超滤膜的原理和方法

合集下载

超滤工作原理

超滤工作原理

超滤工作原理超滤是一种常用的分离和过滤技术,它通过使用超滤膜将溶液中的溶质和悬浮物分离出来。

超滤膜是一种具有特定孔径大小的微孔膜,可以选择性地阻挠溶质和悬浮物通过,而允许溶剂和一些小份子通过。

超滤工作原理如下:1. 超滤膜的选择:根据需要分离的物质的份子大小,选择合适的超滤膜。

超滤膜的孔径通常在0.001微米到0.1微米之间。

2. 溶液进入超滤系统:将待处理的溶液通过进料管道引入超滤系统中。

溶液中的溶质和悬浮物会随着溶剂一起进入超滤系统。

3. 超滤膜的作用:溶剂和小份子可以通过超滤膜的微孔,而较大的溶质和悬浮物则被滞留在超滤膜表面形成浓缩液。

超滤膜的微孔大小决定了能通过的份子大小范围。

4. 分离液的采集:通过调节超滤系统的操作参数,如压力、温度和流速等,可以控制超滤膜上的浓缩液的浓度和产量。

浓缩液中的溶质和悬浮物可以通过排出管道进行采集和处理。

5. 清洗和维护:超滤膜在使用过程中会逐渐被溶质和悬浮物阻塞,降低分离效果。

因此,定期对超滤膜进行清洗和维护是必要的,以保持其正常的工作效率。

超滤工作原理的优势和应用:1. 分离效果好:超滤膜具有较高的分离效率,可以有效地分离溶质和悬浮物,得到高纯度的产物。

2. 操作简便:超滤系统的操作相对简单,只需调节一些操作参数即可实现分离和采集。

3. 可逆性:超滤过程是可逆的,可以通过逆向操作将溶质和悬浮物从超滤膜上洗脱下来,延长超滤膜的使用寿命。

4. 应用广泛:超滤技术在许多领域有着广泛的应用,如食品和饮料工业、制药工业、环境保护等。

例如,在食品工业中,超滤可以用于乳制品的浓缩和蛋白质的分离。

总结:超滤是一种常用的分离和过滤技术,通过使用超滤膜将溶质和悬浮物与溶剂分离。

超滤膜具有特定的孔径大小,可以选择性地阻挠较大的溶质和悬浮物通过,而允许溶剂和小份子通过。

超滤工作原理简单易懂,操作方便,具有广泛的应用领域。

通过了解超滤工作原理,我们可以更好地理解超滤技术的应用和优势,为相关行业的工艺改进和产品提纯提供参考。

超滤工作原理

超滤工作原理

超滤工作原理超滤是一种常用的膜分离技术,通过超滤膜对溶液进行过滤和分离,实现溶质与溶剂的分离。

超滤工作原理主要涉及膜的选择、操作条件和分离机制。

1. 膜的选择超滤膜一般由聚合物材料制成,如聚酰胺、聚醚砜等。

膜的选择应根据被分离物的分子量、形状和溶液的性质来确定。

一般来说,分子量较小的物质适合选择较小孔径的膜,而分子量较大的物质则需要选择较大孔径的膜。

2. 操作条件超滤工艺的操作条件包括压力、温度和流速等。

通常,通过施加一定的压力将溶液推向膜表面,使溶质通过膜孔径,而溶剂和较大分子的溶质则被截留在膜表面。

压力的选择应根据被分离物的特性和膜的性能来确定。

温度的变化对超滤过程的影响较小,一般选择适宜的室温即可。

流速的控制可以影响分离效果和通量,过高的流速可能导致膜表面压力不均匀,影响分离效果。

3. 分离机制超滤的分离机制主要包括筛分和吸附。

筛分是指通过膜孔径对溶质进行筛选,较小分子的溶质能够通过膜孔径,而较大分子的溶质则被截留在膜表面。

吸附是指溶质与膜表面的相互作用,包括静电作用、水合作用和亲疏水性等。

吸附机制对于较大分子的溶质分离效果更为显著。

4. 应用领域超滤技术在许多领域都有广泛的应用。

在水处理中,超滤可以去除悬浮物、胶体、细菌和病毒等微生物污染物,提高水质。

在食品工业中,超滤可以用于浓缩果汁、蛋白质和乳制品等。

在制药工业中,超滤可以用于分离和纯化药物成分。

在环境保护中,超滤可以用于处理废水和废液,减少污染物的排放。

总结:超滤是一种通过超滤膜对溶液进行过滤和分离的膜分离技术。

超滤工作原理涉及膜的选择、操作条件和分离机制。

膜的选择应根据被分离物的特性来确定。

操作条件包括压力、温度和流速等。

超滤的分离机制主要包括筛分和吸附。

超滤技术在水处理、食品工业、制药工业和环境保护等领域有广泛的应用。

超滤的原理

超滤的原理

超滤的原理
超滤是一种常见的膜分离技术,利用超滤膜对溶液进行分离和浓缩。

超滤膜是一种孔隙结构均匀的多孔性薄膜,其孔径一般在0.001微米至0.1微米之间。

超滤的原理主要是利用膜的孔隙大小和分子的大小选择性地分离不同大小的溶质,从而实现溶质的分离和浓缩。

超滤的原理可以简单地理解为通过膜的孔隙将溶质和溶剂分离。

当溶液通过超滤膜时,溶质分子的大小大于膜孔的大小,因此无法通过膜孔,而溶剂分子则可以通过膜孔。

因此,溶质和溶剂就被有效地分离开来。

超滤的原理还涉及到溶质在膜上的截留和透过。

溶质在超滤膜上的截留是指溶质分子无法通过膜孔而被截留在膜表面,而溶剂分子可以通过膜孔。

透过则是指溶质和溶剂分子通过膜孔的过程。

通过这种截留和透过的作用,超滤膜可以实现对不同大小溶质的选择性分离和浓缩。

超滤的原理还涉及到膜的操作压力。

在超滤过程中,通过对溶液施加一定的压力,可以促使溶剂分子通过膜孔,从而实现对溶质的分离和浓缩。

操作压力的大小会影响溶质和溶剂的透过速率,从而影响超滤的效果。

总的来说,超滤的原理是利用超滤膜的孔隙结构和操作压力,实现对溶质和溶剂的分离和浓缩。

通过对溶液施加一定的压力,溶质被截留在膜表面,而溶剂则通过膜孔,从而实现了对溶质的分离。

超滤技术在生物制药、食品加工、环境保护等领域有着广泛的应用,可以高效地实现对溶质的分离和浓缩,具有重要的科学研究和工程应用价值。

超滤膜原理

超滤膜原理

超滤膜原理
超滤膜是一种具有特殊孔径的膜,通过该膜可以实现一种物质的分离和浓缩。

超滤膜原理基于物质的分子大小和膜的孔径大小之间的关系。

根据超滤膜的特点,它可以有效地过滤掉溶质、胶体和大分子物质,而保留溶剂和小分子物质。

超滤膜的孔径通常在0.001-0.1微米之间,比微滤膜的孔径小
但比纳滤膜的孔径大。

通过超滤膜进行过滤时,溶液会被施加一定的压力推动,使其中的分子通过膜孔径,而较大的分子则被阻挡在膜表面上。

这样,溶质、胶体和大分子物质就可以被截留在膜表面,而溶剂和小分子物质可以通过膜孔径被保留。

超滤膜的分离性能受到两个主要因素的影响:膜孔径大小和施加的压力。

较小的孔径可以过滤掉更大的分子,而较大的孔径则可以通过更大的分子。

施加的压力越大,溶质通过膜的速度越快。

超滤膜在实际应用中具有广泛的用途。

例如,在水处理领域,超滤膜可以过滤掉水中的悬浮物、胶体和有机物,从而实现水的净化和浓缩。

在食品工业中,超滤膜可以用于分离乳制品中的蛋白质、脂肪和糖类。

此外,超滤膜还可以在生物技术、医药制造和环境保护领域中得到应用。

总之,超滤膜通过控制膜孔径和施加压力,实现溶质、胶体和大分子物质的截留和浓缩,而保留溶剂和小分子物质。

它在各个领域中具有重要的应用价值。

坎普尔 超滤膜技术手册

坎普尔 超滤膜技术手册

坎普尔超滤膜技术手册第一章:引言超滤膜技术是一种先进的膜分离技术,广泛应用于水处理、食品、制药、化工等领域。

坎普尔公司作为超滤膜技术的领先企业,自主研发了一系列高效、可靠的超滤膜产品,为客户提供优质的膜分离解决方案。

本手册旨在介绍坎普尔超滤膜技术的原理、应用及操作维护等内容,帮助客户更好地了解和使用坎普尔超滤膜产品。

第二章:超滤膜技术原理1. 超滤膜原理超滤膜是一种由特殊聚合物材料构成的微孔膜,其微孔直径通常在0.01-0.1微米之间。

通过超滤膜,可以有效去除水中的微生物、胶体、有机物质等,实现水的过滤和分离。

超滤膜技术的核心原理是利用膜的微孔大小对不同颗粒的物质进行筛选和分离。

2. 超滤膜的分离机理超滤膜的分离过程主要包括拦截作用和渗透作用。

拦截作用是指超滤膜对大分子物质的截留作用,而渗透作用则是指膜对溶质的渗透通量作用。

这两种作用相互配合,可以实现对水中各种杂质的有效去除。

第三章:坎普尔超滤膜产品系列坎普尔公司生产的超滤膜产品主要包括中空纤维膜、螺旋卷绕膜和平板式膜等多种类型,适用于不同的场景和要求。

这些产品具有优异的过滤性能、稳定的分离效果和长久的使用寿命,已在多个领域得到广泛应用。

第四章:超滤膜技术在水处理中的应用1. 饮用水处理坎普尔超滤膜产品可用于饮用水处理,去除水中的微生物、重金属、胶体颗粒等有害物质,提供清洁、健康的饮用水。

2. 工业废水处理在工业生产过程中产生的废水经过坎普尔超滤膜处理后,可实现回用,减少对环境的污染,同时节约水资源。

第五章:超滤膜技术的操作与维护1. 膜组件的安装在安装坎普尔超滤膜时,应仔细遵循操作手册的指导,确保膜组件正确安装,防止损坏和漏水。

2. 日常维护定期对超滤膜进行清洗、消毒和维护,保持其良好的过滤性能和稳定的分离效果。

第六章:结语坎普尔超滤膜技术手册旨在向用户介绍超滤膜技术的原理、应用和操作维护等内容,帮助用户更好地了解和使用坎普尔超滤膜产品。

希望本手册能够为用户在实际应用中提供帮助,实现高效、可靠的膜分离处理,为各行业的发展贡献力量。

超滤的工作原理应用范围

超滤的工作原理应用范围

超滤的工作原理应用范围1. 超滤技术简介超滤技术是一种利用超细孔隙的膜来进行分离和过滤的物理处理方法。

超滤膜孔径通常在0.001微米到0.1微米之间,可以去除水中的悬浮物、胶体、大分子有机物等,而保留水分子和小分子溶质。

超滤通常在低压条件下进行,能够实现高通量、高分离效果。

2. 超滤的工作原理超滤的工作原理基于膜的特性,当水样通过超滤膜时,大分子溶质和悬浮物无法通过膜孔径,被截留在膜的一侧,而小分子溶质和水分子则可以通过膜孔径,被收集在另一侧。

超滤过程可通过有压力或压力差来驱使。

3. 超滤的应用范围3.1 水处理•饮用水净化:超滤膜可以有效去除水中的悬浮物、胶体、细菌和病毒等,提供安全可靠的饮用水。

•工业用水处理:超滤膜可以净化工业用水,去除悬浮物、胶体、油脂和微生物等,保证工业生产的稳定运行。

•污水处理:超滤膜可以实现污水的固液分离,去除悬浮物、胶体和生物颗粒等,提高污水处理效果。

3.2 食品与饮料工业•浓缩与分离:超滤膜可以用于乳品、果汁、啤酒等液体的浓缩和分离过程,提高产品品质和提高生产效率。

•脱色与脱盐:超滤膜可用于食品加工中的脱色和脱盐过程,去除杂质与盐分,提高产品纯度和质量。

3.3 药品与生物工程•细胞分离与培养:超滤膜可用于细胞的分离和培养过程,去除细胞碎片、悬浮物和生长因子等,提高细胞培养的效果。

•蛋白质纯化:超滤膜可以实现对蛋白质的纯化,去除杂质和小分子物质,提高纯度和效率。

•血液透析:超滤膜可以用于肾脏衰竭患者的血液透析过程,去除体内毒素和废物,维持体内的电解质平衡。

3.4 环境保护与资源回收•污水回用:超滤膜可以实现污水的深度处理,去除有害物质和微生物,达到回用标准,节约并保护水资源。

•废水处理:超滤膜可以用于废水处理中的固液分离和浓缩,减少废水排放,降低环境污染。

•悬浮物和颗粒物去除:超滤膜可以去除工业废水、河流水中的悬浮物和颗粒物,净化水体,保护环境生态。

4. 总结超滤技术具有广泛的应用范围,涵盖了水处理、食品与饮料工业、药品与生物工程以及环境保护与资源回收等领域。

超滤工作原理

超滤工作原理

超滤工作原理超滤是一种常用的分离技术,广泛应用于水处理、食品加工、制药等领域。

它通过使用超滤膜,将溶液中的大分子物质、悬浮物和微生物等分离出来,同时保留溶液中的小分子物质和溶质。

超滤膜是一种多孔性薄膜,由聚合物材料制成。

其孔径通常在0.001至0.1微米之间,可以根据需要选择不同孔径的超滤膜。

超滤膜的孔径比微滤膜小,但比逆渗透膜大。

超滤过程主要包括预处理、过滤和清洗三个步骤。

1. 预处理:在超滤过程开始之前,需要对原料溶液进行预处理。

这包括去除悬浮物、调整溶液的pH值和温度等。

预处理的目的是保护超滤膜,防止其被堵塞或受到损害。

2. 过滤:预处理完成后,原料溶液被送入超滤装置。

超滤装置通常由滤芯、滤床和滤饼等组成。

原料溶液通过超滤膜,大分子物质、悬浮物和微生物等被截留在膜表面,而小分子物质和溶质则通过膜孔进入滤液中。

3. 清洗:当超滤膜的通量降低或膜面出现堵塞时,需要进行清洗。

清洗的方法有物理清洗和化学清洗两种。

物理清洗包括反冲洗和超滤液冲洗,可以通过施加压力或改变流动方向来清除膜面的污染物。

化学清洗则使用特定的清洗剂来溶解和去除污染物。

超滤的工作原理基于分子的大小排斥效应。

超滤膜的孔径较小,无法通过大分子物质和悬浮物,但可以通过小分子物质和溶质。

当溶液施加一定的压力,溶液中的物质会根据其分子大小和溶液中的浓度梯度,通过超滤膜的孔隙进入滤液中。

这样,大分子物质、悬浮物和微生物等被截留在膜表面,而小分子物质和溶质则通过膜孔进入滤液中。

超滤的工作原理还受到溶液的粘度、温度和压力等因素的影响。

较高的压力可以增加通量,但也会增加膜的压力和损坏的风险。

较高的温度可以改善溶液的流动性,但也可能导致膜的变形或破裂。

因此,在超滤过程中需要根据具体情况选择适当的操作参数。

总结起来,超滤是一种通过使用超滤膜将溶液中的大分子物质、悬浮物和微生物等分离出来的分离技术。

它的工作原理基于分子的大小排斥效应,通过施加一定的压力,使溶液中的小分子物质和溶质通过超滤膜的孔隙进入滤液中,而大分子物质、悬浮物和微生物等被截留在膜表面。

坎普尔 超滤膜技术手册

坎普尔 超滤膜技术手册

坎普尔超滤膜技术手册第一章:超滤膜技术概述1.1 超滤膜技术的发展历程超滤膜技术是一种通过对水进行物理分离和截留的膜分离技术。

其应用领域涵盖废水处理、饮用水净化、工业生产等多个领域。

超滤膜技术的发展经历了多个阶段,从早期的实验室研究到如今的工业化应用,取得了重大进展。

1.2 超滤膜技术原理超滤膜技术利用微孔膜对水中的溶质和大分子进行分离。

通过施加压力,将水中的溶质和大分子截留在膜表面,从而实现对水的净化和分离。

第二章:坎普尔超滤膜技术介绍2.1 公司简介坎普尔是一家专注于膜分离技术研发和生产的公司,拥有具有自主知识产权的超滤膜技术。

公司致力于为客户提供高效、可靠的超滤膜产品和解决方案。

2.2 超滤膜产品系列坎普尔超滤膜产品系列包括不同孔径、不同材质的超滤膜,可广泛应用于水处理、废水处理、食品饮料等领域。

第三章:坎普尔超滤膜技术特点3.1 高效的分离性能坎普尔超滤膜具有优异的截留效果,能够有效去除水中的杂质和大分子有机物质。

3.2 高通量和低能耗坎普尔超滤膜采用先进的膜材料和工艺,具有高通量和低能耗的特点,能够实现节能高效的水处理。

3.3 长寿命和稳定性坎普尔超滤膜具有优异的耐污染性能和稳定性,能够保持长期稳定的运行状态,减少维护成本。

第四章:超滤膜技术在水处理领域的应用4.1 饮用水净化坎普尔超滤膜可用于城市饮用水净化工程,去除水中的微生物、有机物和重金属等有害物质,保障饮用水安全。

4.2 工业废水处理坎普尔超滤膜可用于各类工业废水处理工程,去除水中的悬浮物、油脂和化学物质,符合环保排放要求。

第五章:超滤膜技术在食品饮料领域的应用5.1 酿酒厂废水处理坎普尔超滤膜可用于酿酒厂废水处理工程,去除水中的余味物质和有机物质,满足饮料生产的水质要求。

5.2 食品加工废水处理坎普尔超滤膜可用于食品加工废水处理工程,去除水中的色泽物质和杂质,保障生产水质安全。

结语坎普尔超滤膜技术作为一种先进的膜分离技术,其在水处理、废水处理、食品饮料等领域有着广泛的应用前景。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、工作原理
过滤是使液体通过多孔过滤介质以分离其中所含的固体颗粒的一种操作。

过滤介质截阻颗粒而让液体通过,随着被分离的颗粒变小,要求介质的通道也要变小。

如果颗粒小到亚微细粒的程度,膜孔大小就要趋近于能阻止溶液中大分子的通过。

这种利用半透膜的微孔过滤以截留溶液中大溶质分子的操作称为超滤,而这样的半透膜称为超滤膜。

超滤的驱动力是压力,通常高达1.0MPa。

运用液压迫使溶液透过膜并按溶质分子大小、形状等差异,把大溶质分子阻留在膜的一侧,成为浓缩液;而小分子的溶质则随
溶剂透过膜到另一侧,成为透过液流出。

如果将所得浓缩液用水稀释,再进行超滤,可使料液中的低分子溶质进一步随透过液流出,而高分子物质逐步得到提纯,这样的过程称为全滤(如图8-4)。

超滤具有分离和提纯的作用。

1. 分离作用
图8-4 超滤原理示意图
1—进料2—浓缩液3—清液4—超滤膜
低分子质量的溶质随溶媒一起透过滤膜,高分子质量的溶质被截留,因此,料液被分为带有低分子溶质的透过液和带有高分子溶质及残留低分子溶
质的浓缩液。

2. 提纯作用
由于分离,提高了浓缩液中总固体里高分子量溶质的百分率,因此,提纯了高分子溶质。

在透过液中,低分子溶质由于从高分子溶质中分离出来,也得到了提纯。

二、超滤膜
(一)超滤膜的膜渗机理
料液在超滤膜内的流动问题比较复杂,简单的床层流动理论不能充分解释膜内的流动,它不是单纯属于一般毛细管内层流的机理。

通常膜渗机理有下述两种模型:
1. 毛细流动模型
在这种模型中,溶质的脱除主要靠流过微孔结构的过滤或筛滤作用,半透膜阻止了大分子的通过,按这一模型建立的流动是毛细孔中的层流流动。

2. 溶解扩散模型
在这种模型中,假定扩散质的分子,先溶解于膜的结构材料中,而后再经载体的扩散而传递。

因为分子种类不同,溶解度和扩散度也就不同。

实际上,两种模型在膜渗传递中都可能存在,但反渗透以溶解扩散机理占优势,而超滤则以毛细流动机理占优势。

为此,又出现综合两种机理的所谓“优先吸着毛细流动”的机理。

(二) 超滤膜的结构和材料
目前,超滤膜已发展到第三代。

第一代为醋酸纤维素膜(CA膜),耐pH范围3~8,耐温0~50℃,易受微生物和酶的作用,在强酸和弱碱条件下水解,并且在正常使用时会因蠕变使透水速率降低。

尽管有这些缺点,它在食品工业上目前仍得到广泛应用。

第二代为聚合物膜,制造超滤膜有代表性的聚合物包括多种热塑性塑料,如聚甲基丙烯酸甲基、聚氯乙烯、聚苯乙烯、聚丙烯、尼龙等。

用于高温的热塑性塑料如芳族聚酰胺、芳族聚醚等。

由这些聚合物制成的半透膜的特性是,具有高压力下抵抗破坏、高温下抵抗变性、在酸碱和氧化环境下抵抗腐蚀等特性。

第三代是锆-氧化铝膜,耐温达400℃,滤膜厚0.1μm,为多孔凝胶附着在100~1000μm厚的多孔托板上。

普通使用的醋酸纤维半透膜,具有不对称和超微孔的结构,它有一层由致密聚合物做成的超薄(亚微)表层,此层支持在下面的支撑层之上,支撑层由较厚的微孔聚合物制成。

表层和支撑层由一次浇铸工艺制成。

(三)超滤膜的构型
超滤膜在工业应用上有平板状、管状、螺旋板状和空心纤维状等几种不同的形式。

目前国内应用的大多数为板状和管状,空心纤维膜(中空纤维膜) 也已开始试制并应用于生产。

1. 平板膜
这种膜主要用于结构与板框压滤机相似的设备上。

半透膜张紧在一组多孔板上,用一块带槽的板来支持。

支撑板的材料为聚砜(polysulfone),呈椭圆形,长径长度为35cm,由双层空心夹板组成。

两个表面设计为弧形浅沟,即由多根凸起的弧形圈组成多条料液通道,适于处理粘性物料,不易形成膜面上的浓料沉积,能加快透过速度,改善流动状况。

超滤膜紧贴于支撑板的两面。

两端开圆孔,料液由一端进入,流过膜面,从另一端流出。

清液透过膜层及支撑板沟槽上的长条孔隙,进入夹板空心,从支撑板边上的一个小管流出。

超滤膜紧贴于支撑板上,在两端圆孔处有锁圈将其固定,如图8-5所示。

当两块支撑板叠合时,有一面的锁圈为流通圈,可将料液疏导至支撑板膜面。

多块膜板重合,料液并流通过一定数量的并流膜板后,在流通孔上设一挡圈,使料液进入另一组并流膜板,两组连接,形成串联,两组流动方向相反。

如此,多组膜板叠合,组成多次并流与串流,清液从每个膜面透过流出,超滤液不断地得到浓缩(如图8-6所示)。

1—流通圈2—超滤膜3—支撑板4—超滤膜5—锁圈
图8-6 超滤膜组合图
1—超滤膜2—支撑板3—隔板4—流通圈5—锁圈
A—料液进口B—清液出口C—浓缩液出口
2. 管状膜
这种膜是牢固地紧贴在支撑管内侧,做成的一个元件,是广泛应用的一种膜型。

完整的组件是将此管状膜装入外壳内构成,很像简单的管式换热器。

3. 空心纤维膜
这种膜是在平板膜基础上开发出的具有空间立体几何形状的薄膜,使单位体积的膜渗设备不依靠极薄的半透膜而有很大的膜渗能力。

在各种几何形状中,最有吸引力的是小直径的空心圆柱,而圆柱壁由半透膜制成。

因此,圆柱面积与体积之比值反比于直径,而且对于给定的内外径比值,壁厚正比于直径,故单位体积空心圆柱膜的透过量与直径的平方成反比。

这样,采用空心圆柱构形,就大大地提高了单位体积膜渗设备的生产能力。

可以证明,在超滤应用上,采用一个大小合理的小直径空心纤维膜的圆柱束,则所发生的透过液量将相当于几十平方米超薄平板膜上所得者。

空心纤维为细长的膜管,内壁为膜层,膜层结合于海绵式的外壁上,外壁有粗孔,内层起超滤分离作用。

内膜孔的大小,决定管内被阻物质的大小。

空心纤维内径约200μm,由惰性的非离子聚合物制成,具有独特的各向异性的(表皮)结构,有明显高的流率(如图8-7)。

图8-7 空心纤维超滤膜筒
三、超滤装置
(一) 板式分离装置
用于大规模生产的平板式超滤分离设备有类似板框式的结构(如图8-8)。

在这种设备中,被处理的液体在窄沟道中流动,沟道宽度仅0.3~0.5mm,液体沿膜做径向流动。

在同一膜上,与膜接触的路程只有150mm左右。

通常液体流动的平均流速约为0.5m/s,故流动为层流。

一般平板膜渗设备由许多膜渗组件构成,每一组件提供一定的膜面积,从几平方米到几十平方米。

(二) 空心纤维膜渗分离器
图8-8 平板膜分离装置结构原理
1—隔离板2—半透膜3—膜支撑板4—中央螺栓
空心纤维膜渗分离装置的外形亦为壳管状(如图8-9)。

图8-9 中空纤维膜组件剖面图
1—盐水2—进料3—取样4—中空纤维膜5—环氧树脂管板6—多孔支撑板7—产品8—外壳9—环氧树脂块
这种膜渗分离器把几千万根空心纤维集束的开口端用环氧树脂粘接,装填在管状壳体内而成。

其特点是:(1)装置内单位体积的膜面积很大; (2)膜壁薄,液体透过速度快; (3) 因空心纤维的几何构形具有一定的耐压性能,故强度高。

四、超滤在乳品工业上的应用
国外已将超滤用于脱脂乳的浓缩,可制取含蛋白质高达50%~80%的脱脂浓乳。

超滤已被证实为在乳清中浓缩和回收蛋白质的有效方法(如图8-1 0)。

图8-10 乳清的超滤
Welcome To Download !!!
欢迎您的下载,资料仅供参考!。

相关文档
最新文档