大学物理作业 答案

合集下载

《大学物理I》作业-No.03 角动量与角动量守恒-A-参考答案

《大学物理I》作业-No.03 角动量与角动量守恒-A-参考答案

《大学物理I 》作业 No.03 角动量 角动量守恒定律 (A 卷)班级 ________ 学号 ________ 姓名 _________ 成绩 _______一、选择题[ ]1、一质点沿直线做匀速率运动时,(A) 其动量一定守恒,角动量一定为零。

(B) 其动量一定守恒,角动量不一定为零。

(C) 其动量不一定守恒,角动量一定为零。

(D) 其动量不一定守恒,角动量不一定为零。

答案:B答案解析:质点作匀速直线运动,很显然运动过程中其速度不变,动量不变,即动量守恒;根据角动量的定义v m r L⨯=,质点的角动量因参考点(轴)而异。

本题中,只要参考点(轴)位于质点运动轨迹上,质点对其的角动量即为零,其余位置均不会为零。

故(B)是正确答案。

[ ]2. 两个均质圆盘A 和B 密度分别为A ρ和B ρ,若A ρ>B ρ,两圆盘质量与厚度相同,如两盘对通过盘心且垂直于盘面的轴的转动惯量各为A J 和B J ,则 (A) A J >B J(B) B J >A J(C) A J =B J(D) A J 、B J 哪个大,不能确定答案:B答案解析:设A 、B 联盘厚度为d ,半径分别为A R 和B R ,由题意,二者质量相等,即B B A A d R d R ρπρπ22=因为B A ρρ>,所以22B A R R <,由转动惯量221mR J =,则B A J J <。

[ ]3.对于绕定轴转动的刚体,如果它的角速度很大,则 (A) 作用在刚体上的力一定很大 (B) 作用在刚体上的外力矩一定很大(C) 作用在刚体上的力和力矩都很大 (D) 难以判断外力和力矩的大小答案:D 答案解析:由刚体质心运动定律和刚体定轴转动定律知:物体所受的合外力和合外力矩只影响物体运动的加速度和角加速度,因此无法通过刚体运动的角速度来判断外力矩的大小,正如无法通过速度来判断物体所受外力的大小一样。

大学物理力学一、二章作业答案

大学物理力学一、二章作业答案

大学物理力学一、二章作业答案-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN第一章 质点运动学一、选择题1、一质点在xoy 平面内运动,其运动方程为2,ct b y at x +==,式中a 、b 、c 均为常数。

当运动质点的运动方向与x 轴成450角时,它的速率为[ B ]。

A .a ;B .a 2;C .2c ;D .224c a +。

2、设木块沿光滑斜面从下端开始往上滑动,然后下滑,则表示木块速度与时间关系的曲线是图1-1中的[ D ]。

3、一质点的运动方程是j t R i t R rωωsin cos +=,R 、ω为正常数。

从t =ωπ/到t =ωπ/2时间内该质点的路程是[ B ]。

A .2R ;B .R π;C . 0;D .ωπR 。

4、质量为0.25kg 的质点,受i t F =(N)的力作用,t =0时该质点以v=2j m/s 的速度通过坐标原点,该质点任意时刻的位置矢量是[ B ]。

A .22t i +2j m ; B .j t i t2323+m ;C .j t i t343243+; D .条件不足,无法确定。

二、填空题1、一质点沿x 轴运动,其运动方程为225t t x -+=(x 以米为单位,t 以秒为单位)。

质点的初速度为 2m/s ,第4秒末的速度为 -6m/s ,第4秒末的加速度为 -2m/s 2 。

2、一质点以π(m/s )的匀速率作半径为5m 的圆周运动。

该质点在5s 内的平均速度的大小为 2m/s ,平均加速度的大小为 22m /5s π 。

3、一质点沿半径为0.1m 的圆周运动,其运动方程为22t +=θ(式中的θ以弧度计,t 以秒计),质点在第一秒末的速度为 0.2m/s ,切向加速度为 0.2m/s 2 。

4、一质点沿半径1m 的圆周运动,运动方程为θ=2+3t 3,其中θ以弧度计,t 以秒计。

T =2s 时质点的切向加速度为 36m/s 2 ;当加速度的方向和半径成45º角时角位移是 38rad 。

大学物理标准化作业答案

大学物理标准化作业答案

x)
Acos 2p( t x 2 L)
, 则入射波的表达式为y1 = __________________.
O
L
Bx
三、1(5519)在绳上传播的入射波表达式为 y1 Acos(t 2p
,入射波在x = 0处绳端反射,反射端为自由端.设反射波不
x
)
衰减,求驻波表达式.
解:入射波在x = 0处引起的振动方程为 y10 Acost
2
22
波节:
2π x
p
2
(2n 1) p
2
xn
2
n 0,1,2,3
3 如图所示,一平面简谐波沿x轴正方向传播,BC为波密媒
质的反射面.波由P点反射,OP = 3 /4, DP 6在t = 0时,O处质
(A) 动能为零,势能最大. (B) 动能为零,势能为零. (C) 动能最大,势能最大. (D) 动能最大,势能为零[ C ]
二、填空题 3、在同一媒质中两列频率相同的平面简谐波的强度之比I1 / I2 = 16,
则这两列波的振幅之比是A1 / A2 = _______4__________.
一、选择题
(1) 反射波的表达式; (2) 合成的驻波的表达式;
(3) 波腹和波节的位置.
解: (1)
y10
A cos 2π t T
y20
A cos(2π t T
p)
y2
A cos[2π( t T
x)p]
(2)
xp
tp
y
y1
y2
2 A cos(2π
) cos(2π
2
T
) 2
(3) 波腹: 2π x p np x (n 1) n 1,2,3,4

大学物理作业答案 (9)

大学物理作业答案 (9)

磁感应强度9-1 如图9-1所示,一条无穷长载流20 A 的直导线在P 点被折成1200的钝角,设d =2cm ,求P 点的磁感应强度。

解:P 点在OA 延长线上,所以OA 上的电流在P 的磁感应强度为零。

作OB 的垂线PQ ,︒=∠30OPQ ,OB 上电流在P 点的磁感应强度大小0021(sin sin )(sin sin30)4cos3024I I B d PQμμπββππ=-=+︒︒247m Wb/1073.1)211(2302.0420104--⨯=+⨯⨯⨯⨯=ππ,方向垂直于纸面向外。

9-2半径为R 的圆弧形导线与一直导线组成回路,回路中通有电流I ,如图9-2所示,求弧心O 点的磁感应强度(图中 ϕ 为已知量)。

解: 圆环电流在圆心处的磁场 RIB 20μ=∴圆弧ABC 在O 处的磁场 )22(201πϕπμ-=R I B 方向垂直纸面向里 又直线电流的磁场 021(sin sin )4IB aμθθπ=-,∴直线AB 在O 处的磁场 0002[sin sin()]2sin 4222224cos2I I I tg B a R R μμμϕϕϕϕϕπππ=--=⋅= 方向垂直纸面向里弧心O 处的磁场 012(22)42I B tg B B R μϕπϕπ=+=-+ 9-3 两根长直导线沿半径方向引到铁环上A 、B 两点,并与很远的电源相连。

如图9-3所示,求环中心的磁感应强度。

解:设铁环被A 、B 两点分成两圆弧的弧长分别为l 1、l 2,电阻分别为R 1、R 2,电流分别为I 1、I 2。

由图知 R 1与R 2并联,∴l l R R I I 121221== 即 l I l I 2211=∴I 1在O 点的磁感应强度Rl I R lR I B 21101101422πμπμ=⋅=方向垂直于纸面向外 ∴I 2在O 点的磁感应强度Rl I R l RI B 22202202422πμπμ=⋅=方向垂直于纸面向内图9-1即 B 1、B 2大小相等,方向相反。

大学物理作业9.1

大学物理作业9.1
两面间的距离为d。当点电荷q从A面移到B面时,电场 力作的功为:
(A) qd / 0 (C)qd / 2 0
答:C
(B) qd / 0
(D) qd / 20
第三页,编辑于星期六:十六点 二十六分。
大学物理
6、电荷分布在有限空间内,则任意两点P1、P2之间 的电势差取决于
(A) 从P1移到P2的试探电荷电量的大小
dU
1
4 0
dq
L d
x
kxdx
40 L d
x
UP
k
4 0
L 0
xdx
L d x
k
4 0
L 0
L
L
d
d
x
1dx
k (L d ) ln L d L
40
d
第十二页,编辑于星期六:十六点 二十六分。
大学物理
2、半径R为的圆弧形细塑料棒,两端空隙为d ( R d), 总电荷量为q的正电荷均匀地分布在棒上。求圆心O处场 强的大小和方向。
外有一同心的半径为R的均匀带电球面B,带电量
为 q2 ,则A、B两球面间的电势差为q1 (1 1。) 4 0 r R
第九页,编辑于星期六:十六点 二十六分。
大学物理
7、 两段形状相同的圆弧如图所示对称放置,圆弧
半径为R,圆心角为,均匀带电,线密度分别为
和 ,则圆心O点的场强大小为 0 。电势
大学物理
(3)半径相同处的电势相等
rR
U1
R r
E1
dl
R r dr
r 2 0
4 0
R2 r2
rR
U2
R r E2 dl
R R2 dr R2 ln r

大学物理作业答案(下)

大学物理作业答案(下)

65. 如图所示,几种载流导线在平面内分布,电流均为I ,求:它们在O 点的磁感应强度。

1 RIB 80μ=方向 垂直纸面向外2 R I R I B πμμ2200-= 方向 垂直纸面向里 3 RI R I B 4200μπμ+= 方向 垂直纸面向外 66. 一半径为R 的均匀带电无限长直圆筒,电荷面密度为σ,该筒以角速度ω绕其轴线匀速旋转。

试求圆筒内部的磁感应强度。

解:如图所示,圆筒旋转时相当于圆筒上具有同向的面电流密度i , σωσωR R i =ππ=)2/(2作矩形有向闭合环路如图中所示.从电流分布的对称性分析可知,在ab 上各点B的大小和方向均相同,而且B 的方向平行于ab ,在bc 和fa 上各点B的方向与线元垂直,在de , cd fe ,上各点0=B.应用安培环路定理∑⎰⋅=I l B 0d μ可得 ab i ab B 0μ=σωμμR i B 00==圆筒内部为均匀磁场,磁感强度的大小为σωμR B 0=,方向平行于轴线朝右.67.在半径为R 的长直金属圆柱体内部挖去一个半径为r 的长直圆柱体,两柱体轴线平行,其间距为a (如图)。

今在此导体内通以电流I ,电流在截面上均匀分布,求:空心部分轴线上O ' 点的磁感应强度的大小。

解:)(22r R IJ -=π10121r J B ⨯=μ 20221r J B ⨯-=μJa O O J r r J B B 021********21)(21μμμ=⨯=-⨯=+=r R Ia)(2220-=πμ68.一无限长圆柱形铜导体,半径为R ,通以均匀分布的I 今取一矩形平面S (长为L ,宽为2R ),位置如图,求:通过该矩形平面的磁通量。

解:在圆柱体内部与导体中心轴线相距为r 处的磁感强度的大小,由安培环路定律可得:)(220R r rRIB ≤π=μ因而,穿过导体内画斜线部分平面的磁通1为⎰⎰⋅==S B S B d d 1 Φr rL RI Rd 2020⎰π=μπ=40LIμ在圆形导体外,与导体中心轴线相距r 处的磁感强度大小为 )(20R r rIB >π=μ因而,穿过导体外画斜线部分平面的磁通2为⎰⋅=S B d 2Φr r IL R Rd 220⎰π=μ2ln 20π=ILμ穿过整个矩形平面的磁通量 21ΦΦΦ+=π=40LIμ2ln 20π+ILμ69.如图所示,载有电流I 1和I 2的无限长直导线相互平行,相距3r ,今有载有电流I 3的导线MN = r 水平放置,其两端M 、N 分别与I 1、I 2距离均为r ,三导线共面,求:导线MN 所受的磁场力的大小与方向。

大学物理作业答案(上)

大学物理作业答案(上)

A在时间t内作匀加速运动,t秒末的速度vA=at.当子弹射入B时,B将加速
而A则以vA的速度继续向右作匀速直线运动.
vA=at=6 m/s
取A、B和子弹组成的系统为研究对象,系统所受合外力为零,故系统的动
量守恒,子弹留在B中后有
mv 0 mAv A (m mB )v B
vB

mv 0 mAv A m mB
量m1=
1m 2
的小球.将右边小球约束,使之不动. 使左边两小球绕竖直轴对称匀速
地旋转, 如图所示.则去掉约束时, 右边小球将向上运动, 向下运动或
保持不动?说明理由.
答:右边小球不动
理由:右边小球受约束不动时,

在左边对任一小球有
1m 2
1
m2
m
m
式中T1为斜悬绳中张 力,这时左边绳竖直
T1 cos m1g 0
质量以及滑轮与其轴之间的摩擦都可忽略不
计,绳子不可伸长,m1与平面之间的摩擦也
可不计,在水平外力F的作用下,物体m1与
F
m1
T
m2
F m2 g
m2的加速度a=___m__1____m__2___,
绳中的张力T=_m__1m__2m__2_(_F____m_1_g_)_.
4.质量相等的两物体A和B,分别固定在弹簧的两端, A 竖直放在光滑水平面C上,如图所示.弹簧的质量 与物体A、B的质量相比,可以忽略不计.若把支持 面C迅速移走,则在移开的一瞬间,
dx dt dx
10 6x2 2 vdv
v
2 vdv
4 (10 6x2 )dx v 13m/ s
dx 0
0
解2:用动能定理,对物体

1030《大学物理基础》作业答案

1030《大学物理基础》作业答案

单选题(10.0 分)1.在双缝干涉实验中,两缝间距离为d,双缝与屏幕之间的距离为D,波长为λ的平行单色光垂直照射到双缝上,屏幕上干涉条纹中相邻之间的距离是A) A:2λD/dB) B:λd/DC) C:dD/λD) D:λD/d纠错(10.0 分)2.不可逆过程是A) A:不能反向进行的过程B) B:系统不能回复到初始状态的过程C) C:有摩擦存在的过程或非准静态过程D) D:外界有变化的过程纠错(10.0 分)3.由于电子自旋-轨道相互作用将导致能级分裂,在多重能级的结构中,两个相邻能级的间隔A) A:与两个J值中较大的值成正比B) B:与两个J值中较小的值成正比C) C:与较大的J的J(J+1)成正比D) D:与较小的J的J(J+1)成正比纠错(10.0 分)4.一定量某理想气体按PV r=C的规律膨胀,其中C为常数,r为绝热常数,则膨胀后理想气体的温度A) A:将升高B) B:将降低C) C:不变D) D:升高或降低,不能确定纠错(10.0 分)5.关于物体内能的改变,下列说法中正确的是()A) A:只有做功才能改变物体的内能B) B:只有热传递才能改变物体的内能C) C:做功和热传递都能改变物体的内能D) D:做功和热传递在改变物体内能上是不等效的纠错(10.0 分)6.活塞把一定质量的理想气体封闭在气缸里,当气体温度降低,体积缩小时,其压强将()A) A:不变B) B:增大C) C:减小D) D:不能确定纠错(10.0 分)7.热力学第二定律表明()A) A:不可能从单一热源吸收热量使之全部变为有用的动B) B:在一个可逆过程中,工作物质净吸热等于对外作的功C) C:热不能全部转变为功D) D:热量不可能从温度低的物体传到温度高的物体纠错判断题(10.0 分)8. 光在指定的两点间传播时,肯定是沿光程为极值路径传播的。

正确错误纠错(10.0 分)9.系统处于热力学平衡态时,可简称为处于热平衡态。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

班级___ ___学号____ ____姓名____ _____成绩
______________ 一、填空题
1. 一旋转齿轮的角加速度=4at 3
-3bt 2
,式中a 、b 均为恒量,若齿轮具有初角速度为0,则任意时
刻t的角速度 ,转过的角度为 .
2. 质量为m ,半径为R 的均质圆盘,平放在水平桌面上,它与桌面的滑动摩擦系数为,试问圆盘绕中心轴转动所受摩擦力矩为 。

3. 一长为L 质量为m 的均质细杆,两端附着质量分别为m 1和m 2的小球,且m 1>m 2 ,两小球直径d 1 、
d 2都远小于L ,此杆可绕通过中心并垂直于细杆的轴在竖直平面内转动,则它对该轴的转动惯量为
, 若将它由水平位置自静止释放,则它在开始时刻的角加速度为多大: 。

4. 质量为m ,半径为r 的均质圆盘,绕通过其中心且与盘垂直的固定轴以角速度匀速转动,则对其转轴来说,它的动量为____________,角动量为__________. 三、计算题:
1. 固定在一起的两个同轴均匀圆柱体可绕其光滑
的水平对称轴OO ’
转动,设大小圆柱的半径分别为R 和r ,质量分别为M 和m ,绕在两柱体上的细绳分别与物体m 1和物体m 2 相连,m 1和m 2则挂在圆柱体的两
侧,如图所示,设R =,r =,m =4kg ,M =10kg ,
m 1=m 2=2kg ,求柱体转动时的角加速度及两侧绳中的张力.
解:设1a ,2a 和β分别为1m ,2m 和柱体的加速度及角加速度,方向如图(如图b).
题2-26(a)图 题2-26(b)图
(1) 1m ,2m 和柱体的运动方程如下:2222a m g m T =- ①
1111a m T g m =- ②
12T R T r I α''-= ③
r
R O ’
O
m 2
m 1
式中 112221,,,T T T T a r a R αα''==== 而 222
1
21mr MR I += 由上式求得
(2)由①式 22220.10 6.1329.820.8T m r m g α=+=⨯⨯+⨯=N 由②式11129.820.2. 6.1317.1T m g m R α=-=⨯-⨯⨯=N
2. 计算题3-13图所示系统中物体的加速度.设滑轮为质量均匀分布的圆柱体,其质量为M ,半径为r ,在绳与轮缘的摩擦力作用下旋转,忽略桌面与物体间的摩擦,设1m =50kg ,2m =200 kg,M =15 kg, r = m
解: 分别以1m ,2m 滑轮为研究对象,受力图如图(b)所示.对1m ,2m 运用牛顿定律,有
a m T g m 222=- ① a m T 11= ②
对滑轮运用转动定律,有
α)2
1
(212Mr r T r T =- ③
又, αr a = ④
联立以上4个方程,得 2212s m 6.72
15
20058
.92002
-⋅=+
+⨯=
+
+=
M m m g m a
题3-13(a)图 题3-13(b)图
3. 如图质量为M ,长为L 的均匀直杆可绕O 轴在竖直平面内无摩擦地转动,开始时杆处于自由下垂位置,一质量为m 的弹性小球水平飞来与杆下端发生完全弹性碰撞,若M >3m ,且碰撞后,杆上摆的最大角度为=30,则
求:(A)小球的初速度v 0,(B)碰撞过程中杆给小球的冲量. (教材) 解: (1)设小球的初速度为0v ,棒经小球碰撞后得到的初角速度为ω,而小球的速度变为v ,按题意,小球和棒作弹性碰撞,所以碰撞时遵从角动
量守恒定律和机械能守恒定律,可列式:
mvl
I l mv +=ω0 ①
2
2202
12121mv I mv +=ω ② 上两式中2
3
1Ml I =
,碰撞过程极为短暂,可认为棒没有显着的角位移;碰撞后,棒从竖直位置上摆到最大角度o
30=θ,按机械能守恒定律可列式:
m
v M O
L
)30cos 1(2
212︒-=l
Mg I ω ③ 由③式得 2
12
1)231(3)30cos 1(⎥⎦
⎤⎢⎣⎡-=⎥⎦⎤
⎢⎣⎡︒-=l g I Mgl ω
由①式 ml
I v v ω
-
=0 ④ 由②式 m
I v v 2
20
2
ω-= ⑤
所以 22
001)(2ωωm
v ml I v -=-
求得
gl
m
M m m M
l ml I l v +-=
+=+=
31232(6)311(2)1(220ωω
(2)相碰时小球受到的冲量为 ⎰
-=∆=0d mv mv mv t F
由①式求得 ωωMl l I mv mv t F 31
d 0-=-
=-=⎰
gl M 6
)32(6--=
负号说明所受冲量的方向与初速度方向相反.。

相关文档
最新文档