MATLAB矩阵及其运算函数表

合集下载

MATLAB矩阵及运算

MATLAB矩阵及运算

重点
y矩阵中每一列最大的值
y向量中最大的值
最大值的位置
最大值的位置
注意:输入矩阵类型不同, 则执行的操作不同。
2.1.4 函数
因为matlab函数太多,所以要养成使用help
命令,得到有关函数的具体用法:
例:help max
2.1表达式
表达式
(即语句):将变量、数值、函 数用操作符连接起来,就构成了表达式 。
应用:可以和其它语言程序进行数据通信。 举例:
通过MATLAB提供的函数产生矩阵
用内部函数可生成一些特殊矩阵 (函数见书上P50)
重点
通过MATLAB提供的函数产生矩阵
1、单位矩阵(
E方阵)和广义单位矩阵的
产生
重点
通过MATLAB提供的函数产生矩阵
2、随机数矩阵的产生
随机数的产生常常用在控制系统仿真以 及信号分析,是一个非常重要的手段。 MATLAB提供了很好的随机数产生函数: rand() randn()
A/ B A*B
1
A\B A
重点
1
*B
Matlab右除法表示形式:
C=A/B 或 C=A * i n v ( B )
Matlab左除法表示形式: C=A\B 或 C=i n v ( A ) * B
注意:只有行列式不为0的方阵才存在逆阵!!!
矩阵元素的右除、左除
a1 A a3 a2 a4
2)变量名由字母、数字和下划线构成。第一个 字母必须是英文字母。 3)有字符个数限制(版本5.0 :最多31个字符)
2.1.2 变量

MAT
重点
(注意大小写!)
i或j: 错误:5+j7

MATLAB矩阵操作大全

MATLAB矩阵操作大全

MATLAB矩阵操作大全1. 创建矩阵:可以使用函数`zeros`、`ones`、`eye`、`rand`等来创建全零矩阵、全一矩阵、单位矩阵和随机矩阵。

2.矩阵索引:可以使用`(`或`[]`来访问矩阵中的元素。

例如,`A(3,2)`表示访问矩阵A中第3行第2列的元素。

3.矩阵运算:可以使用`+`、`-`、`*`、`/`等运算符对矩阵进行加法、减法、乘法和除法运算。

4. 矩阵转置:可以使用`'`符号或`transpose`函数来对矩阵进行转置操作。

例如,`B = A'`表示将矩阵A转置为矩阵B。

5.矩阵加法和减法:可以使用`+`和`-`运算符对两个矩阵进行逐元素的加法和减法运算。

6.矩阵乘法和除法:可以使用`*`和`/`运算符对矩阵进行乘法和除法运算。

注意,矩阵乘法是按照矩阵相应元素进行乘法运算,并不是简单的逐元素乘法。

7. 矩阵求逆:可以使用`inv`函数来求矩阵的逆矩阵。

例如,`B =inv(A)`表示求矩阵A的逆矩阵,并将结果保存在矩阵B中。

8. 矩阵转换:可以使用转换函数`double`、`single`、`int8`、`int16`、`int32`、`int64`等将矩阵的数据类型转换为指定类型。

9. 矩阵求解线性方程组:可以使用`solve`函数来求解线性方程组。

例如,`x = solve(A, b)`表示求解线性方程组Ax = b,并将结果保存在向量x中。

10. 矩阵求特征值和特征向量:可以使用`eig`函数来求矩阵的特征值和特征向量。

例如,`[V, D] = eig(A)`表示求矩阵A的特征值和特征向量,并将结果保存在矩阵V和对角矩阵D中。

11. 矩阵的行列式:可以使用`det`函数来计算矩阵的行列式。

例如,`D = det(A)`表示计算矩阵A的行列式,并将结果保存在变量D中。

12. 矩阵的秩:可以使用`rank`函数来计算矩阵的秩。

例如,`r = rank(A)`表示计算矩阵A的秩,并将结果保存在变量r中。

第三章_matlab矩阵运算

第三章_matlab矩阵运算
Matlab 仿真及其应用
主讲:陈孝敬 E-mail:chenxj9@
第3章
数学运算
主要内容:
①矩阵运算; ②矩阵元素运算;
3.1 矩阵运算
3.1.1 矩阵分析
1.向量范式定义:
x x x
1

n
k 1
xk
2 k
2

k 1 n
x
n

1/ 2


k 1
xk
向量的3种常用范数及其计算函数 在MATLAB中,求向量范数的函数为: (1) norm(V)或norm(V,2):计算向量V的2—范数。 (2) norm(V,1):计算向量V的1—范数。 (3) norm(V,inf):计算向量V的∞—范数。
3.1.2 矩阵分解
矩阵分解:把矩阵分解成比较简单或对它性质比较熟悉的若干 矩阵的乘积的形式;
1.Cholesky分解: Cholesky分解是把对称正定矩阵表示成上三角矩阵的转 置与其本身的乘积,即:A=RTR,在Matlab中用函数chol 来计算Cholesky分解 例3-13 求矩阵A=pascal(4)的Cholesky分解, A=pascal(4) R=chol(A) R’*R
例3-18.求解方程组
x1 x2 3 x3 x4 1 3 x1 x2 3 x3 4 x4 4 x 5x 9 x 8x 0 2 3 4 1
解 先用Matlab函数null求出对应的齐次线性方程组的基础解 系,再利用其系数矩阵的上、下三角阵求出方程组的一个特解, 这样即可得到该方程组的通解,程序如下: >> >> >> >> >> >> A=[1 1 -3 -1;3 -1 -3 4;1 5 -9 -8]; b=[1 4 0] ′; format rat C=null(A , ′r′); %求基础解系 [L,U]=lu(A); %A=LU,L为上三角阵,U为下三角阵 X0= U\(L\b) %用LU求出一个齐次方程的特解

MATLAB_简介_2__MATLAB输入及输出格式与矩阵运算函数PPT教学课件

MATLAB_简介_2__MATLAB输入及输出格式与矩阵运算函数PPT教学课件

>> fprintf('f_form: %12.3f\n',1.23452) % 输出
值为12位数,含3位小数
f_form: 1.235
2020/12/11
7
>> fprintf('e_form: %12.5e\n',12345.2) % 输 出值为指数格式的12位数,含5位小数 e_form: 1.23452e+004
x(2)*3+y(4) % 取出x的第二个元素和y的第四 个元素来做运算 ans = 9
y(2:4)-1 % 取出y的第二至第四个元素来做
运算
ans = 6 1 -1
在上例中,2:4代表一个由2、3、4组成的向量
2020/12/11
12
若对MATLAB函数用法有疑问,可随时使用help来寻 求在线帮助(on-line help): MATLAB的查询命令
>> fprintf('f_form: %12.0f\n',12345.2) % 输出 值为整数格式的12位数 f_form: 12345
2020/12/11
8
MATLAB常用的三角函数 sin(x):正弦函数 asin(x):反正弦函数 cos(x):余弦函数 acos(x):反余弦函数 tan(x):正切函数 atan(x):反正切函数
help:用来查询已知命令的用法。例如已知inv是用来 计算逆矩阵,键入help inv即可得知有关inv命令的用法 。(键入help help则显示help的用法,请试看看!)
lookfor:用来寻找未知的命令。例如要寻找计算逆矩
阵的命令,可键入 lookfor inverse,MATLAB即会列

MATLAB之(一)数组、矩阵和函数及运算

MATLAB之(一)数组、矩阵和函数及运算

说明 4位小数
3.14159265358979 15位小数
3.14
2位小数
355/113
最接近的有理数
format short e,t =pi 3.1416e+000
科学计数
format long e ,t =pi 四、函数
3.141592653589793e+000
MATLAB提供了大量的函数,按照起用法分为标量函数、 向量函数和矩阵函数。
14
b= 1 3 5 7
c=6:-3:-6(从6到-6公差为-3的等差数组)
c=
6 3 0 -3 -6 e=[0:2:8,ones(1,3)](等差数组和行向量的拼接)
e=
0 2468111
2数组的运算
数组除作为1×n矩阵(行向量)遵循矩阵运算外,
MATLAB还为数组提供了一些特殊运算。两个数组间的
的最重要特征是按元素进行运算。
2021/4/14
13
1 数组的输入 ⑴可以像1×n矩阵(即行向量)一样输入,如: a=[2,3,4,5] a=
2345
⑵数组常用“:”来方便地生成一些特殊的数组。如:
a=1:5(从1到5公差为1的等差数组)
a=
12345
b=1:2:7(从1到7公差为2的等差数组)
2021/4/14
(5) randn(生成正态分布随机矩阵); U=ones(3)
W=zeros(2,3) V=eye(2,4)
U=
W=
V=
111
000
2021/4/14
000
1000 0100
111
9
111
X=rand(2,3)
X=

第2章 matlab矩阵及其运算

第2章 matlab矩阵及其运算

第2章 MATLAB 矩阵及其运算
2.1.2 MATLAB常用数学函数
MATLAB提供了许多数学函数,函
数的自变量规定为矩阵变量,运算法
则是将函数逐项作用于矩阵的元素上, 因而运算的结果是一个与自变量同维
数的矩阵。
11/128 MALAB 7.X程序设计
第2章 MATLAB 矩阵及其运算
1. 三角函数 • sin 正弦函数 • asin 反正弦函数 • cos 余弦函数 • tan 正切函数 • cot 余切函数 • sec 正割函数 • csc 余割函数
在MATLAB命令口输入命令:
x=1+2i; y=3-sqrt(17); z=(cos(abs(x+y))-sin(78*pi/180))/(x+abs(y))
其中pi和i都是MATLAB预先定义的变量,分别
代表代表圆周率π和虚数单位。 输出结果是:
z =
-0.3488 + 0.3286i
10/128 MALAB 7.X程序设计
18/128 MALAB 7.X程序设计
第2章 MATLAB 矩阵及其运算
rem与mod的区别
rem(x,y)=x-y.*fix(x./y)
mod(x,y)=x-y.*floor(x./y)
eg: >>x=5;y=3; >>y1=rem(x,y),y2=mod(x,y) >> x=-5;y=3; >>y1=rem(x,y),y2=mod(x,y)
%绝对值 %取复数虚部 %取复数实部 %复数共轭
16/128 MALAB 7.X程序设计
第2章 MATLAB 矩阵及其运算
4. 取整函数 fix(x) 朝零方向取整 floor(x) 朝负无穷大方向取整 ceil(x) 朝正无穷大方向取整 round(x)四舍五入 mod(x,y) rem(x,y)取x/y的余数要求x,y 必须为相同大小的实矩阵或为标量。 eg: x=5.3 x=-5.3 -5.3 -5 0 5 5.3

Matlab 矩阵的运算

Matlab   矩阵的运算

(1) 矩阵加减运算 假定有两个矩阵A和B,则可以由A+B和 A-B实现矩阵的加减运算。 运算规则是:若A和B矩阵的维数相同, 则可以执行矩阵的加减运算,A和B矩阵的相 应元素相加减。如果A与B的维数不相同,则 MATLAB将给出错误信息,提示用户两个矩 阵的维数不匹配。 (2) 矩阵乘法 假定有两个矩阵A和B,若A为m×n矩阵, B为n×p矩阵,则C=A*B为m×p矩阵。
关系运算符的运算法则为: (1) 当两个比较量是标量时,直接比较两 数的大小。若关系成立,关系表达式结果为1, 否则为0。 (2) 当参与比较的量是两个维数相同的矩 阵时,比较是对两矩阵相同位置的元素按标 量关系运算规则逐个进行,并给出元素比较 结果。最终的关系运算的结果是一个维数与 原矩阵相同的矩阵,它的元素由0或1组成。
例3-3 先建立 5×5矩阵A,然后将A的第一 行元素乘以1,第二行乘以2,…,第五行乘 以5。 A=[17,0,1,0,15;23,5,7,14,16;4,0,13,0,22; 10,12,19,21,3;11,18,25,2,19]; D=diag(1:5); D*A %用D左乘A,对A的每行 乘以一个指定常数
3.3 字符串
在MATLAB中,字符串是用单撇号(‘)括 起来的字符序列。 MATLAB 将字符串当作一个行向量, 每个元素对应一个字符,其标识方法和数值 向量相同。也可以建立多行字符串矩阵。
字符串是以ASCII码形式存储的。abs和 double函数都可以用来获取字符串矩阵所对 应的ASCII码数值矩阵。 相反,char函数可以把ASCII码矩阵转换 为字符串矩阵。
3.2.4 方阵的行列式
把一个方阵看作一个行列式,并对其按 行列式的规则求值,这个值就称为矩阵所对 应的行列式的值。 在MATLAB中,求方阵A所对应的行列 式的值的函数是det(A)。

matlab内部函数大全

matlab内部函数大全

MATLAB函数大全Matlab有没有求矩阵行数/列数/维数的函数?ndims(A)返回A的维数size(A)返回A各个维的最大元素个数length(A)返回max(size(A))[m,n]=size(A)如果A是二维数组,返回行数和列数nnz(A)返回A中非0元素的个数MATLAB的取整函数:fix(x), floor(x) :,ceil(x) , round(x) (1)fix(x) : 截尾取整.>> fix( [3.12 -3.12])ans =3 -3(2)floor(x):不超过x 的最大整数.(高斯取整)>> floor( [3.12 -3.12])ans =3 -4(3)ceil(x) : 大于x 的最小整数>> ceil( [3.12 -3.12])ans =4 -3(4)四舍五入取整>> round(3.12 -3.12)ans =>> round([3.12 -3.12])ans =3 -3>>如何用matlab生成随机数函数rand(1)rand(n):生成0到1之间的n阶随机数方阵rand(m,n):生成0到1之间的m×n的随机数矩阵(现成的函数) 另外:Matlab随机数生成函数betarnd 贝塔分布的随机数生成器binornd 二项分布的随机数生成器chi2rnd 卡方分布的随机数生成器exprnd 指数分布的随机数生成器frnd f分布的随机数生成器gamrnd 伽玛分布的随机数生成器geornd 几何分布的随机数生成器hygernd 超几何分布的随机数生成器lognrnd 对数正态分布的随机数生成器nbinrnd 负二项分布的随机数生成器ncfrnd 非中心f分布的随机数生成器nctrnd 非中心t分布的随机数生成器ncx2rnd 非中心卡方分布的随机数生成器normrnd 正态(高斯)分布的随机数生成器poissrnd 泊松分布的随机数生成器raylrnd 瑞利分布的随机数生成器trnd 学生氏t分布的随机数生成器unidrnd 离散均匀分布的随机数生成器unifrnd 连续均匀分布的随机数生成器weibrnd 威布尔分布的随机数生成器一、MATLAB常用的基本数学函数abs(x):纯量的绝对值或向量的长度angle(z):复数z的相角(Phase angle)sqrt(x):开平方real(z):复数z的实部imag(z):复数z的虚部conj(z):复数z的共轭复数round(x):四舍五入至最近整数fix(x):无论正负,舍去小数至最近整数floor(x):地板函数,即舍去正小数至最近整数ceil(x):天花板函数,即加入正小数至最近整数rat(x):将实数x化为分数表示rats(x):将实数x化为多项分数展开sign(x):符号函数(Signum function)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
求矩阵A的下三角阵
tril(A,k)
求矩阵A的第k条对角线以下的元素
rot90(A,k)
将矩阵A旋转90o的k倍
fliplr(A)
对矩阵A实施左右翻转
flipud(A)
对矩阵A实施上下翻转
inv(A)
求A矩阵的逆矩阵
pinv(A)
求A矩阵的伪逆(也称为广义逆矩阵)
det(A)求方阵A所对应 Nhomakorabea行列式的值
A^x
矩阵的乘方运算(A为方阵,x为标量)
find()
找位置
diag(A)
用于提取矩阵A主对角线元素,产生一个具有min(m,n)个元素的列向量(其中A为m×n矩阵)
diag(A,k)
提取矩阵A的第k条对角线的元素
triu(A)
求矩阵A的上三角阵
triu(A,k)
求矩阵A的第k条对角线以上的元素
tril(A)
MATLAB矩阵及其运算函数表
函 数 名
函 数 功 能
abs( )
绝对值、负数的模、字符串的ASCII码值
都可用来求字符串矩阵所对应的ASCII码数值矩阵
double( )
char( )
可以把ASCII码数值矩阵转换为字符串矩阵
fix( )
向零方向取整
floor( )
不大于自变量的最大整数
ceil( )
不小于自变量的最小整数
round( )
四舍五入到最邻近的整数
rem(x,y)
求余函数
mod(x,y)
%
exp( )
指数函数
[ ]
空操作符
format 格式符
设置或改变数据输出格式 (其中格式符决定数据的输出格式)
e1:e2:e3
冒号表达式可以产生一个行向量
(其中e1为初始值,e2为步长,e3为终止值)
(把一个方阵看作一个行列式,并对其按行列式规则求得的值)
rank(A)
求矩阵A的秩(矩阵线性无关的行数与列数称为矩阵的秩)
trace(A)
求矩阵A的迹
(矩阵的迹等于矩阵的对角线元素之和,也等于矩阵的特征值之和)
norm(V)或norm(V,2)
计算向量V的2—范数
norm(V,1)
计算向量V的1—范数
生成以向量V为基础向量的范得蒙矩阵(最后一列全为1,倒数第二列为一个指定的向量,其他各列是其后列与倒数第二列的点乘积)
hilb(n)
生成希尔伯特矩阵
invhilb(n)
求n阶的希尔伯特矩阵的逆矩阵
(用一般方法求逆会因原始数据的微小扰动而产生不可靠的计算结果)
toeplitz(x,y)
生成一个以x为第1列,y为第1行的托普利兹矩阵(除第1行第1列外,其他每个元素都与左上角的元素相同)[注:这里x, y均为向量,两者不必等长。toeplitz(x)用向量x生成一个对称的托普利兹矩阵]
randn
产生均值为0,方差为1的标准正态分布随机矩阵
zeros(size(A))
建立一个与矩阵A同样大小的零矩阵
reshape(A,m,n)
在矩阵总元素保持不变的前提下,将矩阵A重新排成m×n的二维矩阵
magic(n)
生成一个n阶魔方矩阵(其每行、每列及两条对角线上的元素和都相等)
vander(V)
[V,D]=eig(A,‘nobalance’)
直接求矩阵A的特征值和特征向量。
sqrtm(A)
计算矩阵A的平方根
logm(A)
计算矩阵A的自然对数
expm(A)、expm1(A)
求矩阵指数eA
expm2(A)、expm3(A)
funm(A,‘fun’)
计算直接作用于矩阵A的由‘fun’指定的超越函数值
norm(V,inf)
计算向量V的∞—范数
cond(A,1)
计算A的1—范数下的条件数
cond(A)或cond(A,2)
计算A的2—范数数下的条件数
cond(A,inf)
计算A的 ∞—范数下的条件数
E=eig(A)
求A的全部特征值,构成向量E
[V,D]=eig(A)
求A的全部特征值,构成对角阵D;并求A的特征向量构成V的列向量。
A=spdiags(B,d,m,n)
产生带状稀疏矩阵的稀疏存储(参数m,n为原带状矩阵的行数与列数)
speye(m,n)
返回一个m×n的稀疏存储单位矩阵
compan(p)
生成伴随矩阵
(其中p是一个多项式的系数向量,高次幂系数排在前,低次幂排在后)
pascal(n)
生成一个n阶帕斯卡矩阵(由杨辉三角形表组成的矩阵)
A\B
A矩阵左除B矩阵(等效于A的逆左乘B矩阵,即inv(A)*B )
A/B
A矩阵右除B矩阵(等效于B的逆右乘A矩阵,即A*inv(B) )
A(i:i+m,:)
表示取A矩阵第i~i+m行的全部元素
A(:,k:k+m)
表示取A矩阵第k~k+m列的全部元素
A(i:i+m,k:k+m)
表示取A矩阵第i~i+m行内,并在第k~k+m列中的所有元素
zeros
产生全0矩阵(零矩阵)
ones
产生全1矩阵(幺矩阵)
eye
产生单位矩阵
rand
产生0~1间均匀分布的随机矩阵
生成一个m×n的所有元素都是0的稀疏矩阵
sparse(u,v,S)--
建立一个max(u)行、max(v)列并以S为稀疏元素的稀疏矩阵
(其中u,v,S是3个等长的向量。S是要建立的稀疏矩阵的非0元素,u(i)、v(i)分别是S(i)的行和列下标)
B=spconvert(A)
根据表示稀疏矩阵的矩阵A,产生一个稀疏存储方式矩阵B
funm(A,‘sqrt’)
计算矩阵A的平方根,等价于sqrtm(A)
eval(t)
把字符串的内容作为对应的MATLAB语句来执行(其中t为字符串)
rmfield(A,‘ i’)
要删除结构A的成员i
celldisp(a)
用来显示整个单元矩阵a
A=sparse(S)
将矩阵S转化为稀疏存储方式的矩阵A
sparse(m,n)
linspace(a,b,n)
产生一个行向量
(其中a和b是生成向量的第一个和最后一个元素,n是元素总数)
[注:linspace(a,b,n)与a:(b-a)/(n-1):b等价]
A(:,j)
表示取A矩阵的第j列全部元素
A(i,:)
表示A矩阵第i行的全部元素
A(i,j)
表示取A矩阵第i行、第j列的元素
相关文档
最新文档