MATLAB中可达矩阵的计算
matlab 矩阵代数计算

matlab 矩阵代数计算【原创版】目录一、矩阵的基本概念1.矩阵的定义2.矩阵的行和列3.矩阵的转置4.矩阵的加减法5.矩阵的乘法6.矩阵的左除7.矩阵的右除8.矩阵的点运算二、MATLAB 中的矩阵运算1.MATLAB 中如何实现矩阵的加减法2.MATLAB 中如何实现矩阵的乘法3.MATLAB 中如何实现矩阵的左除4.MATLAB 中如何实现矩阵的右除5.MATLAB 中如何实现矩阵的点运算三、如何用 MATLAB 计算一个矩阵和大量矩阵1.使用 for 循环2.使用 cellfun 函数正文一、矩阵的基本概念矩阵是数学中的一个重要概念,它由一定数量的行和列组成。
矩阵的每一个元素都可以用一个有序的二元组表示,例如:mx(m,n) 表示一个位于第 m 行第 n 列的元素。
1.矩阵的定义矩阵是一个由数字或函数组成的矩形阵列,通常用大写字母表示,如A、B 等。
矩阵的每一个元素都是一个向量,它可以是一个标量、向量或矩阵。
2.矩阵的行和列矩阵的行数和列数决定了矩阵的大小,通常用“m×n 矩阵”表示一个具有 m 行 n 列的矩阵。
3.矩阵的转置矩阵的转置是将矩阵的行和列互换,用 a"表示矩阵 a 的转置。
4.矩阵的加减法矩阵的加减法是将两个矩阵的对应元素相加或相减,结果是一个新的矩阵。
例如,ca-b 表示矩阵 c 减去矩阵 b。
5.矩阵的乘法矩阵的乘法是将两个矩阵的对应行和列元素相乘,结果是一个新的矩阵。
例如,dab 表示矩阵 a 和矩阵 b 的乘积。
6.矩阵的左除矩阵的左除是用“/”符号表示,它表示求解方程 ax=b 的解。
7.矩阵的右除矩阵的右除是用“”符号表示,它表示求解方程 xb=a 的解。
8.矩阵的点运算矩阵的点运算是对两个矩阵的对应元素进行运算,例如,ca.b 表示矩阵 c 和矩阵 b 的对应元素相乘。
二、MATLAB 中的矩阵运算MATLAB 是一种广泛使用的数学软件,它可以方便地实现矩阵的代数运算。
用MATLAB计算矩阵与行列式

习题
2 1 3
3 0 1
习题1 已知 A 2 0 1 (1) A, B 的秩
(2) 2A B A 2B
(3) AB
BA
(4) A I B 2I
x1 x2 6 x3 3
习题2 求解方程组 2 x1 x2 2 x3 7
x1
3 x2
程序设计:
0 0 1 d
>> clear
声明变量
>> syms a b c d
>> A=[a 1 0 0;-1 b 1 0;0 –1 c 1;0 0 –1 d];
>> DA=det (A) 运行结果:
生成符号矩阵
DA= a *b *c *d a *b a *d c *d 1
程序说明:函数det也可以用于计算含有变量的行列 式.
的除法.
1
练习4 求矩阵A 4
程序设计:
2
2 2 1
3 1 3
和
B
2 1 3
1 2 2
2
1 相除.
1
>> clear
>> A=[1 2 3;4 2 1;2 1 3];
>> B=[2 1 2;1 2 1;3 2 1];
>> C=A\B
矩阵左除,相当于inv(A)*B,inv(A)为矩阵A的逆
C=
0.3333 0.6000 -0.2000
3 2 1
7
>> A=[2 1 2;2 1 4;3 2 1];
>> b=[3 1 7]’;
>> X=A\b
X= 2 1 -1
练习3 求解方程组 解 >>clear
MATLAB中的矩阵操作技巧

MATLAB中的矩阵操作技巧MATLAB(Matrix Laboratory)是一种强大的数值计算和科学分析软件,特别擅长处理矩阵操作。
本文将介绍一些在MATLAB中进行矩阵操作的技巧和方法,帮助读者更好地利用MATLAB进行数据处理和分析。
一、矩阵基本操作1. 创建矩阵:在MATLAB中,可以使用矩阵的行向量或列向量来创建一个矩阵。
例如,要创建一个3x3的矩阵A,可以使用以下命令:```MATLABA = [1 2 3; 4 5 6; 7 8 9];```这样就创建了一个包含1到9的3x3的矩阵A。
2. 矩阵转置:矩阵的转置可以使用单引号来实现,例如,要将矩阵A进行转置操作,可以使用以下命令:```MATLABA_transpose = A';```这样就得到了矩阵A的转置矩阵A_transpose。
3. 矩阵相加:两个相同大小的矩阵可以进行相加操作,即对应位置的元素相加。
例如,要计算两个3x3矩阵A和B的和,可以使用以下命令:```MATLABC = A + B;```这样就得到了矩阵C,它的每个元素都是对应位置的元素相加的结果。
4. 矩阵相乘:两个矩阵的相乘操作通常是指矩阵的乘法运算。
在MATLAB中,矩阵相乘可以使用*运算符来实现。
例如,要计算两个3x3矩阵A和B的乘积,可以使用以下命令:```MATLABD = A * B;```这样就得到了矩阵D,它的每个元素都是对应位置的元素相乘的结果。
二、矩阵求解和方程组1. 矩阵求逆:在MATLAB中,可以使用inv函数来求解矩阵的逆。
例如,要求解一个3x3的矩阵A的逆矩阵,可以使用以下命令:```MATLABA_inverse = inv(A);```如果矩阵A的逆存在,则得到了逆矩阵A_inverse。
2. 矩阵求解线性方程组:MATLAB提供了一个名为“左除”的操作符\,可以用来求解线性方程组。
例如,要求解线性方程组Ax = b,其中A是一个3x3的矩阵,b是一个3x1的列向量,可以使用以下命令:```MATLABx = A \ b;```这样就求解出了方程组的解x。
第3章 Matlab中的矩阵及其运算

第3章Matlab中的矩阵及其运算矩阵是数学中一个十分重要的概念,其应用能够十分广泛,Matlab中最基本最重要的功能就是进行矩阵运算,其所有数值功能都已矩阵为基本单元来实现,掌握Matlab中的矩阵运算是十分重要的。
关键词:Matlab 矩阵特殊矩阵一、矩阵的生成1、矩阵生成有多种方式,通常使用的有四种:(1)在命令窗口中直接输入矩阵(2)通过语句和函数产生矩阵(3)在M文件中建立矩阵(4)从外部的数据文件中导入矩阵其中第一种是最简单常用的创建数值矩阵的方法,较适合创建较小的简单矩阵。
把矩阵的元素直接排列到方括号中,每行内元素用空格或逗号相隔,行与行之间的内容用分号相隔。
如:matrix=[1,1,1,1;2,2,2,2;3,3,3,3;4,4,4,4] %逗号形式相隔matrix =1 1 1 12 2 2 23 3 3 34 4 4 4matrix=[1 1 1 1;2 2 2 2 ;3 3 3 3;4 4 4 4] %采用空格形式相隔matrix =1 1 1 12 2 2 23 3 3 34 4 4 42、特殊矩阵的生成1、零矩阵和全1矩阵零矩阵指各个元素都为零的矩阵。
(1)A=zeros(M,N)命令中,A为要生成的零矩阵,M和N分别为生成矩阵的行和列。
(2)若存在已知矩阵B,要生成与B维数相同的矩阵,可以使用命令A=zeros(size(B))。
(3)要生成方阵时,可使用命令A=zeros(N)来生成N阶方针。
全1矩阵用ones函数实现。
A=zeros(4,5)A =0 0 0 0 00 0 0 0 00 0 0 0 00 0 0 0 0B=[1 2 3 4 5 ;2 3 4 5 6 ;9 8 7 6 5 ;8 7 6 5 4]B =1 2 3 4 52 3 4 5 69 8 7 6 58 7 6 5 4A=zeros(size(B))A =0 0 0 0 00 0 0 0 00 0 0 0 00 0 0 0 0A=zeros(5)A =0 0 0 0 00 0 0 0 00 0 0 0 00 0 0 0 00 0 0 0 0C=ones(5,6)C =1 1 1 1 1 11 1 1 1 1 11 1 1 1 1 11 1 1 1 1 11 1 1 1 1 1 C=ones(3)C =1 1 11 1 11 1 12、单位矩阵的生成(1)A=eye(M,N)命令,可生成单位矩阵,M和N分别为生成单位矩阵的行和列。
matlab程序设计矩阵及其运算

matlab程序设计矩阵及其运算1. 矩阵的定义和表示在matlab中,矩阵是一种常用的数据结构,用于存储和处理多维数据。
矩阵由行和列组成,每个元素都有一个唯一的位置。
在matlab中,可以通过方括号[ ]来定义和表示矩阵。
以下是一些常见的矩阵定义:一维行向量:matlabA = [1 2 3 4 5];一维列向量:matlabB = [1; 2; 3; 4; 5];二维矩阵:matlabC = [1 2 3; 4 5 6; 7 8 9];可以使用size()函数获取矩阵的维度信息,例如:matlab[m, n] = size(C); % m为行数,n为列数2. 矩阵的运算matlab中的矩阵可以进行各种运算,包括基本的加减乘除运算、转置运算、矩阵乘法运算等。
2.1 加法和减法矩阵的加法和减法可以使用+和-运算符进行,例如:matlabA = [1 2 3; 4 5 6; 7 8 9];B = [9 8 7; 6 5 4; 3 2 1];C = A + B; % 矩阵的加法D = A B; % 矩阵的减法2.2 矩阵乘法矩阵乘法在matlab中使用运算符进行,例如:matlabA = [1 2 3; 4 5 6; 7 8 9];B = [9 8 7; 6 5 4; 3 2 1];C = A B; % 矩阵的乘法2.3 转置运算矩阵的转置表示将矩阵的行和列互换,使用'运算符进行,例如:matlabA = [1 2 3; 4 5 6; 7 8 9];B = A'; % A的转置矩阵2.4 矩阵的逆运算矩阵的逆运算是指对于一个可逆矩阵A,存在一个矩阵B,使得A B = B A = I,其中I为单位矩阵。
在matlab中,可以使用inv()函数来求一个矩阵的逆矩阵,例如:matlabA = [1 2; 3 4];B = inv(A); % A的逆矩阵需要注意的是,不是所有的矩阵都有逆矩阵,对于不可逆的矩阵,inv()函数会报错。
matalb矩阵计算(MATLAB矩阵计算)

matalb矩阵计算(MATLAB矩阵计算)matalb矩阵计算(MATLAB矩阵计算)4.1 array operations and matrix operationsFrom the appearance of the shape and structure of the data matrix, two-dimensional array and no difference in mathematics. However, as the embodiment of a matrix transformation or mapping operator matrix with mathematical rules, clear and strict. And array operation is defined by the software of MATLAB rules, its purpose is for data management, simple operation. The instruction form nature and perform calculations effectively. Therefore, when using MATLAB, in particular to a clear distinction between clear array operations and matrix operations. Table 4.1.1 lists the similarities and differences between the essence and connotation of two kinds of operation instruction.4.1.1 array operations and matrix operations, instruction forms and substantive meaningArray operationMatrix operationinstructionsMeaninginstructionsMeaningA.'Non conjugate transposeA'Conjugate transposeA=sAssign scalar s to each element of the array AS+BAdd scalar s to each element of the array B, respectivelyS-B, B-sThe difference between the scalar s and the elements of the array B S.*AScalar s is the product of the elements of the array A, respectively S*AThe product of the scalar s and the elements of the matrix A, respectivelyS./B, B.\sScalar s is separated by the elements of array B, respectivelyS*inv (B)Inverse multiplicative scalar B of matrix sA.^nThe N sub order of each element of the array AA^nWhen A is a square matrix, the n power of the matrix AA+BThe addition of an array corresponding elementA+Bmatrix additionA-BSubtracting elements of an arrayA-BMatrix subtractionA.*BMultiplication of an array corresponding elementA*BThe product of the same matrix NevilleA./BThe elements of A are excluded by the corresponding elements of B A/BA right, except BB.\AIt must be the sameB\AA left exceptB (usually different from right division)Exp (A)For the end to e respectively with A elements as index, exponentiationExpm (A)Matrix exponential function of ALog (A)The logarithm of the elements of ALogm (A)The matrix logarithmic function of ASqrt (A)The square root of the elements of the product of ASqrtm (A)A's square function of matricesFrom the above we can see that the array operations such as multiplication, addition, multiplication, transpose, add "points". Therefore, we should pay special attention to "multiply, divide, involution, trigonometric and exponential function", two operations are fundamentally different. In addition, in the implementation of the array and array operation when the array must be involved in computing Tongwei, the result is always with the original array array dimensions.4.2 basic operations of an arrayIn MATLAB, an array operation is a.MATLAB that uses the same calculation for multiple numbers to process arrays in a very intuitive way4.2.1 point transpose and conjugate transpose` - dot transpose. Non conjugate transpose, equivalent to conj (A') A=1:5;'b=a.'= bOneTwoThreeFourFive'c=b.'= C12345This shows that the two transpose of the row vector yields the original row vectorConjugate transpose. Transpose the vectors and conjugate each element:D=a+i*a= DColumns 1 through 31 + 1.0000i2 + 2.0000i3 + 3.0000iColumns 4 through 54 + 4.0000i5 + 5.0000iE=d'= e1 - 1.0000i2 - 2.0000i3 - 3.0000i4 - 4.0000i5 - 5.0000i4.2.2 scalar (scalar) and four operations of an arraySimple mathematical operations can be performed between scalar and array, such as addition, subtraction, multiplication, division, and mixing operations"G=[1 234"567891011 12]G=g-2= g-1 0123456789102*g-1= ans-3 -1 135791113151719Four operations between 4.2.3 arraysIn MATLAB, the array between the four operations, an array of participating in operation must have the same dimension, subtraction, multiplication, addition, operation is carried out according to the elements and elements forms. Among them, the array between the addition, subtraction and matrix addition, subtraction to the same operator, as: "+" "-". However, the array multiplication, division and matrix multiplication, division operation symbol is completely different, thereare differences, between the array multiplication and division operators: "*", "/" or ".".1. array by element add, minus"G=[1 234"567891011 12]"H=[1 111; 2222; 333; 3]"> g+h% added by element= ans23457891012131415> ans-h%, subtract by element= ans123456789 10 11 12> > > > > > > 2 g / h) 混合运算years.1 3 5 78 10 12 1415 17 19 212. 按元素乘> > > > > > > g * hyears.1 2 3 410 12 14 1627 30 33 363. 按元素除数组间的除法运算符有两个, 即左除 "/" 和右除 "." 它们之间的关系是.a /b = b.> > > > > > > g / hyears.1.00002.00003.00004.00002.50003.00004.1000 4.00003.0000 3.3333 3.66674.0000"h \ gyears.1.00002.00003.00004.00002.50003.00004.1000 4.00003.0000 3.3333 3.66674.0000幂运算.在matlab中, 数组的幂运算的运算为 "." 表示每一个元素进行幂运算. > > > > > > > (2% 数组g每个元素的平方.years.1 4 9 425, 36, 49, 6481% (144> > > > > > > g ^ (- 1)) 数组g的每个元素的倒数years.1.0000 0.5000 0.3333 0.25000.2000 0.1667 0.1429 0.12500.1111 0.1000 0.0909 0.0833> > > > > > > 2 g%, 以g的每个元素为指数对2进行乘方运算.years.2 4 8 1632, 64, 128, 256512 1024, 2048, 4096> > > > > > > "h% 以h的每个元素为指数对g中相应元素进行乘方运算.years.1 2 3 425, 36, 49, 64729 1000, 1728> > > > > > > (h - 1).years.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 15 6 7 881% (144- 数组的指数, 对数和开方运算在matlab中, 所谓数组的运算实质是是数组内部每个元素的运算, 因此, 数组的指数, 对数和开方运算与标量的运算规则完全是一样的, 运算符函数分别为: exp () log (), () must 等.> > a = [1, 3, 4, 5, 2, 6, 3, 2, 4].> > > > > > > c = exp (a)c =2.7183 20.0855 54.59827.3891 403.4288 148.413220.0855 7.3891 54.5982> > > > > > > > > > > >数组的对数, 开方运算与数组的指数运算, 其方式完全一样, 这里不详述.向量运算.对于一行或一列的矩阵, 为向量, matlab有专门的函数来进行向量点积, 叉积和混合积的运算.the 向量的点积运算在高等数学中, 我们知道, 两向量的点积指两个向量在其中一个向量方向上的投影的乘积, 通常用来定义向量的长度.在matlab中, 向量的点积用函数 "dot"来实现, 其调用格式如下.c = dot (a, b) - 返回向量a与b的点积, 结果存放于c中.c = dot (a, b, d) - 返回向量a与b在维数为dim的点积, 结果存放于c中.> > a = [4 2 5 3 1).> > b = (3 8 10 12 13].> > > > > > > c = (a, b).c =137> > > > > > > c = dot (a, b, (4)c =32 50 36 13 6a 向量的叉积运算在高等数学中, 我们知道, 两向量的叉积返回的是与两个向量组成的平面垂直的向量.在matlab中, 向量的点积用函数 cross 来实现, 其调用格式如下.c = cross (a, b) - 返回向量a与b的叉积, 即, 结果存放于c中.c = cross (a, b, d) - 返回向量a与b在维数为dim的叉积, 结果存放于c 中.> > a = [2, 5].> > b = [3, 10].> > > > > > > c = cross (a, b)c =0 - 5 4these 向量的混合运算> > > > > > > d = dot (a, cross (b, c))d =41上例表明, 首先进行的是向量b与c的叉积运算, 然后再把叉积运算的结果与向量a进行点积运算.4.4 矩阵的基本运算如果说matlab的最大特点是强大的矩阵运算功能, 此话毫不为过.事实上, matlab中所有的计算都是以矩阵为基本单元进行的.matlab对矩阵的运算功能最全面, 也是最为强大的.矩阵在形式上与构造方面是等同于前面所述的数组的, 当其数学意义却是完全不同的.矩阵的基本运算包括矩阵的四则运算, 矩阵与标时的运算, 矩阵的幂运算, 指数运算, 对数运算, 开方运算及以矩阵的逆运算, 行列式运算等.it 矩阵的四则运算矩阵的四则运算与前面介绍的数组的四则运算基本相同.但也有一些差别.1. 矩阵的加减The addition and subtraction of a matrix is exactly the same as the addition and subtraction of an array, which requires the exact size of the two matrix to be exactly the same"A=[1 2; 35; 2; 6]";"B=[2 4; 18; 9; 0]";C=a+b= C36413116Multiplication of 2. matricesFor the multiplication of matrices, from linear algebra, we know that the two matrices required to be multiplied have the same common dimension as:"A=[1 2; 35; 2; 6]";"B=[2 41; 89, 0]";C=a*b= C182214657352622A A matrix is a matrix order, will requireB matrix multiplication and must be an order, get the matrix order. That is, only when the first matrix (left column matrix) is equal to the number of second matrices (right matrix) the number of rows, the product of two matrices is meaning.Division of 3. matricesFor the division of a matrix, there are two arithmetic symbols, namely "left" except "symbol" and "right" except "sign" / "." the right division of the matrix is slower, and the "left" operation can avoid the influence of singular matrixFor the equation, if this equation is overdetermined equation, then use division can automatically find the solution of minimizing square. If the equation is Diophantine equation, is used to solve the division operator at least at most rank (A)(rank of matrix A) non zero elements, and the solution of this type of in the solution of a minimum norm."A=[21 3420; 57820; 211417; 3431; 38]";"B=[10 2030, 40]'";X=b\a= x0.7667, 1.1867, 0.8767The above equation is overdetermined. Note that the resulting matrix X is column vector,"A=[21 34205; 78202114; 173431; 38]";"B=[10 20, 30]'";X=b\a= x1.6286, 1.2571, 1.1071, 1.0500The equation above is an indeterminate equationFour operations between 4. matrices and scalarsThe four operations and the four operations of scalar matrixand array and scalar between identical, i.e. each element in the matrix and scalar add, subtract, multiply, with the exception of the four operations. That is, when a division operation is performed, the scalar can only do the dividend.Power operation of 5. matricesThe power operation of a matrix is different from the power operation of a scalar. Using the symbol ^, it is not a power operation for each element of the matrix, but is related to some decomposition of the matrix"B=[21 3420; 782021; 1734; 31]";C=b^2= C3433207417543555376626313536231220156. matrix index, logarithmic and square root operationThe index matrix calculation, logarithmic and square root operations and an array of the corresponding operations are different. It is not a single element in the matrix operations, but for the whole matrix. These operations function as follows:Expm, expm1, expm2, expm3 - exponential arithmetic functions;Logm - logarithmic function;Sqrtm - root operation function."A=[1 34; 265; 32; 4]";> c=expm (a)= C1.0e+004 *0.4668, 0.7694, 0.92000.7919, 1.3065, 1.56130.4807, 0.7919, 0.9475> c=logm (a)= C0.5002 + 2.4406i 0.5960 - 0.6800i 0.7881 - 1.2493i0.4148 + 0.4498i 1.4660 - 0.1253i 1.0108 - 0.2302i0.5780 - 1.6143i 0.4148 + 0.4498i 1.0783 + 0.8263i> c=sqrtm (a)= C0.6190 + 0.8121i 0.8128 - 0.2263i 1.1623 - 0.4157i0.3347 + 0.1497i 2.3022 - 0.0417i 1.1475 - 0.0766i1.0271 - 0.5372i 0.3347 + 0.1497i 1.6461 + 0.2750iTranspose, inverse operation and determinant operation of 7.matricesThe transpose operator of the matrix is', 'and the inverse uses the arithmetic function: inv (), and uses the function: det () to determine the size of the determinant of the matrix"A=[1 20; 25-1; 410; -1]";C=a'= C12425100-1 -1> b=inv (a)= b52 -2-2 -1 10 -2 1> d=det (a)= DOneSpecial operations of 4.5 matricesThe special operations of matrix include matrix eigenvalue operation, conditional number operation, singular value operation, norm operation,rank operation, orthogonalization operation, trace operation, pseudo inverse operation, etc. these operations can be conveniently given by MATLABEigenvalue operations of 4.5.1 matricesIn linear algebra, it is very complicated to compute the eigenvalues of matrices. In MATLAB, the matrix eigenvalue operations are computed only by the function eig () or eigs (). The format is as follows E=eig (X) - generates a column vector consisting of the eigenvalues of the matrix X;[V, D]=eig (X) - generates two matrices V and D, where V is a matrix consisting of the eigenvectors of the matrix X as the column vectors, and D is the diagonal matrix made up of the eigenvalues of the matrix X as the main diagonal elementsThe eigs () function uses the iterative method to solve the eigenvalues and eigenvectors of the matrixD=eigs (X) - generating a column vector consisting of eigenvalues of matrix.X, X must be square, preferably large sparse matrix;[V, D]=eigs (X) - generates two matrices V and D, where V is a matrix consisting of the eigenvectors of the matrix X as the column vectors, and D is the diagonal matrix made up of the eigenvalues of the matrix X as the main diagonal elements"A=[1 20; 25-1; 410; -1]";[b, c]=eig (a)= b-0.2440 -0.9107 0.4472-0.3333 0.3333 0-0.9107 -0.2440 0.8944= C3.7321000.267901Norm operations of 4.5.2 matrices (vectors)In order to reflect the characteristics of some matrix (vector), the norm of the concept of linear algebra, it is divided into 2- norm, 1- norm, infinite norm and Frobenius norm. In MATLAB, norm (or normest)with the function () matrix (vector) norm. The format is as follows.Norm (X) -- the 2- norm of the matrix (vector) X;Norm (X, 2) - ibid;Norm (X, 1) - compute the 1- norm of the matrix (vector) X;Norm (X, INF) -- the infinite norm of the matrix (vector) X;Norm (X,'fro') - compute the Frobenius norm of the matrix (vector) X;Normest (X) -- only the 2- norm of the matrix (vector) X is computed, and the estimate of the 2- norm is applied to the computation of norm (X), which is time-consuming"X=hilb (4)"= X1, 0.5000, 0.3333, 0.25000.5000, 0.3333, 0.2500, 0.20000.3333, 0.2500, 0.2000, 0.16670.2500, 0.2000, 0.1667, 0.1429"Norm (4)"= ansFour> norm (X)= ansOne point five Zero Zero two"Norm (X, 2)= ansOne point five Zero Zero two"Norm (X, 1)= ansTwo point zero eight three three> norm (X, INF)= ansTwo point zero eight three three> norm (X,'fro')= ansOne point five zero nine seven> normest (X)= ansOne point five Zero Zero twoConditional number operation of 4.5.3 matrixThe condition number of a matrix is a quantity of the "morbid" degree of the judgement matrix. The larger the condition number of the matrix A, the more morbid the A is, and conversely, the more "good" state of the A, for example, the Hilbert matrix is a well-known ill conditioned matrixCond (X) - the condition number of the 2- norm of the return matrix X;Cond (X, P) - returns the conditional number of the P- norm of the matrix X, where P is 1,2, inf or fro;Rcond (X) - the inverse value used to compute the condition numberof a matrix. When the matrix X is ill conditioned, rcond (X) is close to 0 and X is "good", and rcond (X) is close to 1.Condest (X) - calculates the estimate of the condition number of the 1- norm of the matrix X"M=magic (3)"= M816357492"H=hilb (4)"= H1, 0.5000, 0.3333, 0.25000.5000, 0.3333, 0.2500, 0.20000.3333, 0.2500, 0.2000, 0.16670.2500, 0.2000, 0.1667, 0.1429> c1=cond (M)= C1Four point three three zero one> c2=cond (M)= C2Four point three three zero one> c3=rcond (M)= C3Zero point one eight seven five> c4=condest (M)= C4Five point three three three three > h1=cond (H)= H11.5514e+004> h2=cond (H, INF)= H22.8375e+004> h3=rcond (H)= H33.5242e-005> h4=condest (H)= H42.8375e+004From the calculation, we can see that the Rubik's cube matrix is better, and the Hilbert matrix is ill conditionedRank of 4.5.4 matrixRank is one of the important concepts in linear algebra, usually by elementary determinant or matrix can be transformed into the column transform, row echelon matrix, the number of rows and the ladder matrix contains nonzero row is a constant, the determination of the non zero line number is the rank of matrix matrix. The rank function (rank) to calculate."T=rand (6)"= T0.9501, 0.4565, 0.9218, 0.4103, 0.1389, 0.01530.2311, 0.0185, 0.7382, 0.8936, 0.2028, 0.74680.6068, 0.8214, 0.1763, 0.0579, 0.1987, 0.44510.4860, 0.4447, 0.4057, 0.3529, 0.6038, 0.93180.8913 0.6154 0.9355 0.8132 0.2722 0.46600.7621 0.7919 0.9169 0.0099 0.1988 0.4186> r =秩(t)R =六由上计算可知,矩阵T为满秩矩阵。
matlab 矩阵运算

matlab 矩阵运算
Matlab是一种深受工程师和科学家们喜爱的编程语言,它具有优秀的数学计算能力,非常适合用于各种科学、技术和工程领域的计算任务。
其中最常用的是矩阵运算,本文将主要介绍Matlab中的矩阵运算。
首先,Matlab中的矩阵是由数字的网格组成的,它们有行和列,行从上到下,列从左到右,每个数字又称为元素。
一般而言,Matlab 中的矩阵运算通常分为三类:乘法,加法和转置。
1、阵乘法
在Matlab中,矩阵乘法常用来计算向量的内积,也可以用来计算矩阵之间的乘积。
它可以看作是两个矩阵彼此乘以每列元素,然后将结果求和,用符号A*B表示,A和B都是m×n矩阵。
2、阵加法
在Matlab中,矩阵加法是指将两个具有相同维度的矩阵相加,结果是一个新的矩阵,元素位置相同,每个元素的值是两个矩阵对应元素的和,用符号A+B表示,A和B都是m×n矩阵。
3、阵转置
在Matlab中,矩阵转置是将矩阵的行变成列,列变成行,每个元素的位置也改变,用符号A表示,A是m×n矩阵。
除了上述常用的矩阵运算,Matlab中还提供了求逆、求伴随矩阵、求特征值和特征向量等运算,以及解方程组这样的复杂矩阵运算,它们可以用来处理线性代数问题。
此外,Matlab中还有一些矩阵变换函数,如reshape()可以改变矩阵的尺寸,flip()可以将矩阵的行或列翻转,rot90()可以将矩阵的行和列旋转。
总而言之,Matlab中的矩阵运算非常丰富,可以满足各种复杂的代数运算需求。
其基本操作简单易懂,可以快速、有效地解决复杂的线性代数问题。
怎么用matlab进行矩阵运算?

怎么⽤matlab进⾏矩阵运算?MATLAB具有⼏乎所有类型的通⽤矩阵计算功能。
有函数可以得到特征值。
命令⾏键⼊:eig(A)点击“Enter”键。
如图12所⽰。
以及单值。
命令⾏键⼊:svd(A)点击“Enter”键。
如图13所⽰。
“多”函数⽣成⼀个包含特征多项式系数的向量。
矩阵a的特征多项式是:det(λI-A)。
命令⾏键⼊:p = round(poly(A))点击“Enter”键。
如图14所⽰。
我们可以很容易地找到⼀个多项式的根使⽤根函数。
这些实际上是原始矩阵的特征值。
命令⾏键⼊:roots(p)点击“Enter”键。
如图15所⽰。
MATLAB在矩阵计算之外有许多应⽤。
要卷积两个向量。
.命令⾏键⼊:q = conv(p,p)点击“Enter”键。
如图16所⽰。
...或再次卷积并绘制结果。
命令⾏键⼊:r = conv(p,q)plot(r);点击“Enter”键。
如图17、18所⽰。
在任何时候,我们都可以使⽤who或whos命令获得存储在内存中的变量列表。
命令⾏键⼊:whos 点击“Enter”键。
如图19所⽰。
通过键⼊特定变量的名称,可以获得该变量的值。
命令⾏键⼊:A点击“Enter”键。
如图20所⽰。
通过⽤逗号或分号分隔每个语句,可以在⼀⾏上有不⽌⼀条语句。
如果您没有分配⼀个变量来存储⼀个操作的结果,那么结果将存储在⼀个名为ans的临时变量中。
命令⾏键⼊:sqrt(-1)点击“Enter”键。
如图21所⽰。
正如你所看到的,MATLAB在计算中很容易处理复数。
以上就是⼩编为⼤家带来的怎么⽤matlab进⾏矩阵运算全部内容,希望对⼤家有所帮助更多内容请继续关注。
上⼀页1 2下⼀页阅读全⽂。