MATLAB矩阵及其运算变量和数据操作MATLAB矩阵

合集下载

MATLAB矩阵及运算

MATLAB矩阵及运算

重点
y矩阵中每一列最大的值
y向量中最大的值
最大值的位置
最大值的位置
注意:输入矩阵类型不同, 则执行的操作不同。
2.1.4 函数
因为matlab函数太多,所以要养成使用help
命令,得到有关函数的具体用法:
例:help max
2.1表达式
表达式
(即语句):将变量、数值、函 数用操作符连接起来,就构成了表达式 。
应用:可以和其它语言程序进行数据通信。 举例:
通过MATLAB提供的函数产生矩阵
用内部函数可生成一些特殊矩阵 (函数见书上P50)
重点
通过MATLAB提供的函数产生矩阵
1、单位矩阵(
E方阵)和广义单位矩阵的
产生
重点
通过MATLAB提供的函数产生矩阵
2、随机数矩阵的产生
随机数的产生常常用在控制系统仿真以 及信号分析,是一个非常重要的手段。 MATLAB提供了很好的随机数产生函数: rand() randn()
A/ B A*B
1
A\B A
重点
1
*B
Matlab右除法表示形式:
C=A/B 或 C=A * i n v ( B )
Matlab左除法表示形式: C=A\B 或 C=i n v ( A ) * B
注意:只有行列式不为0的方阵才存在逆阵!!!
矩阵元素的右除、左除
a1 A a3 a2 a4
2)变量名由字母、数字和下划线构成。第一个 字母必须是英文字母。 3)有字符个数限制(版本5.0 :最多31个字符)
2.1.2 变量

MAT
重点
(注意大小写!)
i或j: 错误:5+j7

MATLAB矩阵操作大全

MATLAB矩阵操作大全

MATLAB矩阵操作大全1. 创建矩阵:可以使用函数`zeros`、`ones`、`eye`、`rand`等来创建全零矩阵、全一矩阵、单位矩阵和随机矩阵。

2.矩阵索引:可以使用`(`或`[]`来访问矩阵中的元素。

例如,`A(3,2)`表示访问矩阵A中第3行第2列的元素。

3.矩阵运算:可以使用`+`、`-`、`*`、`/`等运算符对矩阵进行加法、减法、乘法和除法运算。

4. 矩阵转置:可以使用`'`符号或`transpose`函数来对矩阵进行转置操作。

例如,`B = A'`表示将矩阵A转置为矩阵B。

5.矩阵加法和减法:可以使用`+`和`-`运算符对两个矩阵进行逐元素的加法和减法运算。

6.矩阵乘法和除法:可以使用`*`和`/`运算符对矩阵进行乘法和除法运算。

注意,矩阵乘法是按照矩阵相应元素进行乘法运算,并不是简单的逐元素乘法。

7. 矩阵求逆:可以使用`inv`函数来求矩阵的逆矩阵。

例如,`B =inv(A)`表示求矩阵A的逆矩阵,并将结果保存在矩阵B中。

8. 矩阵转换:可以使用转换函数`double`、`single`、`int8`、`int16`、`int32`、`int64`等将矩阵的数据类型转换为指定类型。

9. 矩阵求解线性方程组:可以使用`solve`函数来求解线性方程组。

例如,`x = solve(A, b)`表示求解线性方程组Ax = b,并将结果保存在向量x中。

10. 矩阵求特征值和特征向量:可以使用`eig`函数来求矩阵的特征值和特征向量。

例如,`[V, D] = eig(A)`表示求矩阵A的特征值和特征向量,并将结果保存在矩阵V和对角矩阵D中。

11. 矩阵的行列式:可以使用`det`函数来计算矩阵的行列式。

例如,`D = det(A)`表示计算矩阵A的行列式,并将结果保存在变量D中。

12. 矩阵的秩:可以使用`rank`函数来计算矩阵的秩。

例如,`r = rank(A)`表示计算矩阵A的秩,并将结果保存在变量r中。

Matlab中的矩阵操作技巧指南

Matlab中的矩阵操作技巧指南

Matlab中的矩阵操作技巧指南在科学计算和数据处理中,矩阵操作是一个非常重要的环节。

Matlab作为一种功能强大的计算工具,提供了丰富的矩阵操作函数和技巧,帮助用户更高效地处理数据。

本文将为大家介绍一些在Matlab中常用的矩阵操作技巧,希望对广大Matlab用户有所帮助。

一、矩阵的创建和赋值在Matlab中,创建矩阵有多种方式。

可以使用数组、函数、特殊值或其他操作创建矩阵。

下面是一些常见的创建矩阵的方法。

1.1 使用数组创建矩阵使用数组创建矩阵是一种简单直观的方式。

可以通过一维或多维数组来创建矩阵。

```matlabA = [1, 2, 3; 4, 5, 6; 7, 8, 9] % 创建一个3x3的矩阵B = [1, 2, 3; 4, 5, 6] % 创建一个2x3的矩阵```1.2 使用函数创建矩阵除了使用数组,还可以使用Matlab提供的函数来创建矩阵。

常用的函数有zeros, ones, eye等。

```matlabC = zeros(3, 3) % 创建一个3x3的全零矩阵D = ones(2, 4) % 创建一个2x4的全一矩阵E = eye(5) % 创建一个5x5的单位矩阵```1.3 特殊值的矩阵Matlab中还提供了一些特殊值的矩阵,如全1矩阵、全0矩阵等。

```matlabF = ones(3, 3) % 创建一个3x3的全1矩阵G = zeros(2, 4) % 创建一个2x4的全0矩阵```二、矩阵的索引和切片在Matlab中,可以使用索引和切片操作来获取矩阵的元素或对矩阵进行切片操作。

2.1 矩阵的索引可以使用单个索引、行索引或列索引来获取矩阵的元素。

```matlabA = magic(3) % 创建一个3x3的魔方矩阵element = A(2, 3) % 获取第2行第3列的元素row = A(1, :) % 获取第1行的所有元素column = A(:, 2) % 获取第2列的所有元素```2.2 矩阵的切片可以使用切片操作来获取矩阵的子矩阵。

MATLAB矩阵

MATLAB矩阵

MATLAB矩阵一、MATLAB矩阵的基本概念。

MATLAB矩阵是由数值或符号元素组成的二维数组,它是MATLAB中最基本的数据类型之一。

矩阵中的每个元素都有一个行索引和一个列索引,这样可以方便地对矩阵进行操作和计算。

在MATLAB中,矩阵的表示方式非常简单,只需要使用方括号将元素排列起来即可。

例如,一个3行2列的矩阵可以表示为:A = [1 2; 3 4; 5 6]这个矩阵中有6个元素,分别是1、2、3、4、5和6,它们按照从左到右、从上到下的顺序排列在一起。

在MATLAB中,矩阵的行数和列数分别可以通过size 函数来获取,这样可以方便地了解矩阵的大小和结构。

二、MATLAB矩阵的常见操作。

1. 创建矩阵。

在MATLAB中,可以通过直接输入元素的方式来创建矩阵,也可以通过一些特定的函数来生成特定类型的矩阵。

例如,可以使用zeros函数来创建全零矩阵,使用ones函数来创建全一矩阵,使用eye函数来创建单位矩阵等等。

这些函数可以帮助用户快速地生成需要的矩阵,提高工作效率。

2. 访问元素。

可以通过行索引和列索引来访问矩阵中的元素,也可以使用冒号操作符来访问矩阵的子集。

这样可以方便地获取矩阵中的特定元素或者子矩阵,进行进一步的计算和处理。

3. 矩阵运算。

MATLAB中支持矩阵的加法、减法、乘法、除法等基本运算,也支持矩阵的转置、逆矩阵、行列式等高级运算。

这些运算可以帮助用户进行各种复杂的数学计算和工程分析,解决实际问题。

4. 矩阵函数。

MATLAB中有许多内置的矩阵函数,可以对矩阵进行各种操作和变换。

例如,可以使用svd函数进行奇异值分解,使用eig函数进行特征值分解,使用inv函数求解逆矩阵等等。

这些函数可以帮助用户更方便地进行数学建模和数据处理。

三、MATLAB矩阵的实际应用。

1. 科学计算。

在科学研究中,经常需要对各种复杂的数学模型进行求解和分析,这时MATLAB矩阵就可以发挥重要作用。

例如,可以使用矩阵来表示线性方程组,然后通过矩阵运算来求解方程组的解。

Matlab矩阵运算基础数值运算

Matlab矩阵运算基础数值运算

data =
1.1000 3.0000 4.0000
2.3000 2.0000 1.0000
.
13
3.2 矩阵运算
主要介绍矩阵的算术运算、关系运算、逻辑 运算和常用的有关矩阵的其他运算(矩阵的 逆,矩阵的秩、矩阵的分解等)。
.
14
3.2.1 矩阵的算术运算
1、矩阵的加(+)减(-)运算:
A±B 矩阵A和矩阵B的和与差,即矩阵相应 位置的元素相加、减。
>> A=magic(3)
D=
A= 816
0.5492 0.2421 -0.6520 0.9075
357
1.0047 -0.4941
492
>> C*D
>> B=inv(A)
ans =
B=
1.0000 0.0000
0.1472 -0.1444 0.0639
0.0000 1.0000
-0.0611 0.0222 0.1056
~ A 对单个矩阵或标量进行取反运算,结果是0-1矩阵。
.
28
3.2.3 矩阵的逻辑运算
例3-11 1 0 3
1 2 0
A2.6 1 2, B0 5 0
0 3 1
1 0 1
计算 A&B, A|B, ~A Nhomakorabea.
29
3.2.4 矩阵函数
1、矩阵的共轭
MATLAB中求矩阵的共轭矩阵的函数是conj,其 调用格式为:
除或浮点溢出都不按错误处理,只是给出警告信息,同时用“Inf”
标记。
.
20
3.2.1 矩阵的算术运算
4、 矩阵的幂运算:^ A^B A的B次方。

MATLAB矩阵及运算

MATLAB矩阵及运算

点乘——元素对元素乘法 叉乘——矩阵对矩阵乘法
对比举例
矩阵的右除、左除
MATLAB的基本处理单元是复数矩阵(标量是一 个1*1的矩阵)。而在《线性代数》理论中没有除 法运算。所以定义了除法为乘法的逆运算。
注意:因为矩阵乘法不满足交换律,即一般 A*B≠B*A,所以除法要考虑“右除”、“左 除”。
2.1.2 变量
变量的命名规则: 1)变量名、函数名对字母的大、小写敏感。 2)变量名由字母、数字和下划线构成。第一个
字母必须是英文字母。 3)有字符个数限制(版本5.0 :最多31个字符)
2.1.2 变量
MATLAB系统默认变量
重点
(注意大小写!)
i或j:
虚单元 正确:5+7j 错误:5+j7
2.1表达式
表达式 (即语句):将变量、数值、函数 用操作符连接起来,就构成了表达式 。
例如:a=(10j+sqrt(10))/2; %注释 ☆行末的“;”用于抑制结果在屏幕上显示
例如: sin(a),sin(b) ,a+b ☆同在一行的表达式,必须用“,”分开
2.2 矩阵的产生与操作
矩阵的产生:
A./Baa31//b b1 3
a2/b2 a4/b4
B.\A
A.\Bbb31//aa13 bb42//aa42B./A
分析:
K/N=K*inv(N)
因为N不是方阵,没有逆 阵,所以报告错误。
K\N=inv(K)*N
因为K的逆阵尺寸2×2, N的尺寸2×3,所以结 果矩阵2×3。
矩阵元素的指数运算
这种战略取得了成功:使人们不在编程细节上化 精力,把注意力集中到科学计算的方法和建模合理性等 大问题上。

MATLAB之(一)数组、矩阵和函数及运算

MATLAB之(一)数组、矩阵和函数及运算

说明 4位小数
3.14159265358979 15位小数
3.14
2位小数
355/113
最接近的有理数
format short e,t =pi 3.1416e+000
科学计数
format long e ,t =pi 四、函数
3.141592653589793e+000
MATLAB提供了大量的函数,按照起用法分为标量函数、 向量函数和矩阵函数。
14
b= 1 3 5 7
c=6:-3:-6(从6到-6公差为-3的等差数组)
c=
6 3 0 -3 -6 e=[0:2:8,ones(1,3)](等差数组和行向量的拼接)
e=
0 2468111
2数组的运算
数组除作为1×n矩阵(行向量)遵循矩阵运算外,
MATLAB还为数组提供了一些特殊运算。两个数组间的
的最重要特征是按元素进行运算。
2021/4/14
13
1 数组的输入 ⑴可以像1×n矩阵(即行向量)一样输入,如: a=[2,3,4,5] a=
2345
⑵数组常用“:”来方便地生成一些特殊的数组。如:
a=1:5(从1到5公差为1的等差数组)
a=
12345
b=1:2:7(从1到7公差为2的等差数组)
2021/4/14
(5) randn(生成正态分布随机矩阵); U=ones(3)
W=zeros(2,3) V=eye(2,4)
U=
W=
V=
111
000
2021/4/14
000
1000 0100
111
9
111
X=rand(2,3)
X=

MATLAB基础教程 第2章 数组、矩阵及其运算

MATLAB基础教程 第2章 数组、矩阵及其运算

写出MATLAB表达式。 解:根据MATLAB的书写规则,以上MATLAB表达式为: (1)y=1/(a*log(1-x-1)+C1) (2)f=2*log(t)*exp(t)*sqrt(pi) (3)z=sin(abs(x)+abs(y))/sqrt(cos(abs(x+y))) (4)F=z/(z-exp(T*log(8)))
命令:X(3:-1:1)
命令:X(find(X>0.5)) 命令:X([1 2 3 4 4 3 2 1])
第二章 数组、矩阵及其运算
2.1 数组(矩阵)的创建和寻访
2. 二维数组的创建和寻访
例2-3 综合练习。将教材P.31~P.44的实例按顺序在MATLAB的 command窗口中练习一遍,观察并体会其输出结果。 (注意变量的大小写要和教材上的严格一致。)
A./B
B.\A
A的元素被B的对应元素相除
(与上相同)
第二章 数组、矩阵及其运算
2.3 数组、矩阵的其他运算
1. 乘方开方运算
数组的乘方运算与power函数 格式:c=a.^k或c=power(a,k) 例如: >> g=[1 2 3;4 5 6] >>g.^2 矩阵的乘方运算与mpower函数 格式:C=A^P或C=mpower(A,P) 注意:A必须为方阵
第二章 数组、矩阵及其运算
2.2 数组、矩阵的运算
3. 矩阵的加法、减法
运算规则是:若A和B矩阵的维数相同,则可以执行矩阵的加减运算, A和B矩阵的相应元素相加减。如果维数不相同,则MATLAB将给出
出错信息。
第二章 数组、矩阵及其运算
2.2 数组、矩阵的运算
3. 矩阵的乘法
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.赋值语句 (1) 变量=表达式 (2) 表达式 其中表达式是用运算符将有关运算量连接 起来的式子,其结果是一个矩阵。
例2-1 计算表达式的值,并显示计算结果。 在MATLAB命令窗口输入命令: x=1+2i; y=3-sqrt(17); z=(cos(abs(x+y))-sin(78*pi/180))/(x+abs(y)) 其中pi和i都是MATLAB预先定义的变量, 分别代表代表圆周率π和虚数单位。 输出结果是: z= -0.3488 + 0.3286i
(2) 范得蒙矩阵 范得蒙(Vandermonde)矩阵最后一列全为1, 倒数第二列为一个指定的向量,其他各列 是其后列与倒数第二列的点乘积。可以用 一个指定向量生成一个范得蒙矩阵。在 MATLAB中,函数vander(V)生成以向量V 为基础向量的范得蒙矩阵。例如, A=vander([1;2;3;5])即可得到上述范得蒙矩 阵。
其中,文件名可以带路径,但不需带扩展 名.mat,命令隐含一定对.mat文件进行操作。 变量名表中的变量个数不限,只要内存或 文件中存在即可,变量名之间以空格分隔。 当变量名表省略时,保存或装入全部变量。 -ascii选项使文件以ASCII格式处理,省略 该选项时文件将以二进制格式处理。save命 令中的-append选项控制将变量追加到MAT 文件中。
例2-7 求(x+y)5的展开式。 在MATLAB命令窗口,输入命令: pascal(6) 矩阵次对角线上的元素1,5,10,10,5,1即为展 开式的系数。
2.3 MATLAB运算 2.3.1算术运算 1.基本算术运算 MATLAB的基本算术运算有:+(加)、 -(减)、*(乘)、/(右除)、\(左除)、^(乘方)。 注意,运算是在矩阵意义下进行的,单个 数据的算术运算只是一种特例。
第2章 MATLAB矩阵及其运算 2.1 变量和数据操作 2.2 MATLAB矩阵 2.3 MATLAB运算 2.4 矩阵分析 2.5 矩阵的超越函数 2.6 字符串 2.7 结构数据和单元数据 2.8 稀疏矩阵
2.1 变量和数据操作
2.1.1 变量与赋值 1.变量命名 在MATLAB 6.5中,变量名是以字母开头, 后接字母、数字或下划线的字符序列,最 多63个字符。在MATLAB中,变量名区分 字母的大小写。
(3) 矩阵除法 在MATLAB中,有两种矩阵除法运算:\和/,分 别表示左除和右除。如果A矩阵是非奇异方阵, 则A\B和B/A运算可以实现。A\B等效于A的逆左 乘B矩阵,也就是inv(A)*B,而B/A等效于A矩阵 的逆右乘B矩阵,也就是B*inv(A)。 对于含有标量的运算,两种除法运算的结果相同, 如3/4和4\3有相同的值,都等于0.75。又如,设 a=[10.5,25],则a/5=5\a=[2.1000 5.0000]。对于矩 阵来说,左除和右除表示两种不同的除数矩阵和 被除数矩阵的关系。对于矩阵运算,一般 A\B≠B/A。
(3) 希尔伯特矩阵 在MATLAB中,生成希尔伯特矩阵的函数 是hilb(n)。 使用一般方法求逆会因为原始数据的微小 扰动而产生不可靠的计算结果。MATLAB 中,有一个专门求希尔伯特矩阵的逆的函 数invhilb(n),其功能是求n阶的希尔伯特矩 阵的逆矩阵。
例2-6 求4阶希尔伯特矩阵及其逆矩阵。 命令如下: format rat %以有理形式输出 H=hilb(4) H=invhilb(4)
2.用于专门学科的特殊矩阵 (1) 魔方矩阵 魔方矩阵有一个有趣的性质,其每行、每 列及两条对角线上的元素和都相等。对于n 阶魔方阵,其元素由1,2,3,…,n2共n2个整数 组成。MATLAB提供了求魔方矩阵的函数 magic(n),其功能是生成一个n阶魔方阵。
例2-5 将101~125等25个数填入一个5行5列的 表格中,使其每行每列及对角线的和均为 565。 M=100+magic(5)
2.2.2 矩阵的拆分 1.矩阵元素 通过下标引用矩阵的元素,例如 A(3,2)=200 采用矩阵元素的序号来引用矩阵元素。矩阵元素的序号就 是相应元素在内存中的排列顺序。在MATLAB中,矩阵 元素按列存储,先第一列,再第二列,依次类推。例如 A=[1,2,3;4,5,6]; A(3) ans = 2 显然,序号(Index)与下标(Subscript )是一一对应的,以 m×n矩阵A为例,矩阵元素A(i,j)的序号为(j-1)*m+i。其 相互转换关系也可利用sub2ind和ind2sub函数求得。
例2-2 利用M文件建立MYMAT矩阵。 (1) 启动有关编辑程序或MATLAB文本编辑 器,并输入待建矩阵: (2) 把输入的内容以纯文本方式存盘(设文 件名为mymatrix.m)。 (3) 在MATLAB命令窗口中输入mymatrix, 即运行该M文件,就会自动建立一个名为 MYMAT的矩阵,可供以后使用。
(5) 伴随矩阵 MATLAB生成伴随矩阵的函数是 compan(p),其中p是一个多项式的系数向 量,高次幂系数排在前,低次幂排在后。 例如,为了求多项式的x3-7x+6的伴随矩阵, 可使用命令: p=[1,0,-7,6]; compan(p)
(6) 帕斯卡矩阵 我们知道,二次项(x+y)n展开后的系数随n 的增大组成一个三角形表,称为杨辉三角 形。由杨辉三角形表组成的矩阵称为帕斯 卡(Pascal)矩阵。函数pascal(n)生成一个n阶 帕斯卡矩阵。
2.1.5 数据的输出格式 MATLAB用十进制数表示一个常数,具 体可采用日常记数法和科学记数法两种表 示方法。 在一般情况下,MATLAB内部每一个数 据元素都是用双精度数来表示和存储的。 数据输出时用户可以用format命令设置或 改变数据输出格式。format命令的格式为: format 格式符 其中格式符决定数据的输出格式
2.1.2 预定义变量
在MATLAB工作空间中,还驻留几个由系统 本身定义的变量。例如,用pi表示圆周率π 的近似值,用i,j表示虚数单位。 预定义变量有特定的含义,在使用时,应 尽量避免对这些变量重新赋值。
2.1.3 内存变量的管理 1.内存变量的删除与修改 MATLAB工作空间窗口专门用于内存变量 的管理。在工作空间窗口中可以显示所有 内存变量的属性。当选中某些变量后,再 单击Delete按钮,就能删除这些变量。当选 中某些变量后,再单击Open按钮,将进入 变量编辑器。通过变量编辑器可以直接观 察变量中的具体元素,也可修改变量中的 具体元素。
2.矩阵拆分 (1) 利用冒号表达式获得子矩阵 ① A(:,j)表示取A矩阵的第j列全部元素;A(i,:)表示A矩 阵第i行的全部元素;A(i,j)表示取A矩阵第i行、第j列的元 素。 ② A(i:i+m,:)表示取A矩阵第i~i+m行的全部元素; A(:,k:k+m)表示取A矩阵第k~k+m列的全部元素, A(i:i+m,k:k+m)表示取A矩阵第i~i+m行内,并在第k~ k+m列中的所有元素。 此外,还可利用一般向量和end运算符来表示矩阵下标, 从而获得子矩阵。end表示某一维的末尾元素下标。
2.1.4 MATLAB常用数学函数 MATLAB提供了许多数学函数,函数的自 变量规定为矩阵变量,运算法则是将函数 逐项作用于矩阵的元素上,因而运算的结 果是一个与自变量同维数的矩阵。 函数使用说明: (1) 三角函数以弧度为单位计算。 (2) abs函数可以求实数的绝对值、复数的模、 字符串的ASCII码值。 (3) 用于取整的函数有fix、floor、ceil、 round,要注意它们的区别。 (4) rem与mod函数的区别。rem(x,y)和 mod(x,y)要求x,y必须为相同大小的实矩阵 或为标量。
(1) 矩阵加减运算 假定有两个矩阵A和B,则可以由A+B和 A-B实现矩阵的加减运算。运算规则是:若 A和B矩阵的维数相同,则可以执行矩阵的 加减运算,A和B矩阵的相应元素相加减。 如果A与B的维数不相同,则MATLAB将给 出错误信息,提示用户两个矩阵的维数不 匹配。
(2) 矩阵乘法 假定有两个矩阵A和B,若A为m×n矩阵, B为n×p矩阵,则C=A*B为m×p矩阵。
3.利用冒号表达式建立一个向量 冒号表达式可以产生一个行向量,一般格式是: e1:e2:e3ቤተ መጻሕፍቲ ባይዱ其中e1为初始值,e2为步长,e3为终止值。 在MATLAB中,还可以用linspace函数产生行向 量。其调用格式为: linspace(a,b,n) 其中a和b是生成向量的第一个和最后一个元素, n是元素总数。 显然,linspace(a,b,n)与a:(b-a)/(n-1):b等价。 4.建立大矩阵 大矩阵可由方括号中的小矩阵或向量建立起来。
(4) 矩阵的乘方 一个矩阵的乘方运算可以表示成A^x,要 求A为方阵,x为标量。 2.点运算 在MATLAB中,有一种特殊的运算,因 为其运算符是在有关算术运算符前面加点, 所以叫点运算。点运算符有.*、./、.\和.^。 两矩阵进行点运算是指它们的对应元素进 行相关运算,要求两矩阵的维参数相同。
clear命令用于删除MATLAB工作空间中的变 量。who和whos这两个命令用于显示在 MATLAB工作空间中已经驻留的变量名清 单。who命令只显示出驻留变量的名称, whos在给出变量名的同时,还给出它们的 大小、所占字节数及数据类型等信息。
2.内存变量文件 利用MAT文件可以把当前MATLAB工作空 间中的一些有用变量长久地保留下来,扩 展名是.mat。MAT文件的生成和装入由 save和load命令来完成。常用格式为: save 文件名 [变量名表] [-append][-ascii] load 文件名 [变量名表] [-ascii]
2.2 MATLAB矩阵
2.2.1 矩阵的建立 1.直接输入法 最简单的建立矩阵的方法是从键盘直接 输入矩阵的元素。具体方法如下:将矩阵 的元素用方括号括起来,按矩阵行的顺序 输入各元素,同一行的各元素之间用空格 或逗号分隔,不同行的元素之间用分号分 隔。
相关文档
最新文档