(2020年整理)普通高中数学学业水平考试试卷.doc

合集下载

2020年山东省普通高中学业水平合格考试数学试卷

2020年山东省普通高中学业水平合格考试数学试卷

2020年山东省普通高中学业水平合格考试数学试卷一、本大题共20小题,每小题3分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设集合A ={1, 3, 5},B ={2, 3},则A ∪B =( ) A.{3} B.{1, 5} C.(1, 2, 5)∩{1, 2, 5} D.{1, 2, 3, 5}2. 函数f(x)=cos (12x +π6)的最小正周期为( )A.π2B.πC.2πD.4π3. 函数f(x)=√x −1+ln (4−x)的定义域是( ) A.(1, +∞) B.[1, 4) C.(1, 4] D.(4, +∞)4. 下列函数中,既是偶函数又在(0, +∞)上是减函数的是( ) A.y =−x 3 B.y =1C.y =|x|D.y =1x 25. 已知直线l 过点P(2, −1),且与直线2x +y −l =0互相垂直,则直线l 的方程为( ) A.x −2y =0 B.x −2y −4=0 C.2x +y −3=0 D.2x −y −5=06. 已知函数f(x)={2x,x ≤0x 32,x >0 ,则f(−1)+f(1)=( )A.0B.1C.32D.27. 已知向量a →与b →的夹角为π3,且|a →|=3,|b →|=4,则a →⋅b →=( ) A.6√3 B.6√2C.4√3D.68. 某工厂抽取100件产品测其重量(单位:kg ).其中每件产品的重量范围是[40, 42].数据的分组依据依次为[40, 40, 5),[40, 5, 41),[41, 41, 5),[41, 5, 42),据此绘制出如图所示的频率分布直方图,则重量在[40, 41)内的产品件数为( )A.30B.40C.60D.809.sin 110∘ cos 40∘−cos 70∘sin 40∘= ( ) A.12B.√32C.−12D.−√3210. 在平行四边形ABCD 中,AB →+BD →−AC →=( ) A.DC →B.BA →C.BC →D.BD →11. 某产品的销售额y (单位:万元)与月份x 的统计数据如表.用最小二乘法求出y 关于x 的线性回归方程为y =7x +a ,则实数a =( )C.4D.10.512. 下列结论正确的是( ) A.若a <b ,则a 3<b 3 B.若a >b ,则2a <2b C.若a <b ,则a 2<b 2 D.若a >b ,则ln a >ln b13. 圆心为M(1, 3),且与直线3x −4y −6=0相切的圆的方程是( ) A.(x −1)2+(y −3)2=9 B.(x −1)2+(y −3)2=3 C.(x +1)2+(y +3)2=9D.(x +1)2+(y +3)2=314. 已知袋中有大小、形状完全相同的5张红色、2张蓝色卡片,从中任取3张卡片,则下列判断不正确的是( )A.事件“都是红色卡片”是随机事件B.事件“都是蓝色卡片”是不可能事件C.事件“至少有一张蓝色卡片”是必然事件D.事件“有1张红色卡片和2张蓝色卡片”是随机事件15. 若直线(a −1)x −2y +1=0与直线x −ay +1=0垂直,则实数a =( ) A.−1或2 B.−1C.13D.316. 将函数y =sin x 的图象上所有的点的横坐标缩短到原来的13倍(纵坐标不变),再将得到的图象向右平移π12个单位,得到的图象对应的函数解析式为( ) A.y =sin (3x −π4)B.y =sin (3x −π12)C.y =sin (13x −π4) D.y =sin (13x −π12)17. 3名同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为( ) A.14 B.23C.12D.3418. 如图,在正方体ABCD −A 1B 1C 1D 1中,下列判断正确的是( )A.A 1D ⊥C 1CB.BD 1⊥ADC.A 1D ⊥ACD.BD 1 ⊥AC19. 已知向量a →,b →不共线,若AB →=a →+2b →,BC →=−3a →+7b →,CD →=4a →−5b →,则( )A.A ,B ,C 三点共线B.A ,B ,D 三点共线C.A ,C ,D 三点共线D.B ,C ,D 三点共线20. 在三棱锥P −ABC 中,PA ,PB ,PC 两两垂直,且PA =1,PB =PC =2,则该三棱锥的外接球体的体积为( ) A.9π2B.27π2C.9πD.36π二、填空题:本大题共5小题,每小题3分,共15分.某校田径队共有男运动员45人,女运动员36人.若采用分层抽样的方法在全体运动员中抽取18人进行体质测试,则抽到的女运动员人数为________.已知α为第二象限角,若sin α=35,则tan α的值为________.已知圆锥底面半径为1,高为√3,则该圆锥的侧面积为________.已知函数f(x)=x 2+x +a 在区间(0, 1)内有零点,则实数a 的取值范围为________.若P 是圆C 1:(x −4)2+(y −5)2=9上一动点,Q 是圆C 2:(x +2)2+(y +3)2=4上一动点,则|PQ|的最小值是________.三、解答题:本题共3小题,共25分.如图,在四棱锥P −ABCD 中,四边形ABCD 是平行四边形,E 、F 分别是AB 、PC 中点,求证:EF // 面PAD .在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,且a =6,cos B =13. (1)若sin A =35,求b 的值;(2)若c =2,求b 的值及△ABC 的面积S .已知函数f(x)=ax+log3(9x+1)(a∈R)为偶函数.(1)求a的值;(2)当x∈[0, +∞)时,不等式f(x)−b≥0恒成立,求实数b的取值范围.参考答案与试题解析2020年山东省普通高中学业水平合格考试数学试卷一、本大题共20小题,每小题3分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.【答案】D【考点】并集及其运算【解析】进行并集的运算即可.【解答】∵A={1, 3, 5},B={2, 3},∴A∪B={1, 2, 3, 5}.2.【答案】D【考点】三角函数的周期性及其求法【解析】根据三角函数的周期公式直接进行计算即可.【解答】由三角函数的周期公式得T=2π12=4π,3.【答案】B【考点】函数的定义域及其求法【解析】根据函数f(x)的解析式,列出使解析式有意义的不等式组,求出解集即可.【解答】解:∵函数f(x)=√x−1+ln(4−x),∴{x−1≥0,4−x>0.解得1≤x<4.∴函数f(x)的定义域是[1, 4).故选B.4.【答案】D【考点】奇偶性与单调性的综合【解析】结合基本初等函数的单调性及奇偶性对选项分别进行判断即可.【解答】由幂函数的性质可知,y=−x3,y=1x为奇函数,不符合题意,y=|x|为偶函数且在(0, +∞)上单调递增,不符号题意,y=1x2为偶函数且在(0, +∞)上单调递减,符合题意.5.【答案】B【考点】直线的一般式方程与直线的垂直关系【解析】根据题意设出直线l的方程,把点P(2, −1)代入方程求出直线l的方程.【解答】根据直线l与直线2x+y−l=0互相垂直,设直线l为x−2y+m=0,又l过点P(2, −1),∴2−2×(−1)+m=0,解得m=−4,∴直线l的方程为x−2y−4=0.6.【答案】C【考点】求函数的值函数的求值【解析】推导出f(−1)=2−1=12,f(1)=132=1,由此能求出f(−1)+f(1)的值.【解答】∵函数f(x)={2x,x≤0x32,x>0,∴f(−1)=2−1=12,f(1)=132=1,∴f(−1)+f(1)=12+1=32.故选:C.7.【答案】D【考点】平面向量数量积的性质及其运算 【解析】进行数量积的运算即可. 【解答】∵ 向量a →与b →的夹角为π3,且|a →|=3,|b →|=4, ∴ a →⋅b →=|a →||b →|cos π3=3×4×12=6.8. 【答案】 B【考点】频率分布直方图 【解析】由频率分布直方图得重量在[40, 41)内的频率为0.4.由此能求出重量在[40, 41)内的产品件数. 【解答】由频率分布直方图得:重量在[40, 41)内的频率为:(0.1+0.7)×0.5=0.4. ∴ 重量在[40, 41)内的产品件数为0.4×100=40. 9. 【答案】 A【考点】求两角和与差的正弦 【解析】利用诱导公式以及两角和的正弦函数化简求解即可. 【解答】解:sin 110∘ cos 40∘−cos 70∘sin 40∘ =sin 70∘ cos 40∘−cos 70∘sin 40∘ =sin (70∘−40∘) =sin 30∘=12. 故选A . 10. 【答案】 B【考点】向量加减法的应用 【解析】利用平面向量加法法则直接求解. 【解答】在平行四边形ABCD 中,AB →+BD →−AC →=AB →+BD →+CA →=CD →=BA →.11.【答案】 B【考点】求解线性回归方程 【解析】由已知求得样本点的中心坐标,代入线性回归方程即可求得实数a . 【解答】 x ¯=3+4+5+64=4.5,y ¯=25+30+40+454=35,∴ 样本点的中心坐标为(4.5, 35),代入y =7x +a ,得35=7×4.5+a ,即a =3.5. 12. 【答案】 A【考点】不等式的基本性质 【解析】利用函数的单调性、不等式的性质即可判断出正误. 【解答】A .a <b ,可得a 3<b 3,正确;B .a >b ,可得2a >2b ,因此B 不正确;C .a <b ,a 2与b 2大小关系不确定,因此不正确;D .由a >b ,无法得出ln a >ln b ,因此不正确. 13.【答案】 A【考点】 圆的切线方程 圆的标准方程【解析】由题意可知,圆的半径即为圆心M 到直线的距离,根据点到直线的距离公式即可求解. 【解答】由题意可知,圆的半径r =|3−12−6|5=3,故所求的圆的方程为(x −1)2+(y −3)2=9. 14. 【答案】 C【考点】 随机事件 【解析】利用随机事件的定义直接求解. 【解答】袋中有大小、形状完全相同的5张红色、2张蓝色卡片,从中任取3张卡片, 在A 中,事件“都是红色卡片”是随机事件,故A 正确; 在B 中,事件“都是蓝色卡片”是不可能事件,故B 正确; 在C 中,事件“至少有一张蓝色卡片”是随机事件,故C 错误;在D 中,事件“有1张红色卡片和2张蓝色卡片”是随机事件,故D 正确. 15.【答案】 C【考点】直线的一般式方程与直线的垂直关系 【解析】根据题意,分析可得(a −1)+2a =0,解可得a 的值,即可得答案. 【解答】根据题意,若直线(a −1)x −2y +1=0与直线x −ay +1=0垂直, 必有(a −1)+2a =0,解可得a =13; 16.【答案】 A【考点】函数y=Asin (ωx+φ)的图象变换 【解析】由题意利用函数y =A sin (ωx +φ)的图象变换规律,得出结论. 【解答】将函数y =sin x 的图象上所有的点的横坐标缩短到原来的13倍(纵坐标不变),可得y =sin 3x 的图象; 再将得到的图象向右平移π12个单位,得到的图象对应的函数解析式为y =sin 3(x −π12)=sin (3x −π4), 17.【答案】 D【考点】古典概型及其概率计算公式 【解析】求得3位同学各自在周六、周日两天中任选一天参加公益活动、周六、周日都有同学参加公益活动的情况,利用古典概型概率公式求解即可. 【解答】3位同学各自在周六、周日两天中任选一天参加公益活动,共有23=8种情况, 周六、周日都有同学参加公益活动,共有23−2=8−2=6种情况, ∴ 所求概率为68=34. 18.【答案】 D【考点】空间中直线与直线之间的位置关系 【解析】直接可以看出A ,B ,C 均不成立,用线线垂直来推线面垂直进而得到线线垂直. 【解答】因为AC ⊥BD ,AC ⊥DD 1;BD ∩DD 1=D ; BD ⊆平面DD 1B 1B ,DD 1⊆平面DD 1B 1B , ∴ AC ⊥平面DD 1B 1B ; BD 1⊆平面DD 1B 1B ; ∴ AC ⊥BD 1; 即D 对. 19.【答案】 B【考点】平行向量(共线) 【解析】BD →=BC →+CD →=(−3a →+7b →)+(4a →−5b →)=a →+2b →=AB →,从而BD →∥AB →,进而A ,B ,D 三点共线. 【解答】向量a →,b →不共线,AB →=a →+2b →,BC →=−3a →+7b →,CD →=4a →−5b →,∴ BD →=BC →+CD →=(−3a →+7b →)+(4a →−5b →)=a →+2b →=AB →, ∴ BD →∥AB →,∴ A ,B ,D 三点共线. 20. 【答案】 A【考点】球的表面积和体积 【解析】由题意将此三棱锥放在长方体中,可得长方体的长宽高,再由长方体的对角线等于外接球的直径求出外接球的体积. 【解答】由三棱锥中PA ,PB ,PC 两两垂直,且PA =1,PB =2,PC =2将此三棱锥放在长方体中,由题意知长方体的长宽高分别是:1,2,2.设外接球的半径为R ,则2R =√12+22+22=3所以R =32, 所以外接球的体积V =43πR 3=92π,二、填空题:本大题共5小题,每小题3分,共15分.【答案】 8【考点】 分层抽样方法 【解析】根据田径队的男女运动员数目和用分层抽样要抽取的数目,得到每个个体被抽到的概率值,利用每个个体被抽到的概率乘以女运动员的数目,得到女运动员要抽取得人数. 【解答】∵ 某校田径队共有男运动员45人,女运动员36人, ∴ 这支田径队共有45+36=81人,用分层抽样的方法从该队的全体运动员中抽取一个容量为18的样本, ∴ 每个个体被抽到的概率是1881=29,∵ 女运动员36人,∴ 女运动员要抽取36×29=8人, 【答案】−34【考点】同角三角函数间的基本关系 【解析】由条件利用同角三角函数的基本关系求得cos α 的值,从而求得tan α的值. 【解答】∵ α为第二象限角sin α=35, ∴ cos α=−45,则tan α=sin αcos α=−34, 【答案】 2π【考点】柱体、锥体、台体的侧面积和表面积 【解析】由已知求得母线长,代入圆锥侧面积公式求解. 【解答】由已知可得r =1,ℎ=√3,则圆锥的母线长l =√12+(√3)2=2.∴ 圆锥的侧面积S =πrl =2π. 【答案】 (−2, 0) 【考点】函数零点的判定定理 【解析】由零点存在性定理得f(0)f(1)=a(a +2)<0,求出即可. 【解答】函数f(x)=x 2+x +a 在区间(0, 1)内有零点, f(0)=a ,f(1)=2+a ,由零点存在性定理得f(0)f(1)=a(a +2)<0,得−2<a <0, 经验证a =−2,a =0均不成立, 故答案为:(−2, 0) 【答案】 5【考点】圆与圆的位置关系及其判定 【解析】分别找出两圆的圆心坐标,以及半径r 和R ,利用两点间的距离公式求出圆心间的距离d ,根据大于两半径之和,得到两圆的位置是外离,又P 在圆C 1上,Q 在圆C 2上,则|PQ|的最小值为d −(r +R),即可求出答案. 【解答】圆C 1:(x −4)2+(y −5)2=9的圆心C 1(4, 5),半径r =3, 圆C 2:(x +2)2+(y +3)2=4的圆心C 2(−2, −3),半径r =2, d =|C 1C 2|=√(4+2)2+(5+3)2=10>2+3=r +R , 所以两圆的位置关系是外离, 又P 在圆C 1上,Q 在圆C 2上,则|PQ|的最小值为d −(r +R)=10−(2+3)=5, 三、解答题:本题共3小题,共25分. 【答案】证明:取PD 的中点G ,连接FG 、AG . 因为PF =CF ,PG =DG , 所以FG // CD ,且FG =12CD .又因为四边形ABCD 是平行四边形,且E 是AB 的中点.所以AE // CD ,且AE =12CD . 所以FG // AE ,且FG =AE ,所以四边形EFGA 是平行四边形, 所以EF // AG .又因为EF⊄平面PAD,AG⊂平面PAD,所以EF // 平面PAD.【考点】直线与平面平行【解析】取PD的中点G,连接FG、AG,由PF=CF,PG=DG,所以FG // CD,且FG=12CD.又因为四边形ABCD是平行四边形,且E是AB的中点.所以AE // CD,且AE=12CD.证得四边形EFGA是平行四边形,所以EF // AG,由线面平行的判定定理即可得证.【解答】证明:取PD的中点G,连接FG、AG.因为PF=CF,PG=DG,所以FG // CD,且FG =12CD.又因为四边形ABCD是平行四边形,且E是AB的中点.所以AE // CD,且AE=12CD.所以FG // AE,且FG=AE,所以四边形EFGA是平行四边形,所以EF // AG.又因为EF⊄平面PAD,AG⊂平面PAD,所以EF // 平面PAD.【答案】由cos B=13可得sin B=2√23,由正弦定理可得,asin A =bsin B,所以b=a sin Bsin A =6×2√2335=20√23,由余弦定理可得,cos B=13=a2+c2−b22ac=36+4−b22×2×6,解可得,b=4√2,S=12ac sin B=12×6×2×2√23=4√2.【考点】正弦定理余弦定理【解析】(1)先根据同角平方关系求出sin B,然后结合正弦定理即可求解,(2)结合余弦定理及三角形的面积公式即可求解.【解答】由cos B=13可得sin B=2√23,由正弦定理可得,asin A=bsin B,所以b=a sin Bsin A=6×2√2335=20√23,由余弦定理可得,cos B=13=a2+c2−b22ac=36+4−b22×2×6,解可得,b=4√2,S=12ac sin B=12×6×2×2√23=4√2.【答案】根据题意可知f(x)=f(−x),即ax+log3(9x+1)=−ax+log3(9−x+1),整理得log39x+19−x+1=−2ax,即−2ax=log39x=2x,解得a=1;由(1)可得f(x)=x+log3(9x+1),因为f(x)−b≥0对x∈[0, +∞)恒成立,即x+log3(9x+1)≥b对x∈[0, +∞)恒成立,因为函数g(x)=x+log3(9x+1)在[0, +∞)上是增函数,所以g(x)min=g(0)=log32,则b≤log32.【考点】函数奇偶性的性质与判断函数恒成立问题【解析】(1)根据偶函数性质f(x)=f(−x),化简整理可求得a的取值;(2)根据条件可知x+log3(9x+1)≥b对x∈[0, +∞)恒成立,求出函数g(x)=x+log3(9x+1)在[0, +∞)上的最小值即可【解答】根据题意可知f(x)=f(−x),即ax+log3(9x+1)=−ax+log3(9−x+1),整理得log39x+19−x+1=−2ax,即−2ax=log39x=2x,解得a=1;由(1)可得f(x)=x+log3(9x+1),因为f(x)−b≥0对x∈[0, +∞)恒成立,(9x+1)≥b对x∈[0, +∞)恒成立,即x+log3(9x+1)在[0, +∞)上是增函数,因为函数g(x)=x+log32,所以g(x)min=g(0)=log32.则b≤log3。

江苏省2023年普通高中学业水平合格性考试数学模拟试卷(六)

江苏省2023年普通高中学业水平合格性考试数学模拟试卷(六)

江苏省2023年普通高中学业水平合格性考试数学试卷(六)数 学 试 题注意事项:1.本试卷包括选择题(第1题~第28题,共28题84分)、非选择题(第29题~第30题,共2题16分)共两部分。

满分100分,考试时间为75分钟。

2.答题前,考生务必将信息填写清楚。

一、选择题:本大题共28小题,每小题3分,共计84分.在每小题给出的四个选项中,只有一项符合题目要求.1.设集合{1,2,3,4,5,6},{1,3,6},{2,3,4}U A B ===,则()UAB =()A .{356},, B .{1,356},, C .{15,6}, D .{1,36},2.已知复数z 满足z (1+2i )=3﹣4i (i 为虚数单位),则|z |=( ) A .5B .C .3D .3.函数y =的定义域为( )A .(0,4)B .(4,+∞)C .(0,4)∪(4,+∞)D .(0,+∞)4.已知0.42x =,2lg 5y =,0.425z ⎛⎫= ⎪⎝⎭,则下列结论正确的是() A .x y z <<B .y z x <<C .z y x <<D .z x y <<5.设{}n a 为等比数列,{}n b 为等差数列,且n S 为数列{}n b 的前n 项和,若21a =,1016a =,且66a b =,则11S =() A . 20 B . 30C . 44D . 886.矩形ABCD 中,1AB =,2AD =,AC 与BD 相交于点O ,过点A 作AE BD ⊥,则AE EC ⋅=()A .1225B .2425C .125D .457.下列说法中错误的是( )A .“p q ∧”是真命题是“p q ∨”为真命题的必要不充分条件B .命题“x R ∀∈,cos 1≤x ”的否定是“0x R ∃∈,0cos 1x >”C .若一个命题的逆命题为真,则它的否命题一定为真D .在ABC ∆中,cos cos B A >是A B >的充要条件8.若,2παπ⎛⎫∈ ⎪⎝⎭,7cos 225α=,则sin 3sin 2απα=⎛⎫+ ⎪⎝⎭( )A .35B .34C .725D .459.已知平面α,β,直线l ,m ,且有l α⊥,m β⊂,给出下列命题:①若//αβ,则l m ⊥;②若//l m ,则αβ⊥;③若αβ⊥,则//l m ;④若l m ⊥,则//αβ.其中正确命题的个数是() A .1 B . 2 C . 3 D . 410.为响应国家“光盘行动”的号召,某同学决定在某食堂提供的2种主食、3种素菜、2种大荤、4种小荤中选取一种主食、一种素菜、一种荤菜作为今日伙食,并在用餐时积极践行“光盘行动”,则不同的选取方法有() A .48种 B .36种C .24种 D .12种11.函数f (x )=的零点个数为( )A .0B .1C .2D .312.计算sin15°sin75°的结果是( )A .B .C .D .13.在正方体1111ABCD A B C D -中,E ,F ,G ,H 分别是棱AD ,11C D ,BC ,11A B 的中点,则异面直线EF 与GH 所成角的余弦值是 ( ) A.-B.13-D .1314.已知向量a ,b 满足|a |=1,a ·b =-1,则a ·(2a -b )=( )A .4B .3C .2D .015.若直线l 1:ax -(a +1)y +1=0与直线l 2:2x -ay -1=0垂直,则实数a =( )A .3B .0C .-3D .0或-316.若抛物线y 2=2px (p >0)的焦点是椭圆+=1的一个焦点,则p =( )A .2B .3C .4D .817.已知正项等比数列{a n }满足a 4=4,a 2+a 6=10,则公比q =( )A .或B .C .D .2或18.在等差数列{a n }中,若a 2=4,a 4=2,则a 6=( )A .-1B .0C .1D .619.下列函数既是偶函数,又在(),0-∞上单调递减的是( ) A .2x y = B .23y x -=C .1y x x=- D .()2ln 1y x =+20.曲线xy e x =+在0x =处的切线方程为y kx b =+,则实数b = ( )A .1B .2C .-1D .-221.已知幂函数f (x )=k ·x α的图象过点⎝⎛⎭⎫12,22,则k +α等于( )A .12B .1C .32 D .222.已知圆锥的表面积等于12π cm 2,其侧面展开图是一个半圆,则底面圆的半径为( ) A .1 cm B .2 cm C .3 cm D .32 cm23.sin 225︒= ( )A .12- B .2-C .D .1-24.在ABC △中,若3,120AB BC C ==∠=,则AC =( ) A .1 B .2C .3D .425.已知向量(1,2)a =,(2,)b x =,a b +与b 平行,则实数x 的值为( )A .1B .2C .3D .426.设n S 为等差数列{}n a 的前n 项和,若3243S S S =+,12a =,则5a =( ) A .12- B .10-C .10D .1227.已知0a b >>1=,则1a b -<;②若331a b -=,则1a b -<;③若1a b e e -=,则1a b -<;④若ln ln 1a b -=,则1a b -<.其中真命题的个数是( ) A .1 B .2C .3D .428.已知函数()sin cos f x x x =+,则( ) A .()f x 的最小正周期为πB .()f x 的0,2π⎡⎤⎢⎥⎣⎦上为增函数 C .()f x 的最小值为2- D .()y f x =图象的一条对称轴方程为4x π=二、解答题:本大题共2小题,共计16分,解答时应写出文字说明、证明过程或演算步骤. 29.(本小题满分8分)已知向量=(3,1),=(2,4). (1)求向量与夹角; (2)若()⊥(),求实数λ的值.30.(本小题满分8分)在ABC ∆中,角A ,B ,C 所对边长分别为a ,b ,c ,且1b a =+,2c a =+. (1)若2sin 3sin C A =,求ABC ∆的面积;(2)是否存在正整数a ,使得ABC ∆为钝角三角形?若存在,求出a 的值;若不存在,说明理由.江苏省2023年普通高中学业水平合格性考试数学试卷(六)数 学 试 题注意事项:1.本试卷包括选择题(第1题~第28题,共28题84分)、非选择题(第29题~第30题,共2题16分)共两部分。

2020年普通高中学业水平合格性考试(会考)数学试卷二(含答案)

2020年普通高中学业水平合格性考试(会考)数学试卷二(含答案)

2020年普通高中学业水平合格性考试数学试卷(考试时间:90分钟满分:100分)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷1至4页,第Ⅱ卷5至6页。

考生注意:1.答题前,考生务必将自己的考生号、姓名填写在试题卷答题卡上。

考生要认真核对答题卡上粘贴的条形码的“考生号、姓名”与考生本人考生号、姓名是否一致。

2.第Ⅰ卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦擦干净后,再选涂其他答案标号。

第Ⅱ卷用黑色字迹签字笔在答题卡上作答。

在试题卷上作答,答案无效。

3.考试结束,监考员将试题卷和答题卡一并收回。

第Ⅰ卷(选择题45分)一、选择题(本大题有15小题,每小题3分,共45分。

每小题只有一个选项符合题目要求)1.设集合A={1,2,3},B=2,3,4},则AUB=()A.{1,2,3,4}B.{1,2,3}C.{2,3,4}D.{1,3,4}2.下列函数中,在区间(0,+∞)上单调递的是()A.y=x12B.y=2−xC.y=log12x D.y=533.在等差数列{a n}中,a1=2,a3+a5=10,则a7=()A.5B.8C.10D.144.已知向量BA =(BA =(12,32),则∠ABC=()A.30°B.45°C.60°D.120°5.若a>b>0,c<d<0,则一定有()A.a c>b dB.a c<b dC.a d>b cD.a d<b c6.已知互相垂直的平面α,β交于直线l。

若直线m,n满足m∥α,n⊥β,则()A.m∥lB.m∥nC.n⊥lD.m⊥n7.对任意等比数列{a n},下列说法一定正确的是()A.a1,a3,a9成等比数列B.a2,a3,a6成等比数列C.a2,a4,a8成等比数列D.a3,a6,a9成等比数列8.在x轴上与点(3,2,1)的距离为3的点是()A.(-1,0,0)B.(5,0,0)C.(1,0,0)D.(5,0,0)和(1,0,0)9.设 = ,0< <1,2 −1, 1,,若 =2,则a=()A.2B.4C.6D.810.若tanα=13,tanα+β=12,则tanβ=()A.17B.16C.57D.5611.在长方体ABCD-A1B1C1D1中,AB=BC=1,AA1=3,则异面直线AD1与DB1所成角的余弦值为()A.15B.56C.55D.2212.若将一个质点随机投入如图所示的长方形ABCD中,其中AB=2,BC=1,则质点落在以AB为直径的半圆内的概率是()A.π2B.π4C.π6D.π813.在△ABC中,a,b,c分別为内角A,B,C所対边的边长,若c2=(a-b)2-+6,C=π3,则ab的值是()A.3B.6C.9D.1214.平行于直线2x+y+1=0,且与圆x2+y2=5相切的直线的方程是()A.2x+y+5=0或2x+y-5=0B.2x+y+5=0或2x+y-5=0C.2x-y+5=0或2x-y-5=0D.2x-y+5=0或2x-y-5=015.在天文学中,天体的明暗程度可以用星等或亮度来描述。

2020年6月普通高中学业水平合格性考试数学试题 Word版含答案

2020年6月普通高中学业水平合格性考试数学试题 Word版含答案

2020年6月福建省普通高中学业水平合格性考试数学试题(考试时间:90分钟;满分:100分)参考公式:样本数据x1,x2,…,x 。

的标准差s =√1n [(x 1−x ̅)2+(x 2−x ̅)2+⋯+(x n −x ̅)2] ,其中x ̅为样本平均数 锥体体积公式V=13Sh ,其中S 为底面面积,h 为高 球的表面积公式S=4πR 2,球的体积公式V=43πR 3,其中R 为球的半径 柱体体积公式V=Sh ,其中S 为底面面积,h 为高台体体积公式V =13(S ′+√S ′S +S)h ,其中S ',S 分别为上、下底面面积,h 为高 第Ⅰ卷 (选择题45)一、选择题(本大题有15小题,每小题3分,共45分.每小题只有一个选项符合题意)1.已知集合A={3},B={1,2,3},则A ∩B=A.{1,2,3}B.{1,3}C.{3}D. φ2.右图是某圆锥的三视图,则该圆锥底面圆的半径长是A.1B.2C.3D. √103.若三个数1,3,a 成等比数列,则实数a=A.1B.3C.5D.94.一组数据3,4,4,4,5,6的众数为A.3B.4C.5D.65.如图,在正方形上随机撒一粒黄豆,则它落到阴影部分的概率为A. 14B. 12C. 34 D.1 6.函数y=cosx 的最小正周期为A. π2B. πC. 3π2D. 2π 7.函数y= 1X−2的定义域为A.(-∞,2)B.(2,+∞)C.(-∞,2)U(2,+∞)D. R8.不等式2x+y-4≤0表示的平面区域是9.已知直线l 1:y =x-2,l 2:y=kx ,若l 1∥l 2,则实数k=A.-2B.-1C.0D.110.化简MN ⃗⃗⃗⃗⃗⃗⃗ + MP ⃗⃗⃗⃗⃗⃗ +QP ⃗⃗⃗⃗⃗ =A. MP ⃗⃗⃗⃗⃗⃗B. NQ ⃗⃗⃗⃗⃗⃗C. MQ ⃗⃗⃗⃗⃗⃗D. PM ⃗⃗⃗⃗⃗⃗10.不等式(x+2)(x-3)<0的解集是A.{x | x <-2,或x >3}B. {x |-2<x<3}C.{−12 < x < 13}D. {x|x <−12,或x >1312.化简tan(π+α)=A. sinαB.cos αC. –sinαD.tanα13.下列函数中,在(0,+∞)上单调递减的是A. y=x-3B.y= 2xC.y=x 2D.y=2x14.已知a=40.5,b=42,c=log 40.5,则a ,b ,c 的大小关系是Aa < b<c B .c<b<a Cc<a < b D a<c< b15.函数y={1, |x|<2,log2|x|,|x|≥2的图象大致为第Ⅱ卷(非选择题55分)二、填空题(本大题有5小题,每小题3分,共15分)16.已知向量a=(0,2),则2a= 。

2020年江苏高中学业水平合格考化学试卷真题及答案详解

2020年江苏高中学业水平合格考化学试卷真题及答案详解

江苏省2020年普通高中学业水平合格性考试试题化学可能用到的相对原子质量:H-1C-12O-16Na-23Mg-24S-32Cl-35.5K-39Ca-40Fe-56一、选择题:本大题共26小题,每小题3分,共计78分。

在每小题的四个选项中,只有一个选项符合题目要求。

1.2019年,我国第一艘国产航空母舰山东舰正式列装。

优质钢材是建造航空母舰的基础材料,钢材中含量最高的元素是()A.铁B.碳C.硅D.锰2.为充分利用资源和保护环境,近年来逐步实施了生活垃圾的分类处理。

废弃的塑料袋、纸张、橡胶制品均属于()A.单质B.有机物C.盐D.氧化物3.许多化学物质在日常生活中有俗名。

下列物质的俗名与化学式对应正确的是()A.双氧水—Na2O2B.小苏打—NaOHC.胆矾—Cu(OH)2D.干冰—CO24.如图仪器中名称为圆底烧瓶的是()A.D.B.C.5.标准状况下,1molO2的体积约为()A.5.6L B.11.2L C.22.4L D.33.6L6.实验室有少量汞不慎撒落,处理方法是将硫黄粉撒在汞的表面,发生反应的化学方程式为Hg+S=HgS,该反应属于()A.置换反应B.化合反应C.分解反应D.复分解反应7.大米是中国人的主食之一,其中含量最高的营养物质是淀粉。

淀粉属于()A.糖类B.油脂C.蛋白质D.无机盐8.下列变化属于化学变化的是()A.金属腐蚀B.碘的升华C.氨气液化D.矿石粉碎9.下列物质含有离子键的是()A .CO 2B .N 2C .KClD .H 2O10.海水中蕴藏着丰富的化学资源,每千克海水中氯化物的含量如图所示,其中物质的量浓度最大的金属离子是A .K +B .Ca 2+C .Mg 2+D .Na +11.下列化学用语表示正确的是()A .苯的结构简式:C HB .氢分子的电子式:H:HC .氧原子的结构示意图:D .硝酸钾的电离方程式:KNO 3=K ++N 5++3O 2-高温12.反应4Al +3MnO 23Mn +2Al 2O 3可用来制取Mn ,下列有关该反应的说法正确的是A .Al 是还原剂C .Al 的化合价降低B .MnO 2发生氧化反应D .MnO 2中O 被还原13.规范操作是实验的基本要求。

2020年云南省普通高中学业水平考试数学试卷(1月份)

2020年云南省普通高中学业水平考试数学试卷(1月份)

2020年云南省普通高中学业水平考试数学试卷(1月份)参考答案与试题解析一、选择题:本大题共19个小题,每小题3分,共57分.在每个小题给出的四个选项中,只有一项是符合题目要求的,请在答题卡相应的位置上填涂.1.(3分)已知集合S={0,1,2},T={2,3},则S∪T=()A.{0,1,2}B.{0,2}C.{0,1,2,3}D.{2}【解答】解:S={0,1,2},T={2,3},∴S∪T={0,1,2,3}.故选:C.2.(3分)在等差数列{a n}中,a1=2,公差d=3,则a3=()A.6B.8C.7D.9【解答】解:∵a1=2,公差d=3,则a3=a1+2d=8故选:B.3.(3分)已知两同心圆的半径之比为1:3,若在大圆内任取一点M,则点M在小圆内的概率为()A.B.C.D.【解答】解:设小圆半径为r,大圆半径为R,则,由几何概率的概率公式可得:点M在小圆内的概率P====,故选:D.4.(3分)已知向量=(1,2),=(﹣2,0),则的值等于()A.﹣4B.﹣3C.﹣2D.1【解答】解:=(1,2)•(﹣2,0)=﹣2,故选:C.5.(3分)一个几何体的三视图如图所示,则该几何体的体积是()A.πB.2πC.3πD.4π【解答】解:三视图复原的几何体是圆柱,底面半径为1、高为3,所以这个几何体的体积是π×12×3=3π;故选:C.6.(3分)如果直线x+my﹣1=0与直线2x+y+1=0垂直,那么m的值为()A.﹣2B.C.2D.【解答】解:直线x+my﹣1=0与直线2x+y+1=0垂直,则1×2+m×1=0,解得m=﹣2.故选:A.7.(3分)sin79°cos34°﹣cos79°sin34°的值为()A.1B.C.D.【解答】解:因为sin79°cos34°﹣cos79°sin34°=sin(79°﹣34°)=sin45°=;故选:C.8.(3分)某人在5次上班途中所花的时间(单位:分钟)分别为x,y,10,11,9.已知这组数据的平均数为10,则x+y的值为()A.10B.16C.15D.20【解答】解:因为x,y,10,11,9这组数据的平均数为10,所以:(x+y+10+11+9)=10⇒x+y=20;故选:D.9.(3分)在△ABC中,∠A、∠B、∠C所对的边分别为a、b、c,已知三个内角度数之比∠A:∠B:∠C=1:2:3,那么三边长之比a:b:c等于()A.1::2B.1:2:3C.2::1D.3:2:1【解答】解:∵三个内角度数之比∠A:∠B:∠C=1:2:3,∴∠A=30°,∠B=60°,∠C=90°∴a:b:c=sin30°:sin60°:sin90°=1::2故选:A.10.(3分)若实数x,y满足约束条件,则z=3x+y的最大值为()A.0B.1C.2D.3【解答】解:作出约束条件满足的可行域:∵O(0,0),A(1,0),B(0,1),z=3x+y∴z O=3×0+0=0,z A=3×1+0=3,Z B=3×0+1=1,∴z=3x+y的最大值为3.故选:D.11.(3分)某程序框图如图所示,运行后输出S的值为()A.10B.11C.14D.16【解答】解:模拟程序框图的运行过程,得出该程序运行后输出的是S=1+1+2+3+4+5=16.故选:D.12.(3分)函数f(x)=lnx+2x﹣6的零点所在的区间为()A.(1,2)B.(2,3)C.(3,4)D.(4,5)【解答】解:f(1)=2﹣6<0,f(2)=4+ln2﹣6<0,f(3)=6+ln3﹣6>0,f(4)=8+ln4﹣6>0,∴f(2)f(3)<0,∴m的所在区间为(2,3).故选:B.13.(3分)在正方体ABCD﹣A1B1C1D1中,直线A1C与平面ABCD所成角的正弦值等于()A.B.C.D.【解答】解:连结AC,则AC是A1C在平面ABCD上的射影,则∠A1CA即为直线A1C与平面ABCD所成角的正弦值,设正方体的棱长为1,则AC=,A1C=,则sin∠A1CA==,故选:D.14.(3分)已知,且θ为第四象限的角,则tanθ的值等于()A.B.C.D.【解答】解:∵,且θ为第四象限的角,∴tanθ=﹣=﹣=﹣.故选:B.15.(3分)从1,2,3,4这4个数中,依次不放回地任意取两个数,两个数都为偶数的概率是()A.B.C.D.【解答】解:从1,2,3,4这4个数中,不放回地任意取两个数,共有(1,2),(1,3),(1,4),(2,1),(2,3),(2,4)(3,1),(3,2),(3,4),(4,1),(4,2),(4,3)共12种其中满足条件两个数都是偶数的有(2,4),(4,2)两种情况故从1,2,3,4这4个数中,不放回地任意取两个数,两个数都是偶数的概率P=故选:A.16.(3分)函数f(x)=log2x在区间[2,8]上的值域为()A.(﹣∞,1]B.[2,4]C.[1,3]D.[1,+∞)【解答】解:∵2≤x≤8,∴1≤log2x≤3,故函数的值域[1,3],故选:C.17.(3分)函数f(x)=sin x+cos x在区间[0,π]上的单调递增区间是()A.B.C.D.【解答】解:∵函数y=sin x+cos x=(sin x+cos x)=sin(x+).由﹣+2kπ≤x+≤2kπ+(k∈Z),解得﹣+2kπ≤x≤+2kπ,k=0时,0≤x≤;故选:C.18.(3分)已知函数f(x)=若f(x0)>3,则x0的取值范围是()A.x0>8B.x0<0或x0>8C.0<x0<8D.x0<0或0<x0<8【解答】解:①当x≤0时,f(x0)=>3,∴x0+1>1,∴x0>0这与x≤0相矛盾,∴x∈∅.②当x>0时,f(x0)=log2x0>3,∴x0>8综上:x0>8故选:A.19.(3分)若a>0,b>0,点P(3,2)在直线l:ax+by=4上,则的最小值为()A.B.C.D.6【解答】解:由题意可得,3a+2b=4即,则=()()=3+=6,当且仅当且3a+2b=4即b=1,a=时取等号,故最小值6,故选:D.二、填空题:本大题共4个小题,每小题4分,共16分.请把答案写在答题卡相应的位置上.20.(4分)昆明市某公司有高层管理人员、中层管理人员、一般员工共1000名,现用分层抽样的方法从公司的员工中抽取80人进行收入状况调查.若该公司有中层管理人员100名,则从中层管理人员中应抽取的人数为8.【解答】解:由题意可得=,所以中层管理员人数为=8人,故答案为:8.21.(4分)的值为1.【解答】解:原式=.故答案为:1.22.(4分)把二进制数1001(2)化成十进制数为9.【解答】解:1001(2)=1×23+0×22+0×21+1×20=9故答案为:9.23.(4分)若函数f(x)为奇函数,当x>0时,f(x)=10x,则f(﹣1)的值是﹣10.【解答】解:由题意可得,f(﹣1)=﹣f(1)=﹣10.故答案为:﹣10三、解答题:本大题共4个小题,第24题5分,第25题6分,第26题7分,第27题9分,共27分.解答应写出文字说明、证明过程或演算步骤.24.(5分)已知圆C:x2+y2﹣2x+4y﹣4=0和直线l:3x﹣4y+9=0,点P是圆C上的动点.(1)求圆C的圆心坐标及半径;(2)求点P到直线l的距离的最小值.【解答】解:(1)由圆x2+y2﹣2x+4y﹣4=0,得(x﹣1)2+(y+2)2=9,∴圆C的圆心坐标为(1,﹣2),半径为3;(2)∵圆心到直线3x﹣4y+9=0的距离为d=.∴点P到直线l的距离的最小值为4﹣r=4﹣3=1.25.(6分)已知函数.(1)求函数f(x)的最小正周期;(2)求不等式f(x)≥0的解集.【解答】解:(1)因为函数=sin(2x+);故其周期为:T==π;(2)∵f(x)≥0⇒sin(2x+)≥0⇒2kπ≤2x+≤2kπ+π⇒kπ﹣≤x≤k;k∈Z;∴不等式f(x)≥0的解集为:{x|kπ﹣≤x≤k;k∈Z}.26.(7分)如图,点P为菱形ABCD所在平面外一点,PA⊥平面ABCD,点E为PA的中点.(1)求证:PC∥平面BDE;(2)求证:BD⊥平面PAC.【解答】证明:(1)如图,连接AC,BD,设AC∩BD=O,则O为AC的中点,连接OE,又E为PA的中点,∴OE∥PC,∵OE⊂平面BED,PC⊄平面BED,∴PC∥平面BED;(2)∵PA⊥平面ABCD,而BD⊂平面ABCD,∴PA⊥BD,又ABCD为菱形,则BD⊥AC,∵PA∩AC=A,∴BD⊥平面PAC.27.(9分)已知在数列{a n}中,c是常数,a1=1,2a n2+(3﹣a n+1)a n+c﹣a n+1=0.(1)若c=0,求a2,a3的值;(2)若c=1,求{a n}的前n项和S n.【解答】解:(1)c=0时,a1=1,2a n2+(3﹣a n+1)a n+c﹣a n+1=0.∴2a n2+(3﹣a n+1)a n﹣a n+1=0.n=1时,+(3﹣a2)a1﹣a2=0,∴2+3﹣a2﹣a2=0,解得a2=,n=2时,2+(3﹣a3)a2﹣a3=0,∴2×+(3﹣a3)×﹣a3=0,解得:a3=.(2)c=时,2a n2+(3﹣a n+1)a n+1﹣a n+1=0.化为:2a n2+3a n+1﹣a n+1a n﹣a n+1=0.因式分解为:(a n+1)(2a n+1﹣a n+1)=0,∴a n+1=0,或2a n+1﹣a n+1=0,①a n+1=0,解得:a n=﹣1,此时:{a n}的前n项和S n=﹣n.②2a n+1﹣a n+1=0,化为:2(a n+1)=a n+1+1,数列{a n+1}为等比数列,首项a1+1=2,公比为2.∴a n+1=2n,解得a n=2n﹣1.∴{a n}的前n项和S n=﹣n=2n+1﹣2﹣n.。

2020年湖北省普通高中学业水平合格性考试数学试卷

2020年湖北省普通高中学业水平合格性考试数学试卷

好记星书签 第1页 共5页 机密★启封前2020年湖北省普通高中学业水平合格性考试(真题)数 学本试卷共5页25题,全卷满分100分,考试用时90分钟.注意事项:1.答题前,考生务必先将自己的姓名、准考证号、座位号填写在试卷和答题卡上,并将准考证条形码粘贴在答题卡上的指定位置.2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑、涂匀、涂实,未涂、错涂、多涂或填涂不规范均不得分.如需改动,用橡皮擦干净后,再选涂其他答案标号.3.非选择题的作答:用黑色签字笔将答案写在答题卡上对应的答题区域内,超出答题区域书写的答案无效.在试卷、草稿纸上答题无效.4.考试结束后,请将本试卷、答题卡和草稿纸一并上交.一、选择题(本题共15小题,每小题3分,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.设复数z 满足z +i =2−i ,则z 的共轭复数z =A .2−2iB .−2−2iC .−2+2iD .2+2i2.设集合A = 1,3,5,7 ,B = 1,2,3,5,8 ,则A ∩B =A . 1,3B . 3,5C . 1,3,5D . 1,2,3,5,7,83.若D 为△ABC 的边AB 的中点,则CD= A .CA +CB B .12 CA +CB C .CA −CB D .12 CA−CB 4.《算数书》竹简于上世纪八十年代在我省江陵县张家山出土,这是我国现存最早的有系统的数学典籍,其中有一道求“困盖”体积的题:困下周六丈,高二丈,求积.即已知圆锥的底面周长为6丈,高为2丈,求圆锥的体积.《算数书》中将圆周率π近似取为3,,则该盖的体积(单位:立方丈)约为A .2B .3C .4D .6。

2020年湖北省普通高中学业水平合格性考试

2020年湖北省普通高中学业水平合格性考试

2020年湖北省普通高中学业水平合格性考试数 学本试卷共5页25题,全卷满分100分,考试用时90分钟。

注意事项:1.答题前,考生务必先将自己的姓名、准考证号、座位号填写在试卷和答题卡上,并将准考证条形码粘贴在答题卡上的指定位置。

2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑、涂匀、涂实,未涂、错涂、多涂或填涂不规范均不得分。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

3.非选择题的作答:用黑色签字笔将答案写在答题卡上对应的答题区域内,超出答题区域书写的答案无效。

在试卷、草稿纸上答题无效。

4.考试结束后,请将本试卷、答题卡和草稿纸一并上交。

一、选择题(本题共15小题,每小题3分,共45分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

) 1 .设复数z 满足i 2i z +=−,则z 的共轭复数z =( ) A .22i − B .22i −− C .22i −+ D .22i + 2 .设集合{}1,3,5,7A =,{}1,2,3,5,8B =,则A B =( )A .{}1,3B .{}3,5C .{}1,3,5D .{}1,2,3,5,7,83 .若D 为ABC △的边AB 的中点,则CD =( )A .CA CB + B .()12CA CB +C .CA CB −D .()12CA CB −4 .《算数书》竹简于上世纪八十年代在我省江陵县张家山出土,这是我国现存最早的有系统的数学典籍,其中有一道求“困盖”体积的题:困下周六丈,高二丈,求积.即已知圆锥的底面周长为6丈,高为2丈,求圆锥的体积.《算数书》中将圆周率π近似取为3,则该困盖的体积(单位:立方丈)约为( ) A .2 B .3 C .4 D .65 .已知命题p :1x =是方程20ax bx c ++=的一个根,q :0a b c ++=,则p 是q 的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件6 .已知4cos 5α=−,0απ<<,则tan α=( )A .34−B .34C .43−D .437 .已知a ,b ,c ∈R ,下列命题为真命题的是( )A .若0a b >>,则22ac bc >B .若0a b >>C .若0a b <<,则22ab b a <<D .若0a b <<,则11a b<8 .已知函数()y f x =,()y g x =,()y h x =的图象如图所示,则( )A .()12f x x =,()2g x x =,()3h x x = B .()12f x x =,()3g x x =,()2h x x = C .()3f x x =,()12g x x =,()2h x x =D .()2f x x =,()3g x x =,()12h x x =9 .为做好精准扶贫工作,需关注贫困户的年收入情况.经统计,某贫困户近5年的年收入分别为1a ,2a ,3a ,4a ,5a .下面给出的指标可以用来评估该贫困户年收入的稳定程度的是( ) A .1a ,2a ,3a ,4a ,5a 的平均数 B .1a ,2a ,3a ,4a ,5a 的标准差C .1a ,2a ,3a ,4a ,5a 的最大值D .1a ,2a ,3a ,4a ,5a 的中位数10.已知向量12BA ⎛= ⎝⎭,12BC ⎛⎫=−− ⎪ ⎪⎝⎭,则ABC ∠=( ) A .30° B .60° C .120° D .150°11.某班有50名学生,其中有45名学生喜欢乒乓球或羽毛球,32名学生喜欢乒乓球,20名学生喜欢羽毛球,则该班既喜欢乒乓球又喜欢羽毛球的学生数占该班学生总数比例是( ) A .38% B .26% C .19% D .15% 12.已知a ,b 是不共线的两个向量,若2OA =+a b ,23OB =+a b ,OC =b ,则( ) A .O ,A ,B 三点共线 B .O ,A ,C 三点共线 C .O ,B ,C 三点共线 D .A ,B ,C 三点共线13.棉花的纤维长度是棉花质量的重要指标.在一批棉花中随机抽测了50根棉花的纤维长度(单位:mm ),其频率分布直方图如图所示.根据频率分布直方图,估计事件“棉花的纤维长度大于275mm ”的概率为( ) A .0.30 B .0.48 C .0.52 D .0.7014.记函数()()sin f x x ωϕ=+(其中0ω>,2ϕπ<)的图象为C ,已知C 的部分图象如图所示,为了得到函数()sin g x x ω=的图象,只要把C 上所有的点( ) A .向右平行移动6π个单位长度 B .向左平行移动6π个单位长度C .向右平行移动12π个单位长度D .向左平行移动12π个单位长度15.设函数则满足()2,02,0x x x f x x ⎧=⎨⎩≤>,则满足()14f x −>的x 的取值范围是( )A .()1,3−B .()1,+∞C .()()1,13,−+∞D .()(),13,−∞−+∞二、选择题(本题共3小题,每小题3分,共9分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

普通高中学业水平考试数学模拟试卷
一、选择题.
1.已知集合{1,2,3,4}M =,集合{1,3,5}N =,则M N 等于( )
.{2}A .{2,3}B .{1,3}C .{1,2,3,4,5}D
2.如图所示,一个空间几何体的正视图和侧图都是边长
为2的等边三角形,俯视图是一个圆,那么这个几何
体的体积..
为( ) 3.4A π 3.3B π 3.2
C π .3
D π 3.在平行四边形ABCD 中,AB AD +等于( )
.A AC .B BD .C DB .D AC
4.已知向量a 、b ,2a =,(3,4)b =,a 与b 夹角等于30︒,则a b ⋅等于( )
.5A 10.
33
B .52
C .53
D 5.为了得到函数1cos 3
y x =,只需要把cos y x =图象上所有的点的( ) .A 横坐标伸长到原来的3倍,纵坐标不变.B 横坐标缩小到原来的13
倍,纵坐标不变 .C 纵坐标伸长到原来的3倍,横坐标不变.D 纵坐标缩小到原来的13倍,横坐标不变 6.已知一个算法,其流程图如右图所示,则输出的结
果( )
.3A .9B
.27C .81D
7.两条直线210x y ++=与210x y -+=的位置关系是( )
.A 平行 .B 垂直
.C 相交且不垂直 .D 重合
8.若AD 为ABC ∆的中线,现有质地均匀的粒子散落在ABC ∆内,则粒子在ABD ∆内的概
率等于( )
4.5A 3.4B 1.2C 2.3
D 9.计算sin 240︒的值为( )
.2A - 1.2
B - 1.2C
2D 10.在ABC ∆中,A ∠、B ∠、C ∠所对的边长分别是2、
3、4,则cos B ∠的值为( ) 7.8A 11.16B 1.4C 1.4
D - ⒒同时掷两个骰子,则向上的点数之积是3的概率是( ) 1.
36A 1.21B 2.21C 1.18D
⒓已知直线的点斜式方程是21)y x -=-,那么此直线的倾斜角为( )
.6A π .
3B π 2.3C π 5.6D π ⒔函数3()2f x x =-的零点所在的区间是( )
.(2,0)A - .(0,1)B .(1,2)C .(2,3)D
⒕已知实数x 、y 满足04x y x y ⎧⎪⎨⎪+⎩
≥≥0≥4,则z x y =+的最小值等于( )
.0A .1B .4C .5D
⒖已知函数()f x 是奇函数,且在区间[1,2]单调递减,则()f x 在区间[2,1]--上是( )
.A 单调递减函数,且有最小值(2)f - .B 单调递减函数,且有最大值(2)f -
.C 单调递增函数,且有最小值(2)f .D 单调递增函数,且有最大值(2)f ⒗已知等差数列{}n a 中,22a =,46a =,则前4项的和4S 等于( )
.8A .10B .12C .14D
⒘当输入a 的值为2,b 的值为3-时,右边程序运行的结果是
.2A - .1B - .1C .2D
⒙ 若一个圆的圆心在直线2y x =上,在y 轴上截得的弦的长度等于
2,且与直线20x y -+=相切,则这个圆的方程可能..
是 22.20A x y x y +--= 22.240B x y x y +++=
22.20C x y +-= 22.10D x y +-=
二、填空题.
⒚ 某校有老师200名,男生1200,女生1000名,现用分层抽样的方法从所有师生中抽取
一个容量为240的样本,则从女生中抽取的人数为 .
⒛如图是某中学高二年级举办的演讲比赛上,七位评委为某选手打出的分数的茎叶统计图,
去掉一个最高分和一个最低分后,所剩数据的中位数为 .
21.计算1
222log 8log +的值是 .
22.已知2
()(1)(1)f x x m x m =++++的图象与x 轴没有..
公共点,则m 的取值范是 . 三、解答题.
23.已知函数2(sin cos )y x x =+
⑴求它的最小正周期和最大值;
⑵求它的递增区间.
24.在正方体1111ABCD A B C D -中
⑴求证:1AC BD ⊥ ⑵求异面直线AC 与1BC 所成角的大小.
25.已知函数1()lg 1x f x x
-=+ ⑴求函数()f x 的定义域; ⑵证明()f x 是奇函数.
26. 已知数列{}n a 中,11a =,23a =,1232(3)n n n a a a n --=-≥.
⑴ 求3a 的值;
⑵ 证明:数列1{}(2)n n a a n --≥是等比数列; ⑶ 求数列{}n a 的通项公式.。

相关文档
最新文档