数值分析——插值法

合集下载

牛顿(newton)插值法

牛顿(newton)插值法

牛顿(newton)插值法牛顿插值法是一种数值分析中的插值方法,它用于找到一个多项式函数,该函数会经过给定的一系列数据点。

该方法最初由英国数学家艾萨克·牛顿(Isaac Newton)发明并称为插值多项式,它也被称作差分插值法。

插值是数学和工程学中的一项重要任务,它是用于在给定数据点之间构建连续函数的一种数值方法。

插值方法通常涉及过渡从观察结果派生出抽象结果的过程,从而使得预测可能的结果取得更加准确。

下面介绍牛顿插值法的基本原理。

插值基础插值基础是插值方法中的一个重要概念。

在这里,我们将对牛顿插值法中用到的插值基础进行简要介绍。

一个插值基础是指一个已知数据点的集合,通常是一个 x 坐标和对应的 y 坐标。

每个插值基础一般定义为一个数据点的函数,该函数包含了给定点的所有信息并将这些信息用于构建连续函数。

在牛顿插值法中,我们使用差分来定义插值基础。

差分是指两个相邻数据点之间 y 坐标的差值。

具体来说,若给定以下节点:x0, y0x1, y1x2, y2...xn, yn我们则通过以下的 "+" 符号所示的不断进行差分的方式来构建一个插值基础:y0y1-y0…yn-yn-1 yn-yn-1 yn-yn-2 ... yn-y0上述图表所展示的差分的值即为定义插值基础的差商(divided difference)。

牛顿插值公式基于上述插值基础和差商,我们现在可以使用牛顿插值公式来实现插值。

具体来说,牛顿插值公式可以表示为:f(x) = y0 + d1*f[x0,x1] + d2*f[x0,x1,x2] + ... + dn*f[x0,x1,...,xn]其中 f(x) 是插值函数,x0, x1, ..., xn 是给定的节点,y0, y1, ..., yn 是对应的 y 值,f[x0,x1] 是差商 f(x0,...,x1) 的值,d1, d2, ..., dn 也是差商。

请注意,插值函数的次数最高为 n - 1,这意味着插值函数与插值基础的次数相同。

数值分析2-3(牛顿插值法)差商和与牛顿插值

数值分析2-3(牛顿插值法)差商和与牛顿插值

确定插值多项式的次数
根据已知数据点的数量确定插值多项式的最高次 数。
计算插值多项式
利用差商表,通过拉格朗日插值公式计算插值多 项式。
3
进行插值
将需要插值的x值代入插值多项式中,得到对应 的y值。
05
牛顿插值法的优缺点分析
优点
计算简单
局部性质好
相比于其他多项式插值方法,牛顿插 值法的计算过程相对简单,不需要求 解高阶方程,降低了计算的复杂度。
数值分析2-3:牛顿 插值法、差商和
目录
• 引言 • 牛顿插值法的基本概念 • 差商的计算方法 • 牛顿插值法的实现步骤 • 牛顿插值法的优缺点分析 • 实际应用案例 • 总结与展望
01
引言
主题简介
数值分析是数学的一个重要分支,主 要研究如何用数值方法解决各种数学 问题。
本章节将介绍牛顿插值法、差商和的 概念及其应用。
03
差商的计算方法
差商的递推公式
差商的递推公式
$f[x_0, x_1, ldots, x_n] = frac{f[x_1, ldots, x_n] - f[x_0, x_1, ldots, x_{n-1}]}{x_n - x_0}$
应用
通过递推公式,我们可以计算任意点之间的差商,从而得到插值多项式的导数。
在数据点附近,牛顿插值具有较好的 局部性质,能够提供较为准确的插值 结果。
适用性强
牛顿插值法适用于各种数据分布情况, 无论是线性还是非线性数据,都能得 到较好的插值结果。
缺点
全局误差较大
由于牛顿插值多项式的构造方式, 其全局误差通常较大,尤其是在 数据点较少的情况下。
对数据点敏感
如果数据点发生微小的变动,牛 顿插值多项式可能会发生较大的 变化,导致插值结果不稳定。

数值分析常用的插值方法

数值分析常用的插值方法

数值分析报告班级:专业:流水号:学号:姓名:常用的插值方法序言在离散数据的基础上补插连续函数,使得这条连续曲线通过全部给定的离散数据点。

插值是离散函数逼近的重要方法,利用它可通过函数在有限个点处的取值状况,估算出函数在其他点处的近似值。

早在6世纪,中国的刘焯已将等距二次插值用于天文计算。

17世纪之后,牛顿、拉格朗日分别讨论了等距和非等距的一般插值公式。

在近代,插值法仍然是数据处理和编制函数表的常用工具,又是数值积分、数值微分、非线性方程求根和微分方程数值解法的重要基础,许多求解计算公式都是以插值为基础导出的。

插值问题的提法是:假定区间[a,b〕上的实值函数f(x)在该区间上n+1个互不相同点x0,x1……x n处的值是f(x0),……f(x n),要求估算f(x)在[a,b〕中某点的值。

其做法是:在事先选定的一个由简单函数构成的有n+1个参数C0,C1,……C n的函数类Φ(C0,C1,……C n)中求出满足条件P(x i)=f(x i)(i=0,1,……n)的函数P(x),并以P(x)作为f(x)的估值。

此处f(x)称为被插值函数,x0,x1,……xn 称为插值结(节)点,Φ(C0,C1,……C n)称为插值函数类,上面等式称为插值条件,Φ(C0,……C n)中满足上式的函数称为插值函数,R(x)=f(x)-P(x)称为插值余项。

求解这类问题,它有很多种插值法,其中以拉格朗日(Lagrange)插值和牛顿(Newton)插值为代表的多项式插值最有特点,常用的插值还有Hermit 插值,分段插值和样条插值。

一.拉格朗日插值1.问题提出:已知函数()y f x =在n+1个点01,,,n x x x 上的函数值01,,,n y y y ,求任意一点x '的函数值()f x '。

说明:函数()y f x =可能是未知的;也可能是已知的,但它比较复杂,很难计算其函数值()f x '。

数值分析解决实际问题

数值分析解决实际问题

数值分析解决实际问题数值分析是一门研究利用计算机对数学问题进行数值计算的学科,它通过数值方法来解决实际问题,广泛应用于工程、科学、经济等领域。

数值分析的方法包括插值法、数值积分、常微分方程数值解、线性代数方程组求解等,这些方法在解决实际问题时发挥着重要作用。

本文将介绍数值分析在实际问题中的应用,并探讨其在解决实际问题中的重要性和价值。

一、插值法插值法是数值分析中常用的方法之一,它通过已知数据点之间的插值多项式来估计未知数据点的值。

在实际问题中,插值法常用于数据的平滑处理、曲线拟合等方面。

例如,在气象学中,我们需要根据已知的气温数据点来预测未来某一时刻的气温变化,这时可以利用插值法来进行数据的预测和分析。

二、数值积分数值积分是数值分析中的另一个重要方法,它通过数值逼近来计算定积分的近似值。

在实际问题中,数值积分常用于计算曲线下面积、求解物理学中的力学问题等。

例如,在工程学中,我们需要计算某一形状的曲线或曲面的面积或体积,这时可以利用数值积分方法来进行计算。

三、常微分方程数值解常微分方程数值解是数值分析中的重要内容之一,它通过数值方法来求解常微分方程的数值解。

在实际问题中,常微分方程数值解常用于模拟物理系统、生态系统等的动态行为。

例如,在生态学中,我们需要研究种群数量随时间的变化规律,这时可以利用常微分方程数值解来模拟和预测种群数量的变化趋势。

四、线性代数方程组求解线性代数方程组求解是数值分析中的重要内容之一,它通过数值方法来求解线性代数方程组的解。

在实际问题中,线性代数方程组求解常用于工程、经济等领域的优化问题。

例如,在工程优化中,我们需要确定某一系统的最优参数配置,这时可以利用线性代数方程组求解来进行优化计算。

综上所述,数值分析在解决实际问题中发挥着重要作用,它通过插值法、数值积分、常微分方程数值解、线性代数方程组求解等方法来对实际问题进行数值计算和分析,为工程、科学、经济等领域的发展提供了重要支持。

数值分析2-4(埃尔米特插值)

数值分析2-4(埃尔米特插值)

f ( xi )
提示 H 4 ( x) H 2 ( x) ( x a) ( x c)
3
H 2 ( x) 0
xi
f ( x i )
a
0 0 0
b
0
f(xi)
f ( xi )
进一步讨论第2列中的“0”上移和下移情 况下如何求解?
Hermite插值的方法:
(1)基函数方法
例2. 已知:4个条件
xi yi = f(xi) y i f ( xi )
x0 y0
y0
x1 y1
y1
求:一个次数不超过3的多项式H3(x) 注意用基函数的方法
插值余项为:
f ( 4) ( ) R( x ) f ( x ) H 3 ( x ) ( x x0 ) 2 ( x x1 ) 2 4!
f ( x i )
xi f(xi)
0 0
1 1
2 2 0
3 3
例 4 :给定如下数据表,求次数不高于 5 次的代数多项式。
f ( x i )
xi f(xi)
-1 10 1
0 14
1 16 0.1
2 15
解: 先构造插值于四个函数值的插值多项式
用Newton插值法可得:
N 3 ( x ) f ( x0 ) f [ x0 , x1 ]( x x0 ) f [ x0 , , x 3 ]( x x0 )( x x 2 ) 1 10 4( x 1) ( x 1) x ( x 1) x ( x 1) 6 19 1 3 2 14 x x x 6 6
则可求得
1 (0) 0, 1 (1) 1, 1 (0) 0 0 (0) 0, 0 (1) 0, 0 (0) 1

插值法的原理与应用

插值法的原理与应用

插值法的原理与应用1. 插值法的概述插值法是一种数值分析方法,用于在给定数据点集合上估计未知数据点的值。

该方法基于已知数据点之间的关系,通过建立一个插值函数来逼近未知数据点的值。

插值法在科学计算、工程应用和数据处理等领域都有广泛的应用。

2. 插值法的原理插值法的基本原理是在已知数据点上构造一个逼近函数f(x),使得在该函数上的任意点x上的函数值等于对应的已知数据点。

常见的插值方法有多项式插值、样条插值和径向基函数插值等。

2.1 多项式插值多项式插值是一种简单而常用的插值方法,它假设插值函数f(x)是一个多项式函数。

通过选择合适的插值点和多项式次数,可以得到对给定数据集的良好逼近。

多项式插值的基本原理是通过求解一个关于插值点的线性方程组,确定插值多项式的系数。

然后,使用插值多项式对未知数据点进行逼近。

2.2 样条插值样条插值是一种光滑的插值方法,它通过使用分段多项式函数来逼近曲线或曲面。

样条插值的基本原理是将要插值的区间分成若干个小段,每个小段上都使用一个低次数的多项式函数逼近数据点。

为了使插值曲线光滑,相邻小段上的多项式函数需要满足一定的条件,如连续性和一阶或二阶导数连续性。

2.3 径向基函数插值径向基函数插值是一种基于径向基函数构造插值函数的方法,它的基本思想是通过使用径向基函数,将数据点映射到高维空间中进行插值。

径向基函数插值的基本原理是选择合适的径向基函数和插值点,将数据点映射到高维空间中,并使用线性组合的方式构造插值函数。

然后,使用插值函数对未知数据点进行逼近。

3. 插值法的应用插值法在科学计算、工程应用和数据处理等领域都有广泛的应用。

以下列举了一些常见的应用场景。

3.1 信号处理在信号处理中,经常需要通过对已知数据点进行插值来估计未知数据点的值。

例如,通过插值法可以从离散采样数据中恢复连续信号,并进行进一步的分析和处理。

3.2 机器学习在机器学习中,插值法可以用于对缺失数据进行估计。

通过对已知数据点进行插值,可以填补缺失的数据,以便进行后续的模型训练和预测。

数值分析之插值型数值积分

图1
x1=b x
25
数值分析
梯形公式的余项和精度
梯形公式的余项为
R1
=
(b
− a)3 2
1 f ''( )t(t −1)dt, = (a + th) (a,b)
0
由第二积分中值定理得到 R1
= − (b − a)3 12
f
''(), (a,b)
注意到,此时的余项与代数精度保持一致。
26
数值分析
a j=0 xk − x j
n n t− j
(
h)dt
0 j=0 k − j
jk
jk
n
= h(
1
)
n
[
n
(t − j)]dt =
(−1)n−k h
nn
[ (t − j)]dt
j=0 k − j 0 j=0
k !(n − k )! 0 j=0
jk
jk
jk
= (b − a)ck(n) k = 0,1, , n
出定积分的近似值,即
b
b
a f ( x)dx a ( x)dx
6
数值分析
求积公式与代数精度
7
数值分析
6.1 求积公式及代数精度
数值求积公式的一般形式为
b
f (x)dx
a
n
k f (xk )
k =0
式 中 的 xk ( k= 0 , 1 , n称, 为) 求 积 节 点 并 且 有
a x0 x1 xn b,k (k = 0,1, , n) 称为求积系数,
28350 28350 28350 28350 28350 28350 28350 28350 28350

数值分析 第1章 插值方法讲解


f (n1) ( )
(n 1)!
n k 0
(x
xk ),
ξ [a,b]
第1章 插值方法
例题1: 令x0=0, x1=1. 写出y=f(x)=e-x的一次插值多项式 P1(x), 并估计误差.
解: x0=0, y0=1; x1=1, y1=e-1.
P1(x) y0l0 (x) y1l1(x)
0, j k lk (x j ) 1, j k
lk (x)
n j 0
x xj xk x j
jk
插值基函数
Pn (x)
n k 0
yklk (x)
n k 0
n
yk (
j0
x xj ) xk x j
jk
第1章 插值方法
§3 插值余项
1.拉格朗日余项定理
l0 (x)

(x ( x0

x1)(x x2 ) x1)(x0 x2 )( x1

x0 )(x x2 ) x0 )(x1 x2 )
;
l2 (x)

(x ( x2

x0 )(x x1) x0 )(x2 x1)
.
插值基函数
第1章 插值方法
3.一般情形 问题的解(插值公式):
第1章 插值方法
f (x) Pn (x)
f
'
' (
2
)
(
x

x0
)(x

x1
)
1 e- (x 0)(x 1), ξ [0,1] 2
max
0 x1
f (x) Pn (x)
1 max e- 2 0x1

插值法的简便计算

插值法的简便计算插值法是一种常见的数值分析方法,用于在给定的数据点之间估计未知函数的值。

在实际应用中,插值法的计算可能会比较复杂,但是有一些简便的计算方法可以帮助我们更快地完成插值计算。

一、拉格朗日插值法拉格朗日插值法是一种常用的插值方法,它可以通过已知的数据点来估计未知函数的值。

其基本思想是:假设已知n个数据点(x1,y1),(x2,y2),...,(xn,yn),并且这些点两两不同,那么可以构造一个n次多项式P(x),使得P(xi)=yi(i=1,2,...,n)。

然后,通过这个多项式来估计未知函数在某个点x0处的值f(x0)。

拉格朗日插值法的计算比较繁琐,但是可以通过一些简便的计算来减少计算量。

具体来说,可以使用以下公式来计算多项式P(x):P(x)=Σ(yi*li(x))其中,li(x)是拉格朗日基函数,定义为:li(x)=Π((x-xj)/(xi-xj))(i≠j)这个公式中,Π表示连乘积,xi和xj是已知的数据点,i≠j。

通过这个公式,我们可以快速计算出多项式P(x)的值。

二、牛顿插值法牛顿插值法是另一种常用的插值方法,它也可以通过已知的数据点来估计未知函数的值。

其基本思想是:假设已知n个数据点(x1,y1),(x2,y2),...,(xn,yn),并且这些点两两不同,那么可以构造一个n次插值多项式N(x),使得N(xi)=yi(i=1,2,...,n)。

然后,通过这个多项式来估计未知函数在某个点x0处的值f(x0)。

牛顿插值法的计算也比较繁琐,但是可以通过一些简便的计算来减少计算量。

具体来说,可以使用以下公式来计算插值多项式N(x):N(x)=b0+b1(x-x1)+b2(x-x1)(x-x2)+...+bn(x-x1)(x-x2)...(x-xn)其中,bi是牛顿插值系数,可以通过以下公式来计算:bi=Δyi/Δxi(i=1,2,...,n)其中,Δyi和Δxi分别表示相邻数据点的函数值和自变量之差。

数值分析2-3(牛顿插值法)


f [ xi ] f ( xi )
性质: 1.差商与节点的排列次序无关,称 为差商的对称性
2.高阶差商可由低阶差商反复作一 阶差商得到,计算具有递推性
3.若f(x)在[a, b]上存在n阶导数,则
f [ x 0 , x1 , , x n ] f
( n)
( ) , n!
[a , b ]
∶ ∶ ∶
f[x0,x1,x2] f[x1,x2,x3]
∶ ∶ ∶
f[x0,x1,x2,x3]
∶ ∶ ∶
例 已知函数y= f (x)的观测数据如下, 试构造差商表,并求 f [2,4,5,6]的值
x
0
2
4 9
5
6
f(x) 1 5
-4 13
解 构造差商表如下
xi f(xi) 一阶 二阶 三阶 四阶
0 2 4 5 6
1 5 9 -4 13
2 2 -13 17
0 -5 15
-1 5
1
由表可知
f[2,4,5,6] =5
作业:
习题 7,8
§3
差 商 与 牛 顿 插 值
一、差商及其性质 二、差商的计算
三、牛顿插值公式 四、牛顿插值法举例 五、牛顿插值法特点
一、差商及其性质
1. 差商的定义 函数关于 xi, xj 一阶差商
f [ xi , x j ] f ( x j ) f ( xi ) x j xi
f [ x j , xk ] f [ xi , x j ] xk xi
二阶差商
f [ xi , x j , xk ]
一般的k阶差商定义为
f [ x0 , x1 ,..., x k ] f [ x0 ,..., x k 2 , x k ] f [ x0 , x1 ,..., x k 1 ] x k x k 1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
当精确函数 y = f(x) 非常复杂或未知时,在一 系列节点 x0 … xn 处测得函数值 y0 = f(x0), … yn = f(xn),由此构造一个简单易算的近似函 数 g(x) f(x),满足条件g(xi) = f(xi) (i = 0, … n)。这里的 g(x) 称为f(x) 的插值函数。
然而,方程组的求解也并不是一件容易的事。
对于线性插值的两种形式解进行适当的分析, 从中寻求规律而得到启发,就有了所谓的拉格朗日 插值法(公式)和牛顿插值(公式).
我们先来看看如何得到二次拉格朗日插值公式 (和牛顿插值公式(为讨论方便,留待后述)).
称为拉氏基函数 ,满足 li(xj)=ij 首先, 线性插值的两点式可看作是两个特殊的一次式 的一种线性组合. 两点式 P1 ( x ) =
x - x1 y + x 0 - x1 0 x - x0 y = x1 - x 0 1
1.2.2 基函数法
l ( x) y
i =0 i
1
i
l0(x) l1(x) 这里, l0(x)和l1(x)具有如下性质: 显然有l0(x)+ l0(x)≡1. 实质上 l( ( 0 x)和 l 1 x)即是满足函数表
g(x) f(x)
x0
x1
x2
x
x3
x4
根据实际需要,可以用各种不同的函数来近 似原来的函数。
最常用的插值函数是 多项式: …?
代数多项式最简单,计算其值只需用到加、减乘运 算,且积分和微分都很方便; 所以常用它来近似表示表格函数(或复杂函数),这样 的插值方法叫做代数插值法,简称插值法。
§1 拉格朗日多项式
求 n 次多项式 Pn ( x) = a0 a1 x an x n 使得
Pn ( x i ) = y i , i = 0 , ... , n
条件:无重合节点,即 i j
xi x j
1.1 线性插值
n=1 已知 x0 , x1 ; y0 , y1 ,求 P1 ( x) = a0 a1 x 使得
1.2 二次插值
n=2
1.2.1 待定系数法 已知 x0 , x1 , x2; y0 , y1 ,y2 , 求 P2 ( x) = a0 a1 x a2 x 2
使得 P2 ( x 0 ) = y0 , P2 ( x1 ) = y1 , P2 ( x2 ) = y2
为求P2(x),方程组的解是否存在 将三点代入其表达式? ,即可得到三个方程式 , 若存在解,是否唯一?! 从而联立方程组解出系数a0, a1, a2即可:
y0 = a0 a1 x0 a2 x0
2 2 2
y1 = a0 a1 x1 a2 x1 y2 = a0 a1 x2 a2 x2
当 x0 , x1 , x2互异时,方程组的解存在且唯一.
注:显然有, 求n 次插值时, 由n +1个点可有n +1个方程, 联立方程组即可求出插值多项式的n +1个系数.
1.3 n 次插值
n1 希望找到li(x),i = 0, …, n 使得 li(xj)=ij ;然后令
Pn ( x ) =
l (x) y
i=0 i
n
i
,则显然有Pn(xi) = yi 。
li(x) 每个 li 有 n 个根 x0 … xi … xn n 与 节点 有关,而与 f 无关 li ( x) = Ci ( x - x0 )...(x - xi )...(x - xn ) = Ci ( x - x j ) j拉格朗日 i = j 0 1 li ( xi ) = 1 Ci = 多项式 j i ( xi xj )
(x - xj ) li ( x ) = ( xi - x j ) ji
n j =0
Ln ( x ) = l i ( x ) yi
i =0nBiblioteka 项式是唯一存在的。【P14】
定理 (唯一性) 满足 P( xi ) = yi ,
i = 0, ... , n 的 n 阶插值多
这时,l0(x), l1(x), l2(x)都是二次多项式,且应满足
(2.1)
满足(2.1)式的 l i(x) 是否存在?若存在,具有什么形式呢?
先考虑 l0(x)。因 l0(x)是以 x1, x2 为零点的二次多项式, 所以它可写成 l0(x)= 0(x -x1)(x -x2), 其中0 是待定系 数。 又因为 l0( x0)=1,所以0(x0-x1)(x0-x2)=1,则可有 1 l0(x)= 0(x -x1)(x -x2), 0= (x0-x1)(x0-x2) 同理可得 1 l1(x)= 1(x -x0)(x -x2), 1= (x1-x0)(x1-x2) 1 l2(x)= 2(x -x0)(x -x1), 2= (x2-x0)(x2-x1) (x -x0)(x -x1) (x -x0)(x -x2) P2(x)= y0 + y1 + y2 (x0-x1)(x0-x2) (x2-x0)(x2-x1) (x1-x0)(x1-x2) 此即二次拉格朗日插值公式, 其中, l0(x), l1(x), l2(x)是满足 (2.1)的特殊(基本)二次插值多项式;称为二次插值基函数. (x -x1)(x -x2)
P1 ( x 0 ) = y0 , P1 ( x1 ) = y1
可见 P1(x) 是过 ( x0 , y0 ) 和 ( x1, y1 ) 两点的直线。 两点式
P1 ( x ) =
x - x1 y + x 0 - x1 0 x - x0 y x1 - x 0 1
点斜式
P1 ( x ) = y0
y1 - y 0 ( x1 ) -f ( x0) f ( x x0 ) = y0 ( x - x0 ) x1 x 0 x1 - x 0
x
y
l0(x0)=1, l0(x1)=0, l1(x0)=0, l1(x1)=1,
x0
1
x1
x
y
x0
0
x1
0
1
的一次插值多项式 ,称l0(x)和l1(x)为以x0,x1为节点的基本插 值多项式,也称为线性插值的插值基函数 。 于是,线性插值即是用基函数的线性组合来构造的.
由此启发,我们希望二次插值也能由一些二次插值基函 数来线性组合:
相关文档
最新文档