列,进而求得结果. 【详解】由已知得12a =,2211123a =-=+,32111213a =-=-+, 4213112a =-=--,521213a =-=-, 可以判断出数列{}n a 是以4为周期的数列,故2020505443a a a ⨯===-, 故选:D. 【点睛】该题考查的是有关数列的问题,涉及到的知识点利用递推公式判断数列的周期性,从而求解数列的某项,属于中档题.二、填空题13.2026【分析】根据换底公式把代入并且化简转化为为整数即可求得区间内的所有和谐数的和【详解】由换底公式:得为整数∴分别可取最大值则最大可取10故所有和谐数的和为故答案为:2026【点睛】考查数列的综解析:2026 【分析】根据换底公式把1log (2)n n a n +=+代入12k a a a ⋯并且化简,转化为lg(2)lg 2k +为整数,即22n k +=,n *∈N ,可求得区间[1,2020]内的所有“和谐数”的和.【详解】由换底公式:log log log b a b NN a=, 得()231241log 3log 4log 5log 2k k a a a k +=⋯+122lg3lg 4lg5lg(2)lg(2)log (2)lg 2lg3lg 4lg(1)lg 2==++⋯⋅⋅⋅⋅=++k k k a a a k k 为整数,∴22n k +=,n *∈N ,k 分别可取23422,22,22---,最大值222020n -≤,则n 最大可取10, 故所有“和谐数”的和为()923104122221818202612-++⋅⋅⋅+-=-=-.故答案为:2026. 【点睛】考查数列的综合应用及对数的换底公式,把12k a a a ⋯化简并且转化为对数的运算,体现了转化的思想,属中档题.14.1028【分析】由题可知为等比数列求出的通项公式即可写出的通项公式利用分组求和法即可求出前10项和【详解】是首项为1公比为2的等比数列则故答案为:1028【点睛】本题考查等比数列的判断以及通项公式的解析:1028 【分析】由题可知{}n a 为等比数列,求出{}n a 的通项公式,即可写出{}n b 的通项公式,利用分组求和法即可求出前10项和. 【详解】111,2n n a a a +==,{}n a ∴是首项为1,公比为2的等比数列,11122n n n a --∴=⨯=,121nn nb n , 则910124212310S1011251102812.故答案为:1028.【点睛】本题考查等比数列的判断以及通项公式的求法,考查分组求和法求数列的前n 项和,属于基础题.15.【分析】先证明当共线且则根据题意可求得的值然后利用等差数列求和公式可求得的值【详解】当共线时则共线可设所以又则由于(向量不平行)共线则由等差数列的求和公式可得故答案为:【点睛】本题考查等差数列求和同 解析:1010【分析】先证明当A 、C 、B 共线且OB mOA nOC =+,则1m n +=,根据题意可求得12020a a +的值,然后利用等差数列求和公式可求得2020S 的值. 【详解】当A 、C 、B 共线时,则AB 、AC 共线,可设AB AC λ=, 所以,()OB OA OC OA λ-=-,()1OB OA OC λλ∴=-+, 又OB mOA nOC =+,则()11m n λλ+=-+=,由于12020OB a OA a OC =+(向量OA 、OC 不平行),A 、C 、B 共线,则120201a a +=,由等差数列的求和公式可得()120202020202020201101022a a S +⨯===.故答案为:1010. 【点睛】本题考查等差数列求和,同时也考查了三点共线结论的应用,考查计算能力,属于中等题.16.【分析】由题意利用等比数列的性质求得的值再利用对数的运算性质求得结果【详解】解:等比数列{an}的各项均为正数且∴则故答案为:【点睛】本题考查等比中项的性质考查运算求解能力求解时注意对数运算法则的运用 解析:5-【分析】由题意利用等比数列的性质求得3a 的值,再利用对数的运算性质,求得结果. 【详解】解:等比数列{a n }的各项均为正数, 且224314a a a ==,∴312a =, 则2122232425log log log log log a a a a a ++++523231og 5log 5(1)5a a ===⋅-=-,故答案为:5-. 【点睛】本题考查等比中项的性质,考查运算求解能力,求解时注意对数运算法则的运用.17.选①:;选②:当时;当时;当时;选③:【分析】任选一个条件求出数列公差及通项利用错位相减法求和再比较大小可得解【详解】若选①设公差为因为成等比数列所以解得或0(不合舍去)所以所以利用错位相减可得;若解析:选①:13n T <;选②:当1n =时,12193T =<;当2n =时,21133T ==;当3n ≥时,3311813n T T ≥=>;选③:13n T <.【分析】任选一个条件,求出数列{}n a 公差及n b ,n c 通项,利用错位相减法求和,再比较大小可得解. 【详解】若选①,设公差为d ,因为1a ,2a ,4a 成等比数列,所以2(2)2(23)d d +=+,解得2d =或0(不合,舍去),所以2n a n =,9n n b =所以29n n nc =,利用错位相减可得1991213232993n n n n T +=-⨯-<; 若选②,因为(3)2n n n S +=,所以公差1d =,所以1n a n =+,13n n b +=所以113n n n c ++=,利用错位相减可得11515()()24312n n T n +=--⨯+当1n =时,12193T =<; 当2n =时,21133T ==;当3n ≥时,3311813n T T ≥=>; 若选③,因为926a =,所以公差3d =,所以31n a n =-,所以31313n n n c --=, 利用错位相减可得1652346911676676273n n n T -=-⨯<. 【定睛】本题考查等差数列通项及错位相减法求和,属于基础题.18.【分析】利用累加法可求得数列的通项公式【详解】当时符合上式则故答案为:【点睛】本题考查由累加法求数列的通项公式属于基础题 解析:12n -【分析】利用累加法可求得数列的通项公式. 【详解】11a =,212(2)n n n a a n ---=≥∴()()()121321=+n n n a a a a a a a a --+-+⋅⋅⋅+-0121+2+2++2n -=⋅⋅⋅()()2212122+2221212n n n ----==+-=-∴12nna ()2,*n n N ≥∈当=1n 时,11a =符合上式,则12n n a .故答案为:12n - 【点睛】本题考查由累加法求数列的通项公式,属于基础题.19.【分析】当时作差即可得到再利用累乘法求出数列的通项公式即可;【详解】解:因为①;当时②;①减②得即所以所以所以所以……所以所以又所以当时也成立所以故答案为:【点睛】对于递推公式为一般利用累乘法求出数 解析:21n n+ 【分析】当2n ≥时,()212111n n a a a n a --++⋯+=-⋅,作差即可得到111n n a n a n --=+,再利用累乘法求出数列的通项公式即可; 【详解】解:因为212n n a a a n a ++⋯+=⋅①;当2n ≥时,()212111n n a a a n a --++⋯+=-⋅②;①减②得()2211n n n a n a n a -=⋅-⋅-,即()()22111n n n a n a -⋅-⋅-=,所以()()()21111n n n n a n a --+=⋅-⋅,所以()()111n n n a n a -⋅-⋅+=,所以111n n a n an --=+ 所以2113a a =,3224a a =,4335a a =,……,111n n a n a n --=+,所以324211312313451n n a a a a n a a a a n --⋅⋅⋅⨯⨯⨯=⨯+,所以()121n a a n n =+,又112a =,所以()11n a n n =+,当1n =时()11n a n n =+也成立,所以()11n a n n =+故答案为:()11n n +【点睛】对于递推公式为()1nn a f n a -=,一般利用累乘法求出数列的通项公式,对于递推公式为()1n n a a f n --=,一般利用累加法求出数列的通项公式;20.【分析】根据递推公式构造等比数列求出再分组根据等比数列求和公式可得结果【详解】由得因为所以是首项为公比为的等比数列所以所以所以故答案为:【点睛】关键点点睛:构造等比数列求解是解题关键解析:()11332n n +-- 【分析】 根据递推公式构造等比数列{1}n a +,求出n a ,再分组根据等比数列求和公式可得结果. 【详解】由132n n a a +=+得113(1)n n a a ++=+,因为1130a +=≠,所以{1}n a +是首项为3,公比为3的等比数列,所以11333n nn a -+=⨯=,所以31n n a =-,所以1233333n n S n =++++-3(13)13n n -=--()11332n n +=--. 故答案为:()11332n n +-- 【点睛】关键点点睛:构造等比数列{1}n a +求解是解题关键.三、解答题21.(1)5;(2)50. 【分析】(1)利用基本量代换,求出12d a =,直接求出公比; (2)裂项相消法求出n S ,解不等式即可. 【详解】(1)设等差数列{}n a 的公差为d ,由1313,,a a a 是等比数列{}n b 的连续三项,得23113a a a =⋅,即()()2111212a d a a d +=⋅+,化简得2148d a d =.10,2d d a ≠∴=.设数列{}n b 的公比的公比为q ,则3111111245a a d a a q a a a ++====. (2)若11a =,则1111112,21,(21)(21)22121n n n d a n a a n n n n +⎛⎫==-==- ⎪-+-+⎝⎭, 111112133557(21)(21)n S n n ⎫⎛=++++⎪ ⨯⨯⨯-⨯+⎝⎭111111111111233557212122121nn n n n ⎛⎫⎛⎫=-+-+-++-=-= ⎪ ⎪-+++⎝⎭⎝⎭. 由99200n S >,得9999,212002n n n >∴>+,故n 的最小值为50.【点睛】(1)等差(比)数列问题解决的基本方法:基本量代换;(2)数列求和的方法:公式法、裂项相消法、错位相减法、倒序相加法. 22.(1)12n n a ;(2)不存在,理由见解析.【分析】(1)根据11n n n a S S ++=-以及等比数列的通项公式可求得结果;(2)利用错位相减法求出n T ,分别对1,2n n ==和3n ≥讨论等式是否成立可得答案. 【详解】(1)由121n n S S +=+①,知2n ≥时,121n n S S -=+②, ①-②得()122n n a a n +=≥,在①式中令12121212n a a a a =⇒+=+⇒=,212a a =, ∴对任意*n ∈N ,均有12n na a +=,∴{}n a 为等比数列,11122n n n a --=⨯=, (2)由(1)得12n n b n -=⋅,所以()01221122232122n n n T n n --=⋅+⋅+⋅++-⋅+⋅,所以()()12212122222122n n n n T n n n --=⋅+⋅++-⋅+-⋅+⋅,所以()12111212222221212nn nnn n nT n n n -⋅--=++++-⋅=-⋅=--⋅-,所以(1)21nn T n =-⋅+,令()()1212021122020nnn n -⋅+=⇒-⋅=,当1n =和2n =时,等式显然不成立;当3n ≥时,方程化为()212505n n --⋅=,左边为偶数,右边等于505为奇数,等式也不成立,故不存在正整数n ,使得2021n T =成立. 【点睛】关键点点睛:利用11n n n a S S ++=-求出通项公式,根据错位相减法求出n T 是解题关键. 23.(1)n a n =;(2)答案见解析. 【分析】(1)设等差数列{}n a 的公差为d ,根据已知条件可得出关于1a 、d 的方程组,解出这两个量的值,利用等差数列的通项公式可求得{}n a 的通项公式;(2)选①,求得2nn b n =⋅,利用错位相减法可求得n S ;选②,求得10,101010,10n n n b n n n -≤⎧=-=⎨->⎩,分10n ≤和10n >两种情况讨论,结合等差数列的求和公式可求得n S ; 选③,可得11122n b n n ⎛⎫- ⎪+⎝⎭=,利用裂项相消法可求得n S . 【详解】(1)因为11a +、4a 、8a 成等比数列,所以()24181a a a =+, 设等差数列{}n a 的公差为d ,则0d ≥, 则有()()()2111317a d a a d +=++,① 又22a =,所以12a d +=,② 联立①②解得111a d =⎧⎨=⎩,所以()11n a a n d n =+-=; (2)选①,则2nn b n =⋅,231222322n n S n =⨯+⨯+⨯++⨯()23121222122n n n S n n +=⨯+⨯++-⨯+⨯,上式-下式得()()2311121222222212212n n n n n n S n n n +++--=++++-⨯=-⨯=-⋅--,化简得()1122n n S n +=-⋅+;选②,则10,101010,10n n n b n n n -≤⎧=-=⎨->⎩,当10n ≤时,10n b n =-,()()9101922n n n n n S +--==; 当10n >时,()()()()2101109101918098101210+222n n n n n S n -+-⨯-+⎡⎤=++++++++-==⎣⎦.综上()219,10219180,102n n n n S n n n ⎧-≤⎪⎪=⎨-+⎪>⎪⎩;选③,则()1111222n b n n n n ⎛⎫==- ⎪++⎝⎭1111111111111213243546112n S n n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+-++-+- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥-++⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦()()2111113521212412n n n S n n n n +⎛⎫∴=+--=⎪++++⎝⎭. 【点睛】方法点睛:数列求和的常用方法:(1)对于等差等比数列,利用公式法直接求和;(2)对于{}n n a b 型数列,其中{}n a 是等差数列,{}n b 是等比数列,利用错位相减法求和;(3)对于{}n n a b +型数列,利用分组求和法; (4)对于11n n a a +⎧⎫⎨⎬⎩⎭型数列,其中{}n a 是公差为()0d d ≠的等差数列,利用裂项相消法求和.24.(1)2nn a =;(2)选择①:332n n +-;选择②:332nn +-. 【分析】(1)由数列n a 与n S 的关系转化条件为()122n n a a n -=≥,结合等比数列的性质即可得解;(2)设数列{}n b 的公差为d ,若选择①,由等差数列的通项公式列方程可得12b d ==,进而可得2n T n n =+,再结合错位相减法即可得解;若选择②,由等比中项的性质结合等差数列的通项公式、前n 项和公式可得12b d ==,再结合错位相减法即可得解. 【详解】(1)当1n =时,11122a S a ==-,可得12a =;当2n ≥时,1122n n S a --=-,所以1122n n n n n a S S a a --=-=-,即()122n n a a n -=≥,因为120a =≠,所以数列{}n a 是以2为首项,2为公比的等比数列,所以1222n nn a -=⋅=;(2)设数列{}n b 的公差为d ,若选择①,由题意11438b d b d +=⎧⎨+=⎩,解得12b d ==;所以()21222n n n T n n n -=⨯+⨯=+, 由(1)得,2nn a =,所以()2111222n n n n n T n n n n na n ++===+⨯⋅, 所以()12111112312222n n n A n n -=⨯+⨯+⋅⋅⋅+⨯++⨯, ()231111123122222n n n A n n +=⨯+⨯+⋅⋅⋅+⨯++⨯, 两式相减得()23411111111222222n n n A n +⎛⎫=++++⋅⋅⋅+-+⨯ ⎪⎝⎭()1111114213311122212n n n n n -++⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭+⎢⎥⎣⎦=+-+⨯=--, 所以332n nn A +=-; 若选择②,有2214b b b =⋅,即()()21113b d b b d +=⋅+,即21b d d =,因为0d ≠,所以1b d =, 所以8187728362T b d d ⨯==+=,解得12b d ==, 所以()21222n n n T n n n -=⨯+⨯=+, 由(1)得,2nn a =,所以()2111222n n n n n T n n n n na n ++===+⨯⋅, 所以()12111112312222n n n A n n -=⨯+⨯+⋅⋅⋅+⨯++⨯, ()231111123122222n n n A n n +=⨯+⨯+⋅⋅⋅+⨯++⨯. 两式相减,得()23411111111222222n n n A n +⎛⎫=++++⋅⋅⋅+-+⨯ ⎪⎝⎭()1111114213311122212n n n n n -++⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭+⎢⎥⎣⎦=+-+⨯=--, 所以332n n n A +=-. 【点睛】 关键点点睛:(1)当条件中同时出现n a 与n S ,要注意n a 与n S 关系的应用; (2)要明确错位相减法的适用条件和使用方法,细心运算.25.(Ⅰ)0d =时,n a a =;2d a =时,2n a an a =-;(Ⅱ)不存在,理由见解析. 【分析】(Ⅰ)根据等差数列写出(1)2n n n dS na -=+,利用等比中项性质列式代入求解;(2)设存在()*2,k k k ≥∈N ,根据等比中项列式,整理化简之后分类讨论0d =与0d >是否成立. 【详解】(Ⅰ)因为1S ,2S ,4S 成等比数列,所以2214S S S ,又因为数列{}n a 是等差数列,首项1a 为()0a a >,所以(1)2n n n d S na -=+,则()()2246a d a a d +=+,可得0d =或2d a =,当0d =时,n a a =;当2d a =时,2(1)2n a a n a an a =+-=-.(Ⅱ)设存在()*2,k k k ≥∈N,使ln kS、1ln k S +、2ln k S +成等比数列,则122ln l ln n k k k S S S ++=⋅,对任意的*n ∈N ,恒有0n S >,首项0a >,所以0d ≥因为()22222ln ln ln ln ln 22k k k k k k S S S S S S +++⋅⎡⎤+⎡⎤⋅<=⎢⎥⎢⎥⎣⎦⎣⎦()()()22211121112ln ln 22k k k k k k k k S dS a a S a S a ++++++++⎡⎤+--+⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦⎣⎦, 当0d =时,()()()2222222111211+121ln ln ln ln 222k k k k k k k k S dS a a S a S S +++++++⎡⎤⎡⎤⎡⎤+--⎢⎥⎢⎥⎢⎥=<=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦即122ln l ln n k k k S S S ++>⋅,不成立;当0d >时,()()()2222222111211+121ln ln ln ln 222k k k k k k k k k S dS a a S dS a S S +++++++⎡⎤⎡⎤⎡⎤+-+-⎢⎥⎢⎥⎢⎥=<=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,即122ln l ln n k k k S S S ++>⋅,不成立;综上,不存在()*2,k k k ≥∈N ,使得ln kS、1ln k S +、2ln k S +成等比数列.【点睛】关于等比中项性质的运用,需要注意,,a b c 三个数成等比数列,列式得2b ac =,然后再根据数列是等差还是等比数列化为基本量1,a d 或1,a q 计算.26.条件性选择见解析,(1)12nn a ⎛⎫= ⎪⎝⎭,41n b n =-;(2)()110245n n T n +=+-【分析】(1)选择①②,可以判断{}n a 为112a =,公比为12的等比数列,即可求出通项公式;选择②③,由112n n S a +=-可判断{}n a 为112a =,公比为12的等比数列,即可求出通项公式;选择①③根据条件可得()11n n S a n ->=,根据条件不能求出1a 的值,故不能选①③;根据{}n b 的条件建立关系即可求出公差,得出通项公式; (2)利用错位相减法可求解. 【详解】 (1)选择①②:由121n n S S +=+⇒当2n ≥时,有121n n S S -=+,两式相减得:12n n a a +=,即112n n a a +=,2n ≥. 又当1n =时,有()2112212S S a a =+=+,又∵214a =,∴112a =,2112a a =也适合,所以数列{}n a 是首项、公比均为12的等比数列,所以12nn a ⎛⎫= ⎪⎝⎭;选择:②③:由112n n S a +=-⇒当2n ≥时,112n n S a -=-, 两式相减得:122n n n a a a +=-+,即112n n a a +=,2n ≥. 又当1n =时,有12112S a a =-=,又∵214a =,∴112a =,2112a a =也适合,所以数列{}n a 是首项、公比均为12的等比数列,所以12nn a ⎛⎫= ⎪⎝⎭; 选择①③:由121n n S S +=+,112n n S a +=-,则112122n n n S S a ++=+=- 即111n n S a ++=-,所以()11n n S a n =->,, 两式相减可得:()1121n n a a n +>=, 当1n =时,由121n n S S +=+,得2121S S =+,即()121221a a S a +=+,即1221a a += 由112n n S a +=-,得1212S a =-,即1212a a =-,与上式相同,不能求出1a 的值. 故不能选择①③所以数列{}n a 是首项、公比均为12的等比数列,所以12nn a ⎛⎫= ⎪⎝⎭; 设正项等差数列{}n b 的公差为d ,∵13b =,且1b ,32b -,7b 成等比数列, ∴()23172b b b -=,即()()2322336d d +-=+,解得:4d =或12d =-(舍), ∴()34141n b n n =+-=-,故12nn a ⎛⎫= ⎪⎝⎭,41n b n =-. (2)()412nn c n -⨯=所以()1233272112412nn T n =⨯+⨯+⨯+⋅⋅⋅+-⨯,则()()23123272452412nn n T n n +=⨯+⨯+⋅⋅⋅+-⨯+-⨯,两式相减得()()22164222412nn n T n +-=+++⋅⋅⋅+--⨯()()114126441212n n n -+-=+⨯--⨯-()110254n n +=-+-.∴()110245n n T n +=+-【点睛】关键点睛:本题考查利用{}n a 与n S 的关系证明等比数列,等差数列基本量的计算,等比数列前n 项和问题,解答本题的关键是错位相减法求和中的计算,即由()1233272112412n n T n =⨯+⨯+⨯+⋅⋅⋅+-⨯,和()()23123272452412n n n T n n +=⨯+⨯+⋅⋅⋅+-⨯+-⨯相减得到()()22164222412n n n T n +-=+++⋅⋅⋅+--⨯,属于中档题.。
【数列】数列综合练习题(1)--测试用

数列综合练习题一、选择题:本大题共10个小题;每小题5分,共50分1、数列 的一个通项公式是 ( )A. B . C . D . 2、若两数的等差中项为6,等比中项为10,则以这两数为根的一元二次方程是( ) A 、010062=+-x x B 、0100122=++x x C 、0100122=--x x D 、0100122=+-x x3、已知-9,a 1,a 2,-1四个实数成等差数列,-9,b 1,b 2,b 3,-1五个实数成等比数,则b 2(a 2-a 1)=( )A.8 B.-8 C.±8 D.4、已知数列{}n a 是等比数列,若,a a a a 41813229=+则数列{}n a 的前30项的积=30T ( ) A 、154, B 、152, C 、1521⎪⎭⎫ ⎝⎛, D 、153,5、已知等比数列{a n }的公比为2, 前4项的和是1, 则前8项的和为 ( ) A .15. B .17. C .19. D .216、已知等差数列}{n a 的前n 项和为n S ,若45818,a a S =-=则 ( )(A )18 (B )36 (C )54 (D )727、已知方程0)2)(2(22=+-+-n x x m x x 的四个根组成一个首项为41的等差数列,则|m -n|=( )A .1B .43 C .21 D .83 8、等差数列{a n }中,a 1+a 2+…+a 50=200,a 51+a 52+…+a 100=2700,则a 1等于( ) A .-1221 B .-21.5 C .-20.5 D .-20 9、设 {a n }是由正数组成的等比数列, 且公比q = 2, 如果a 1 · a 2 · a 3 · … · a 30 = 230, 那么a 3 · a 6 · a 9 · … · a 30 = ( )A .210.B .215.C .220.D .216.10、某人从1999年9月1日起,每年这一天到银行存款一年定期a 元,且每年到期的存款将本和利再存入新一年的一年定期,若年利率r 保持不变,到2003年9月1日将所有的存款和利息全部取出,他可取回的钱数为 A 、()51r a + B 、()()[]r r r a++1-15 C 、 ()41r a + D 、()[]115-+r ra 12)1(3++-=n n n a n n 12)3()1(++-=n n n a n n 121)1()1(2--+-=n n a n n 12)2()1(++-=n n n a n n ⋯--,924,715,58,189二、 填空题:本大题共4小题;每小题4分,共16分。
数列专题1教师版(复印4份)

数列专题1——基本概念,基本量,基本公式(2课时) 一体验浙江高考1.(2015,3)已知{〃〃}是等差数列,公差d不为零,前〃项和是S”,若〃广为,火成等比数列,则()A. a x d > 0, dS4 > 0B. a x d < 0, dS4 < 0C. a x d > 0, dS4 < 0D. a l d < 0, dS4 > 0【答案】B.【解析】・・♦等差数列{4} , %,% , 6成等比数列,J) 5(a∣ + 3d) = (”1 + 2d)(cι∣+ 7d)“∣ = — d ,2 5 2工S4=2(q+%) = 2(q+q+3d) = —d , Λ a i d = — J2 <0, dS4 =—d2<0,故选B.考点:1.等差数列的通项公式及其前〃项和;2.等比数列的概念2.(2012,7) 7.设S〃是公差为d(d≠O)的无穷等差数列{〃〃}的前〃项和,则下列命题错误的♦♦是A.若d<(),则数列{S〃}有最大项B.若数列{S“}有最大项,则dV0C.若数列{S“}是递增数列,则对任意的〃∈N*,均有S〃>0D.若对任意的〃wN*,均有S“>0,则数列{S〃}是递增数列【解析】选项C显然是错的,举出反例:一1, 0, 1, 2, 3,….满足数列{S.}是递增数列,但是S〃>()不成立.【答案】C3.(2012,13) 13.设公比为讥q>0)的等比数列{。
〃}的前〃项和为{S“}.若S2 = 3«, + 2 , S4 = 3a4 + 2 ,则q=.【解析】将S2 =3%+2, S4 =3q+2两个式子全部转化成用q ,4表示的式子.*即『+卬/ = 3"+ 2 3两式作差得:4∕+4∕=3αα(∕f,即:2qj-3 = 0,a1 + 44 + aq + a x q = 3qq + 2解之得:q or4=-1(舍去).【答案】I4.(2010, 3)设S〃为等比数列{。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数列大题专题训练11.已知数列{}n a 的前n 项和为n S ,且*11()2n n S a n N +=∈. (1)求数列{}n a 的通项公式;(2)设*3log (1)()n n b S n N =-∈,求满足方程233411112551n n b b b b b b ++++=的n 值. 【解析】试题分析:(1)由nS 与na 关系求数列{}n a 的通项公式时,注意分类讨论:当1n =时,11a S =;当2n ≥时,1n n n a S S -=-,得到递推关系113n n a a -=,再根据等比数列定义确定公比,由通项公式求通项(2)先求数列{}n a 前n 项和11()3nn S =-,再代入求得n b n =-,因为11111n n b b n n +=-+,从而根据裂项相消法求和233411111121n n b b b b b b n ++++=-+,解11252151n -=+得n 值试题解析:(1)当1n =时,123a =,当1n >时,112n n S a +=,11112n n S a --+=, ∴131022n n a a --=,即113n n a a -= ∴23n n a =.(2)21(1())1331()1313n nn S -==--,∴n b n =-,11111n n b b n n +=-+,∴233411111121n n b b b b b b n ++++=-+,即11252151n -=+,解得101n =.考点:由nS 与na 关系求数列{}n a 的通项公式,裂项相消法求和【方法点睛】将数列的通项分成两个式子的代数和的形式,然后通过累加抵消中间若干项的方法,裂项相消法适用于形如⎩⎨⎧⎭⎬⎫c a n a n +1(其中{a n }是各项均不为零的等差数列,c 为常数)的数列. 裂项相消法求和,常见的有相邻两项的裂项求和(如本例),还有一类隔一项的裂项求和,如1(n -1)(n +1)(n≥2)或1n (n +2).2.已知数列{}n a 是等比数列,首项11a =,公比0q >,其前n 项和为n S ,且113322,,S a S a S a +++,成等差数列.(1)求{}n a 的通项公式;(2)若数列{}n b 满足11,2n na b n n a T +⎛⎫= ⎪⎝⎭为数列{}n b 前n 项和,若n T m ≥恒成立,求m 的最大值.【答案】(1)112n n a -⎛⎫= ⎪⎝⎭;(2)1.【解析】试题分析:(1)由题意可知:()()()331122313212322S a S a S a S S S S a a a +=+++⇒-+-=+-⇒314a a = 1231111,422n n a q q a a -⎛⎫⇒==⇒=⇒= ⎪⎝⎭;(2)由1111222n nn na b na b n n a b +⎛⎫⎛⎫⎛⎫=⇒=⇒= ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭12n n -⇒21112232...2n n T n -=⨯+⨯+⨯++,再由错位相减法求得()112n n T n =+-,1n n T T +⇒-=()120n n +>{}n T ⇒为递增数列⇒当1n =时,()min 1,n T =.又原命题可转化()min n T m ≥1m m ⇒≤⇒的最大值为1.试题解析: (1)由题意可知:()()()331122313212322S a S a S a S S S S a a a +=+++∴-+-=+-,即314a a =,于是12311111,0,,1,422n n a q q q a a a -⎛⎫==>∴==∴= ⎪⎝⎭.(2)11111,,2222n nn na b na b n n n a b n -+⎛⎫⎛⎫⎛⎫=∴=∴= ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,21112232...2n n T n -∴=⨯+⨯+⨯++, ① 232122232...2n n T n ∴=⨯+⨯+⨯++ ,② ∴①- ②得:()2112122 (2)2212112nn nn n n T n n n ---=++++-=-=---,()112n n T n ∴=+-,n T m ≥恒成立,只需()()()11min 212120n n n n n n T m T T n n n ++≥-=--=+>,{}n T ∴为递增数列,∴当1n =时,()min 1,1,n T m m =∴≤∴的最大值为1.考点:1、等差数列;2、等比数列;3、数列的前n 项和;4、数列与不等式.【方法点晴】本题考查等差数列、等比数列、数列的前n 项和、数列与不等式,涉及特殊与一般思想、方程思想思想和转化化归思想,考查逻辑思维能力、等价转化能力、运算求解能力,综合性较强,属于较难题型.第二小题首先由1111222n nn na b na b n n a b +⎛⎫⎛⎫⎛⎫=⇒=⇒= ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭12n n -⇒2112232...n T =⨯+⨯+⨯+12n n -+再由错位相减法求得()112n n T n =+-1n n T T +⇒-=()120n n +>{}n T ⇒为递增数列⇒当1n =时,()min 1n T =.再利用特殊与一般思想和转化化归思想将原命题可转化()min n T m ≥1m m ⇒≤⇒的最大值为1.3.已知数列{}n a 中,3,221==a a ,其前n 项和n S 满足1211+=+-+n n n S S S ,其中*∈≥N n n ,2.(1)求证:数列{}n a 为等差数列,并求其通项公式;(2)设nn n a b -⋅=2,n T 为数列{}n b 的前n 项和.①求n T 的表达式;②求使2>n T 的n 的取值范围.【答案】(1)证明见解析;(2)①n n n T 233+-=;②3≥n ,且*∈N n . 【解析】 试题分析:(1)借助题设条件运用错位相减法推证;(2)借助题设运用函数的单调性探求. 试题解析:(1)由已知,),2(1)()(11*-+∈≥=---N n n S S S S n n n n ,即),2(11*+∈≥=-N n n a a n n ,112=-a a ,∴数列{}n a 是以21=a 为首项,公差为1的等差数列,∴1+=n a n .(2)∵1+=n a n ,∴n n n b 21)1(⋅+=, n n n n n T 21)1(2121321212⋅++⋅+⋅⋅⋅+⨯+⨯=-,①13221)1(2121321221+⋅++⋅+⋅⋅⋅+⨯+⨯=n n n n n T ,② ①-②得:13221)1(212121121+⋅+-+⋅⋅⋅+++=n n n n T ,∴n n n T 233+-=代入不等式得2233>+-n n ,即0123<-+n n ,设123)(-+=n n n f ,则022)()1(1<+-=-++n n n f n f ,∴)(n f 在+N 上单调递减, ∵041)3(,041)2(,01)1(<-=>=>=f f f , ∴当2,1==n n 时,0)(>n f ,当3≥n 时,0)(<n f , 所以n 的取值范围为3≥n ,且*∈N n .考点:等差数列等比数列及函数的单调性等有关知识的综合运用.4.n S 为等差数列{}n a 的前n 项和,且11a =,728S =,记[lg ]n n b a =.其中[]x 表示不超过x 的最大整数,如[0.9]0=,[lg99]1=.(1)求111101b b b ,,;(2)求数列{}n b 的前1000项和.【答案】(1)10b =,111b =, 1012b =;(2)1893. 【解析】试题分析:(1)先求公差、通项n a ,再根据已知条件求111101b b b ,,;(2)用分段函数表示n b ,再由等差数列的前n 项和公式求数列{}n b 的前1000项和.试题解析:(1)n S 为等差数列{}n a 的前n 项和,且11a =,728S =,4728a =. 可得44a =,则公差1d =, n a n =,[lg ]n b n =,则1[][lg1]0b ==, 1111[lg ]1b ==, 101[lg101]2b ==.(2)由(1)可知:12390b b b b =====,101112991b b b b =====,1001011021039992b b b b b ======,10003b =.数列{}n b 的前1000项和为:90901900231893⨯+⨯+⨯+=.考点:1、新定义问题;2、数列求和.【技巧点睛】解答新颖的数学题时,一是通过转化,化“新”为“旧”;二是通过深入分析,多方联想,以“旧”攻“新”;三是创造性地运用数学思想方法,以“新”制“新”,应特别关注创新题型的切入点和生长点.5.已知数列}{n a 的前n 项和为n S ,且n n S n +=22(*∈N n ),数列}{n b 满足3log 42+=n n b a (*∈N n ).(1)求n a ,n b ;(2)求数列}{n n b a ⋅的前n 项和n T .【答案】(1)14-=n a n ,*∈N n ,12n n b -=;(2)52)54(+⋅-=nn n T ,*∈N n .【解析】试题分析:(1)由n n S n +=22可得,当1n =时,可求13a =,当2n ≥时,由1n n n a S S -=-可求通项进而可求n b ;(2)由(1)知,1(41)2n n n a b n -⋅=-⋅,利用乘公比错位相减法求解数列的和.试题解析:(1)由n n S n +=22,得当时,311==S a ; 当2≥n 时,141-=-=-n S S a n n n , 所以14-=n a n ,*∈N n .由3log 4142+==-n n b a n ,得12-=n n b ,*∈N n .(2)由(1)知12)14(-⋅-=⋅n n n n b a ,*∈N n ,所以122)14(211273-⋅-++⨯+⨯+=n n n Tn n n n n T 2)14(2)54(2723212⋅-+⋅-++⨯+⨯=- ,所以52)54()]222(43[2)14(212+⋅-=++++-⋅-=--n n nn n n n T T .故52)54(+⋅-=nn n T ,*∈N n考点:等差数列与等比数列的通项公式;数列求和. 6.已知等比数列{}n a 的公比11,1q a >=,且132,,14a a a +成等差数列,数列{}n b 满足:()()*1122131n n n a b a b a b n n N +++=-+∈.(1)求数列{}n a 和{}n b 的通项公式;(2)若8n n ma b ≥-恒成立,求实数m 的最小值. 【答案】(1)21n b n =-;(2)181. 【解析】试题分析:(1)数列{}n a 是首项为1,公比为q 的等比数列,运用等比数列的通项公式和等差数列的中项性质,解方程可得13n n a -=,再将n 换为1n -,两式相减可得21n b n =-;(2)若8n n ma b ≥-恒成立,即为1293n n m --≥的最大值,由1293n n n c --=作差,判定函数的单调性,即可得到最大值,进而得到m 的最小值. 试题解析:(1)因为等比数列{}n a 满足:11321,,,14a a a a =+成等差数列, 所以:312214a a a =++,即2111214a q a a q =++, 所以:22150q q --=,所以3q =(因为1q >) 所以13n n a -=,因为:()1122131n n n a b a b a b n +++=-+,①所以当2n ≥时,有()1112211231n n n a b a b a b n ---+++=-+,②①-②得:()()12132n n n a b n n -=-≥,所以()212n b n n =-≥,当1n =时也满足,所以21n b n =-.(2)若8n n ma b ≥-恒成立,则1293n n m --≥恒成立, 令1293n n n c --=,则12043n n nn c c +--=.当5n =时,56c c =,当5n <时,12345c c c c c <<<<, 当5n >时,678c c c >>>.所以n c 的最大值为56181c c ==,所以181m ≥,m 的最小值为181. 考点:等比数列的通项公式;数列的求和.7.已知数列{}n a ,0n a >,其前n 项和n S 满足122n n n S a +=-,其中*n N ∈.(1)设2nn na b =,证明:数列{}n b 是等差数列; (2)设2nn n c b -=⋅,n T 为数列{}n c 的前n 项和,求证:3n T <;(3)设14(1)2n bn n n d λ-=+-⋅(λ为非零整数,*n N ∈),试确定λ的值,使得对任意*n N ∈,都有1n n d d +>成立. 【答案】(1)证明见解析;(2)证明见解析;(3)1λ=-. 【解析】 试题分析:(1)借助题设条件运用等差数列的定义推证;(2)依据题设运用错位相减法推证;(3)借助题设建立不等式分类探求. 试题解析:(1)当1n =时,1124S a =-,∴14a =,当2n ≥时,1112222n nn n n n n a S S a a +--=-=--+,∴122nn n a a --=,即11122n n nn a a ---=, ∴11n n b b --=(常数),又1122a b ==,∴{}n b 是首项为2,公差为1的等差数列,1n b n =+. (2)12(1)2nn n n c b n -=⋅=+⋅,2231222n n n T +=+++…,21121 2222n n n n n T ++=+++…, 相减得23111111122222n n n n T ++=++++-…21111(1)12211212n n n -+-+=+--1311222n n n ++=--,∴213333222n n n n n n T ++=--=-<.(2)由1n n d d +>得12114(1)24(1)2n n n n n n λλ++-++-⋅>+-⋅,2134(1)2(1)20n n n n n λλ++⋅+-⋅+-⋅>,134(1)230n n n λ+⋅+-⋅⨯>, 12(1)0n n λ-+->,当n 为奇数时,12n λ-<,∴1λ<; 当n 为偶数时,12n λ->-,∴2λ>-,∴21λ-<<, 又λ为非零整数, ∴1λ=-.考点:等差数列及错位相减法等有关知识的综合运用.【易错点晴】本题以数列的前n 项和与通项之间的关系等有关知识为背景,其目的是考查等差数列等比数列等有关知识的综合运用,及推理论证能力、运算求解能力、运用所学知识去分析问题和解决问题的能力的综合问题.求解时充分借助题设条件中的有效信息122n n n S a +=-,借助数列前n 项和n S 与通项n a 之间的关系)2(1≥-=-n S S a n n n 进行推证和求解.本题的第一问,利用等差数列的定义证明数列}2{nna 是等差数列;第二问中则借助错位相减的求和方法先求出213333222n n n n n n T ++=--=-<;第三问是依据不等式成立分类推得参数λ的取值范围.8.设数列{}n a 的前n 项和为n S ,已知11a =()*121N n n S S n n +=++∈. (1)求数列{}n a 的通项公式; (2)若1n n nnb a a +=-,求数列{}n b 的前项和n T .【答案】(1)()*21N n n a n =-∈;(2)222n nn +T =-. 【解析】试题分析:(1)根据数列的递推关系式,可得1121n n a a ++=+,利用数列{}1n a +为等比数列,即可求解数列{}n a 的通项公式;(2)由(1)得出()()112222121n n n n n nn n nb ++===----,利用乘公比错位相减法,即可求解数列{}n b 的前项和.试题解析:(1)∵121n n S S n +=++,当2n ≥时,12n n S S n -=+,∴121n n a a +=+, ∴()1121n n a a ++=+,即1121n n a a ++=+, 又2121S S =+,111a S ==,∴23a =,∴21121a a +=+, ∴12n n a +=,即()*21N n n a n =-∈. (2)∵21n n a =-,∴()()112222121n n n n n nn n nb ++===----.∴231232222n n n T =+++…+. 231112122222n n n n n T +-=++++…. 231111122()2222222n n n n n n T ++=++++-=-….考点:数列的求和;数列的递推关系式.9.已知数列的首项,且满足,.(1)设,判断数列是否为等差数列或等比数列,并证明你的结论; (2)求数列的前项和.【答案】(1)构成以为首项,为公差的等差数列;(2)【解析】 试题分析:(1)对左右两边同时除以,那么构成了新数列即可求解;(2)结合(1)可求出数列的通项公式,进而利用错位相减的方法求出数列的前项和.试题解析:(1)∵,∴,,∴,∴构成以为首项,为公差的等差数列. (2)由(1)可知,所以①②②-①得∴【考点】(1)利用递推关系求通项公式;(2)错位相消求数列前项和10.n S 为数列的前n 项和,已知0n a >,2241n n n a a S +=-.(1)求{}n a 的通项公式; (2)设11n n n b a a +=,求数列{}n b 的前n 项和n T .【答案】(1)21n a n =-;(2)21nn +. 【解析】试题分析:(1)根据条件等式分1n =与2n ≥,利用n a 与n S 的关系可求得数列的通项公式;(2)首先结合(1)求得n b 的表达式,然后利用裂项法求和即可.试题解析:(1)依题意有2(1)4n n a S += ① 当1n =时,21(1)0a -=,得11a =; 当2n ≥时,211(1)4n n a S --+= ②有①-②得11()(2)0n n n n a a a a --+--=,因为0n a >,∴11020n n n n a a a a --+>⇒--=(2)n ≥, ∴{}n a 成等差数列,得21n a n =-. (2)111()22121n b n n =--+, 1211111111(1)(1)2335212122121n n nT b b b n n n n =+++=-+-++-=-=-+++ 考点:1、数列的通项公式;2、裂项法求数列的和.11.已知数列{}n a 是等比数列,满足143,24a a ==,数列{}n b 满足144,22b b ==,且{}n n b a -是等差数列. (I )求数列{}n a 和{}n b 的通项公式; (II )求数列{}n b 的前n 项和。