河南省漯河市中考数学模拟试卷
2024年河南省中考数学模拟卷 含答案

2024年河南省模拟卷一.选择题(共10小题,满分30分,每小题3分)1.(3分)在﹣3,2,﹣2,0四个数中,最小的数是( )A .﹣3B .2C .﹣2D .02.(3分)“两岸猿声啼不住,轻舟已过万重山”.2023年8月29日,华为搭载自研麒麟芯片的mate 60系列低调开售.据统计,截至2023年10月21日,华为mate 60系列手机共售出约160万台,将数据1600000用科学记数法表示应为( )A .0.16×107B .1.6×106C .1.6×107D .16×1063.(3分)一个长方体被截去一部分后,得到的几何体如图水平放置,其俯视图是( )A .B .C .D .4.(3分)计算mm 2―1―11―m 2的结果为( )A .m ﹣1B .m +1C .1m +1D .1m ―15.(3分)如图,直线AB 、CD 相交于点O ,若∠1=30°,则∠2的度数是( )A .30°B .40°C .60°D .150°6.(3分)已知不等式组{3x -2<1―2x ≤4,其解集在数轴上表示正确的是( )A .B .C .D .7.(3分)一元二次方程(a ﹣2)x 2+ax +1=0(a ≠2)的实数根的情况是( )A .有两个不同实数根B .有两个相同实数根C .没有实数根D .不能确定8.(3分)如图所示的四个点分别描述甲、乙、丙、丁四个电阻在不同电路中通过该电阻的电流I 与该电阻阻值R 的情况,其中描述甲、丙两个电阻的情况的点恰好在同一个反比例函数的图象上,则这四个电阻两端的电压最小的是( )A .甲B .乙C .丙D .丁9.(3分)在同一平面直角坐标系中,二次函数y =ax 2与一次函数y =bx +c 的图象如图所示,则二次函数y =ax 2+bx ﹣c 的图象可能是( )A .B .C .D .10.(3分)如图,已知矩形纸片ABCD ,其中AB =3,BC =4,现将纸片进行如下操作:第一步,如图①将纸片对折,使AB 与DC 重合,折痕为EF ,展开后如图②;第二步,再将图②中的纸片沿对角线BD 折叠,展开后如图③;第三步,将图③中的纸片沿过点E 的直线折叠,使点C 落在对角线BD 上的点H 处,如图④.则DH 的长为( )A .32B .85C .53D .95二.填空题(共5小题,满分15分,每小题3分)11.(3分)若a ,b 都是实数,b =1―2a +2a -1―2,则a b 的值为 .12.(3分)为积极响应“助力旅发大会,唱响美丽郴州”的号召,某校在各年级开展合唱比赛,规定每支参赛队伍的最终成绩按歌曲内容占30%,演唱技巧占50%,精神面貌占20%考评.某参赛队歌曲内容获得90分,演唱技巧获得94分,精神面貌获得95分.则该参赛队的最终成绩是 分.13.(3分)已知方程组{2x +y =3x ―2y =5,则2x +6y 的值是 .14.(3分)如图所示的是90° 的扇形纸片OAB ,半径为2.将这张扇形纸片沿CD 折叠,使点B 与点O 恰好重合,折痕为CD ,则阴影部分的面积为 .15.(3分)如图,在△ABC 中,∠BAC =120°,AB =AC =3,点D 为边AB 的中点,点E 是边BC 上的一个动点,连接DE ,将△BDE 沿DE 翻折得到△B ′DE ,线段B ′D 交边BC 于点F .当△DEF 为直角三角形时,BE 的长为 .三.解答题(共8小题,满分75分)16.(10分)(1)计算:38+|-32|+2﹣1﹣(﹣1)2022.(2)化简:(2a +1)(2a ﹣1)﹣a (4a ﹣2).17.(9分)为响应“带动三亿人参与冰雪运动”的号召,某校七、八年级举行了“冰雪运动知识竞赛”.为了解学生对冰雪运动知识的掌握情况,学校从两个年级分别随机抽取了20名学生的竞赛成绩(满分10分,6分及6分以上为合格)进行整理、描述和分析,下面给出了部分信息:a .七年级20名学生的测试成绩为:7,8,7,9,7,6,5,9,10,9,8,5,8,7,6,7,9,7,10,6.b .八年级20名学生的测试成绩条形统计图如图所示:c .七、八年级抽取的学生的测试成绩的平均数、众数、中位数如下表所示:年级平均数众数中位数七年级7.5n 7八年级m8p请你根据以上提供的信息,解答下列问题:(1)上表中m = ,n = ,p = ;(2)根据以上数据,你认为该校七、八年级中哪个年级学生对冰雪运动知识掌握较好?请说明理由(写出一条理由即可);(3)该校八年级共400名学生参加了此次测试活动,估计八年级参加此次测试活动成绩合格的学生人数.18.(9分)如图,在平面直角坐标系中,平行四边形OABC 的边OC 在x 轴上,对角线AC ,OB 交于点M ,点B (12,4).若反比例函数y =kx (k ≠0,x >0)的图象经过A ,M 两点,求:(1)点M 的坐标及反比例函数的解析式;(2)△AOM的面积;(3)平行四边形OABC的周长.19.(9分)如图,某无人机爱好者在一小区外放飞无人机,当无人机飞行到一定高度D点处时,无人机测得操控者A的俯角为75°,测得小区楼房BC顶端点C处的俯角为45°.已知操控者A和小区楼房BC之间的距离为45米,无人机的高度为(30+153)米.(假定点A,B,C,D都在同一平面内.参考数据:tan75°=2+3,tan15°=2-3.计算结果保留根号)(1)求此时小区楼房BC的高度;(2)在(1)条件下,若无人机保持现有高度沿平行于AB的方向,并以5米/秒的速度继续向右匀速飞行.问:经过多少秒时,无人机刚好离开了操控者的视线?20.(9分)一名生物学家在研究两种不同的物种A和B在同一生态环境中的资源消耗时发现:50个物种A和100个物种B共消耗了200单位资源;100个物种A和50个物种B共消耗了250单位资源.(1)求1个物种A和1个物种B各消耗多少单位资源;(2)已知物种A,B共有200个且A的数量不少于100个.设物种A有a个,物种A,B共消耗的单位资源W.①求W与a的函数关系式;②当物种A的数量为何值时,物种A、B共消耗的单位资源最少,最小值是多少?21.(9分)如图,在Rt△ABC中,∠B=90°,AB=6cm,BC=8cm,动点M从点A出发,以2cm/s 的速度沿AB向点B运动,同时动点N从点C出发,以3cm/s的速度沿CA向点A运动,当一点停止运动时,另一点也随即停止运动.以AM为直径作⊙O,连接MN,设运动时间为t(s)(t>0).(1)试用含t的代数式表示出AM及AN的长度,并直接写出t的取值范围;(2)当t为何值时,MN与⊙O相切?(3)若线段MN 与⊙O 有两个交点.求t 的取值范围.22.(10分)如图,在平面直角坐标系中,抛物线y =ax 2+bx +2(a ≠0)与x 轴分别交于A ,B 两点,点A 的坐标是(﹣4,0),点B 的坐标是(1,0),与y 轴交于点C ,P 是抛物线上一动点,且位于第二象限,过点P 作PD ⊥x 轴,垂足为D ,线段PD 与直线AC 相交于点E .(1)求该抛物线的解析式;(2)连接OP ,是否存在点P ,使得∠OPD =2∠CAO ?若存在,求出点P 的横坐标;若不存在,请说明理由.23.(10分)(1)特殊发现如图1,正方形BEFG 与正方形ABCD 的顶点B 重合,BE 、BG 分别在BC 、BA 边上,连接DF ,则有:①DF AG= ; ②直线DF 与直线AG 所夹的锐角等于 度;(2)理解运用将图1中的正方形BEFG 绕点B 逆时针旋转,连接DF 、AG ,①如图2,(1)中的结论是否仍然成立?请说明理由;②如图3,若D 、F 、G 三点在同一直线上,且过AB 边的中点O ,BE =4,直接写出AB 的长 ;(3)拓展延伸如图4,点P 是正方形ABCD 的AB 边上一动点(不与A 、B 重合),连接PC ,沿PC 将△PBC 翻折到△PEC 位置,连接DE 并延长,与CP 的延长线交于点F ,连接AF ,若AB =4PB ,则DE EF的值是否是定值?请说明理由.参考答案一.选择题(共10小题,满分30分,每小题3分)1.A.2.B.3.A.4.D.5.A.6.B.7.A.8.B.9.C.10.D.二.填空题(共5小题,满分15分,每小题3分)11.4.12.93.13.﹣4.143―π3.15.32或334.三.解答题(共8小题,满分75分)16.解:(138+|-32|+2﹣1﹣(﹣1)2022.=2+32+12―1=3.(2)(2a+1)(2a﹣1)﹣a(4a﹣2)=4a2﹣1﹣4a2+2a=2a﹣1.17.解:(1)m=5×2+6×4+7×4+8×5+9×2+10×320=7.5(分),七年级20名学生成绩中出现次数最多的是7分,共出现6次,因此众数是7分,即n=7,将八年级20名学生成绩从小到大排列,处在中间位置的两个数的平均数为7+82=7.5(分),因此中位数是7.5分,即p=7.5,故答案为:7.5,7,7.5;(2)八年级的成绩较好,理由:八年级学生成绩的中位数是7.5分,众数是8分,都比七年级高;(3)400×20―220=360(名),答:该校八年级共400名学生中成绩合格的大约有360名.18.解:(1)∵四边形OABC是平行四边形,对角线AC,OB交于点M,点B(12,4),∴点M(6,2).将点M(6,2)代入y=kx(x>0)中,得k=6×2=12.∴反比例函数解析式为y=12x.(2)如图,过点A作AD⊥x轴于点D,∵四边形OABC是平行四边形,点B(12,4),∴点A的纵坐标为4,即AD=4.将y=4代入y=12x中,得x=3,即点A(3,4).∴AB=OC=12﹣3=9.∴S△OAC=12OC⋅AD=12×9×4=18.∵四边形OABC是平行四边形,∴AM=CM,∴S△AOM=12S△OAC=9.(3)∵点A(3,4),AD⊥OC,∴OD=3,AD=4.在Rt△ODA中,OA=OD2+AD2=32+42=5.∵四边形OABC是平行四边形,OC=9,∴平行四边形OABC的周长为(9+5)×2=28.19.解:(1)过点D作DE⊥AB于点E,过点C作CF⊥DE于点F,如图所示:则四边形BCFE是矩形,由题意得:AB=45米,∠DAE=75°,∠DCF=∠FDC=45°,∵∠DCF=∠FDC=45°,∴CF=DF,∵四边形BCFE是矩形,∴BE=CF=DF,在Rt△ADE中,∠AED=90°,∴tan∠DAE=DEAE=BE45―BE=2+3,∴BE=30,经检验,BE=30是原方程的解,∴EF=DH﹣DF=30+153―30=153(米),答:此时小区楼房BC的高度为153米.(2)∵DE=15(2+3)米,∴AE=DE2+3=15(2+3)2+3=15(米),过D点作DG∥AB,交AC的延长线于G,作GH⊥AB于H,在Rt△ABC中,∠ABC=90°,AB=45米,BC=153米,∴tan∠BAC=BCAB=15345=33,在Rt△AGH中,GH=DE=15(2+3)米,AH=GHtan∠GAH=15(2+3)33=(303+45)米,∴DG=EH=AH﹣AE=(303+45)﹣15=(303+30)米,(303+30)÷5=(63+6)(秒),答:经过(63+6)秒时,无人机刚好离开了操控者的视线.20.解:(1)设1个物种A消耗x单位资源,1个物种B各消耗y单位资源,根据题意得{50x+100y=200100x+50y=250,解得{x=2y=1,答:1个物种A消耗2单位资源,1个物种B各消耗1单位资源;(2)①根据题意得W=2a+(200﹣a)=a+200(100≤a<200),答:W与a的函数关系式为W=a+200(100≤a<200);②∵W=a+200,∴W随a的增大而增大,∵100≤a<200,∴当a=100时,物种A、B共消耗的单位资源最少,最小值是300.21.解:(1)由题意得,AM=2t cm,CN=3t cm,在Rt△ABC中,AC=AB2+BC2=62+82=10cm,∴AN=AC﹣CN=(10﹣3t)cm,∵AB=6cm,动点M的速度为2cm/s,∴动点M的最长运动时间为62=3s,∵AC=10cm,动点N的速度为3cm/s,∴动点N的最长运动时间为103 s,∴t的取值范围为0<t≤3;(2)若MN与⊙O相切,则AB⊥MN,即∠AMN=90°,∵∠ABC=90°,∴∠AMN=∠ABC,∴△AMN∽△ABC,∴MAAB=ANAC,即2t6=10―3t10,解得t=30 19,∴当t=3019时,MN与⊙O相切;(3)由(2)得,当t>3019时,直线MN与⊙O有两个交点,如图,当点N恰好在⊙O上时,线段MN与⊙O的两个交点恰好为M,N,∵AM为⊙O的直径,∴∠ANM=90°=∠B,∵∠MAN=∠CAB,∴△AMN∽△ACB,∴AMAC=ANAB,即2t10=10―3t6,解得t=50 21,∴若线段MN与⊙O有两个交点,则t的取值范围为3019<t≤5021.22.解:(1)设抛物线的表达式为:y=a(x+4)(x﹣1)=a(x2+3x﹣4),则﹣4a=2,解得:a =-12,∴抛物线的解析式为y =-12x 2-32x +2;(2)设存在点P ,使得∠OPD =2∠CAO ,理由如下:延长DP 到H ,设PH =OP ,连接OH ,如图:∵PH =OP ,∴∠H =∠POH ,∴∠OPD =∠H +∠POH =2∠H ,∵∠OPD =2∠CAO ,∴∠H =∠CAO ,∴tan H =tan ∠CAO ,∴OD DH=CO OA=24=12,∴DH =2OD ,设P (t ,-12t 2-32t +2),则OD =﹣t ,PD =-12t 2-32t +2,∴DH =2OD =﹣2t ,∴PH =DH ﹣PD =﹣2t ﹣(-12t 2-32t +2)=12t 2-12t ﹣2,∵PH =OP ,∴12t 2-12t ﹣2=t 2+(12t 2+32t ―2)2,解得t =0(舍去)或―3―734或―3+734(舍去),∴点P 的横坐标为―3―734.23.解:(1)①连接BF ,BD ,如图,∵四边形ABCD和四边形GBEF为正方形,∴∠ABF=∠ABD=45°,∴B,F,D三点在一条直线上.∵GF⊥AB,DA⊥AB,∴△BGF和△BAD为等腰直角三角形,∴BF=2BG,BD=2AB,∴DF=BD﹣BF=2(AB﹣BG)=2AG,∴DFAG=2;②∵B,F,D三点在一条直线上,∠ABF=∠ABD=45°,∴直线DF与直线AG所夹的锐角等于45°.故答案为:2;45;(2)①(1)中的结论仍然成立,理由:连接BF,BD,如图,∵四边形ABCD和四边形GBEF为正方形,∴∠ABD=∠GBF=45°,∠BGF=∠BAD=90°,∴△BGF和△BAD为等腰直角三角形,∴∠ABG+∠ABF=∠ABF+∠FBD=45°,BF=2BG,BD=2AB,∴∠ABG=∠DBF,BFBG =BDAB=2,∴△ABG∽△DBF,∴DFAG=BDAB=2;延长DF,交AB于点N,交AG于点M,∵△ABG∽△DBF,∴∠GAB=∠BDF.∵∠ANM=∠DNB,∴∠BAG+∠AMN=∠BDF+∠ADB.∴∠AMN=∠ABD=45°,即直线DF与直线AG所夹的锐角等于45°,∴(1)中的结论仍然成立;②连接BF,BD,如图,∵四边形GBEF为正方形,∴∠BFG=45°.由①知:∠AGD=45°,∴∠AGD=∠BFG.∵AB边的中点为O,∴AO=BO.在△AGO和△BFO中,{∠AOG=∠BOF∠AGO=∠BFO=45°AO=BO,∴△AGO≌△BFO(AAS),∴GO=FO=12GF=2,∴OB=BG2+OG2=42+22=25,∴AB=2OB=45.故答案为:45;(3)DEEF的值是定值,定值为3,理由:过点C作CQ⊥DF于点Q,连接BD,BE,BF,BE与CF交于点H,如图,∵四边形ABCD为正方形,∴BC=CD,由折叠的性质可得:BC=CE,EF=BF,PB=PE,∠BCF=∠ECF.∴CE=CD,∵CQ⊥DF,∴∠ECQ=∠DCQ.∵∠BCD=90°,∴∠ECF+∠ECQ=12∠BCD=45°.∴∠QFC=90°﹣∠QCF=45°,∴∠BFC=45°,∴∠EFB=∠EFC+∠BFC=90°.∴△BEF为等腰直角三角形,∴FH⊥BE,BH=HE=12BE,BE=2EF,∴∠PHB=90°.在FC截取FM=BE,可知四边形EFBM为正方形,由(2)②的结论可得:DE=2AF,∠AFD=45°,∴∠AFB=∠AFD+∠EFC=90°,∴∠AFP=∠PHB.∵∠APF=∠BPH,∴△APF∽△BPH,∴APPB=AFBH,∵PA=3PB,∴AF=3BH=32BE322EF,∴DE=2AF=2×322EF=3EF.∴DEEF=3,∴DEEF的值是定值,定值为3.。
河南省漯河市中考数学模拟试卷

河南省漯河市中考数学模拟试卷姓名:________ 班级:________ 成绩:________一、选择题: (共10题;共20分)1. (2分)是()A . 无理数B . 有理数C . 整数D . 有限小数2. (2分) (2019八下·永寿期末) 分式有意义,则x的取值范围为()A . x>2B . x<2C . x=2D . x≠23. (2分) (2020九下·滨湖月考) 下列计算正确是()A . 3a2-a2=3B . a2·a4=a8C . (a3)2=a6D . a6÷a2=a34. (2分)下列说法中正确的是()A . “打开电视机,正在播放《动物世界》”是必然事件B . 某种彩票的中奖概率为,说明每买1000张,一定有一张中奖C . 抛掷一枚质地均匀的硬币一次,出现正面朝上的概率为D . 想了解长沙市所有城镇居民的人均年收入水平,宜采用抽样调查5. (2分) (2019九上·潘集月考) 一元二次方程的解是()A .B .C .D .6. (2分)已知点P(a,b)在第三象限,则点Q(-a,-b)在第象限。
A . 第一象限B . 第二象限C . 第三象限D . 第四象限7. (2分)(2020·迁安模拟) 下图是某圆锥的主视图和左视图,该圆锥的全面积是()A . 36πB . 24πC . 20πD . 15π8. (2分)(2017·盘锦模拟) 下列说法不正确的是()A . 选举中,人们通常最关心的数据是众数B . 从1、2、3、4、5中随机取一个数,取得奇数的可能性比较大C . 数据3、5、4、1、﹣2的中位数是3D . 某游艺活动的中奖率是60%,说明参加该活动10次就有6次会获奖9. (2分) (2017·兰州) 如图,正方形ABCD内接于半径为2的⊙O,则图中阴影部分的面积为()A . π+1B . π+2C . π﹣1D . π﹣210. (2分) (2018八上·抚顺期末) 如图,在△ABC中,AB=AC,∠A=120 ,BC=6cm,AB的垂直平分线交BC于点M,交AB于点E,AC的垂直平分线交BC于点N,交AC于点F,则MN的长为()A . 1.5cmB . 2cmC . 2.5cmD . 3cm二、填空题: (共6题;共6分)11. (1分) (2020七上·邛崃期末) 如果在数轴上表示两个有理数的点的位置如下图所示,那么化简的结果为________.12. (1分) (2017八下·德惠期末) ﹣0.000 0064用科学记数法可表示为________.13. (1分)某种小麦播种的发芽概率约是95%,1株麦芽长成麦苗的概率约是90%,一块试验田的麦苗数是8550株,该麦种的一万粒质量为350千克,则播种这块试验田需麦种约为________千克.14. (1分)(2020·长春模拟) 一个正方形与一个正六边形如图放置,正方形的一条边与正六边形的一条边完全重合,则∠1的度数为________度.15. (1分) (2017八下·农安期末) 若一次函数y=(m﹣3)x+1的y随x的增大而增大,则m的取值范围是________.16. (1分) (2019八上·确山期中) 如图,已知中,,点是线段上的一动点,过点作交于点,并使得,则长度的取值范围是________.三、解答题: (共6题;共73分)17. (10分)综合题。
2024年河南省漯河市召陵区中考数学二模试卷(无答案)

2024年河南省漯河市召陵区中考数学二模试卷一、选择题(本大题共10个小题,每小题3分,共30分.下列各小题均有四个选项,其中只有一个是正确的)1.(3分)下列各数中,最大的数是( )A.﹣4B.3C.πD.02.(3分)如图,这是由5个大小相同的小正方体搭成的几何体,关于它的三视图,下列说法正确的是( )A.主视图与俯视图相同B.左视图与俯视图相同C.主视图与左视图相同D.都不相同3.(3分)2024年1月公布,河南经济稳中求进,2023年地区生产总值为59132.39亿元,同比增长4.1%.数据“59132.39亿”用科学记数法表示为( )A.0.5913239×1013B.5.913239×1013C.5.913239×1012D.59.13239×10114.(3分)如图,直线AB,CD相交于点O,∠AOD=110°,∠BOE=20°,则∠COE的度数为( )A.120°B.130°C.140°D.150°5.(3分)化简:=( )A.1B.0C.x D.﹣x6.(3分)用配方法解一元二次方程x2﹣6x+8=0配方后得到的方程是( )A.(x+6)2=28B.(x﹣6)2=28C.(x+3)2=1D.(x﹣3)2=17.(3分)如图,矩形ABCD的对角线AC,BD相交于点O,∠AOB=60°,AC+AB=6,则边AB的长为( )A.B.C.2D.8.(3分)下列图象中,函数y=ax2﹣a(a≠0)的图象可能是( )A.B.C.D.9.(3分)“二十四节气”是中华上古农耕文明的智慧结晶,被国际气象界誉为“中国第五大发明”.小豫为了深入了解“二十四节气”,购买了若干张“二十四节气”主题邮票,他将2张“立春”和2张“立夏”背面朝上放在桌面上(邮票背面完全相同),从中随机抽取一张(不放回),再从中随机抽取一张,则小豫抽到的两张邮票恰好不同的概率是( )A.B.C.D.10.(3分)如图1,点P从扇形AOB(其中∠AOB=90°)的顶点O出发,沿直线运动到扇形内部一点,再从该点沿直线运动到顶点B.设点P的运动路程为,图2是点P运动时y随x变化的关系图象,则的长为( )A.B.1C.πD.二、填空题(本大题共5个小题,每小题3分,共15分)11.(3分)化成最简二次根式为 .12.(3分)不等式组的解集为 .13.(3分)创建文明城市,构建美好家园.为提高垃圾分类意识,幸福社区决定采购A,B两种型号的新型垃圾桶.已知购买4个A型垃圾桶和3个B型垃圾桶共需要540元;购买6个A型垃圾桶和5个B 型垃圾桶共需要860元.设A型垃圾桶的单价为x元,B型垃圾桶的单价为y元,则可列方程: .14.(3分)如图,在△ABC中,D是边BC上的一点,以BD为直径的⊙O经过点A,且AC是⊙O的切线.若半径r=2,∠CAD=30°,则AB的长为 .15.(3分)在菱形ABCD中,∠B=120°,AB=2,M为对角线AC的中点,N为边AB上一动点,若△AMN 为等腰三角形,则BN的长为 .三、解答题(本大题共8个小题,共75分.解答应写出文字说明、证明过程演算步骤)16.(10分)(1)计算:.(2)化简:(2x﹣1)2+(x+3)(x﹣3).17.(9分)为庆祝中国共产主义青年团成立102周年,学校团委在七、八年级各抽取50名学生开展团知识竞赛.为便于统计成绩,制定了取整数的计分方式,满分10分,竞赛成绩如图所示:平均数中位数众数七年级竞赛成绩88a八年级竞赛成绩8.26b9根据以上信息,解答下列问题.(1)填空:a= ,b= .(2)现要给成绩突出的年级颁奖,请你综合上表中的统计量,判断应该给哪个年级颁奖,请说明理由.(3)若该校七年级学生有800人,八年级学生有1000人,参照以上数据,请估计该校七、八年级学生中得满分的学生共有多少人.18.(9分)如图,在△ABC中,∠C=90°,(1)请用无刻度的直尺和圆规作出∠B的平分线.(保留作图痕迹,不写作法)(2)若(1)中所作的角平分线与边AC交于点D,CD=3,AB=8,求△ABD的面积.19.(9分)如图,在平面直角坐标系中,直线AB与反比例函数的图象相交于A(﹣5,﹣1),B(a,﹣5)两点.(1)求反比例函数的表达式与a的值.(2)若Q为y轴上的一点,求QA+QB的值最小时点Q的坐标.20.(9分)如图,一根电线杆CE垂直于地面,电线穿过电线杆顶点C,一端固定在A点,另一端固定在B点.已知点A距离地面2m,点B距离地面6m,点A,B到电线杆的水平距离分别为22m与24m,从点A看点C的仰角为45°.(1)求电线杆CE的高度.(2)求电线的总长度(即AC+BC的长).(结果精确到1m.参考数据:≈1.7,21.(9分)甲、乙两家商场以相同的价格出售同样的商品,为了促进消费,商场推出不同的优惠方案.甲商场的优惠方案:购物花费累计超过200元后,超出200元的部分打八折;乙商场的优惠方案:购物花费按90%付费.若某顾客准备购买标价为x元的商品.(1)若x>200,则在甲商场购物花费 元.(用含x的代数式表示)(2)若选择甲商场和乙商场的付款金额相等,求x的值.(3)乙商场为了吸引更多的顾客,采取了进一步的优惠方案:不超过500元,仍按90%付费;超过500元后,超出的部分改按70%付费.甲商场没有调整优惠方案,请求出顾客选择乙商场购物花费更少时,x的取值范围.22.(10分)如图1,这是一款智能浇灌系统,水管OP垂直于地面并可以随意调节高度(OP的最大高度不超过1.5m).浇灌花木时,喷头P处会向四周喷射水流形成固定形状的抛物线,水流的落地点M与点O的距离即为最大浇灌距离,各方向水流落地点形成一个以点O为圆心,OM的长为半径的圆形浇灌区域(区域内均可被浇灌到).当喷头P位于地面与点O重合时,某一方向的水流上边缘形成了如图2所示的抛物线,经测量,OM=2m,水流最高处距离地面0.1m.(1)在图中建立合适的平面直角坐标系,求抛物线的函数表达式.(2)当调节水管OP的高度时,圆形浇灌区域的面积会发生变化,请你求出圆形浇灌区域的最大面积.(结果保留π)23.(10分)王老师擅长巧妙地整合教学材料,引导同学们以整体、相关和逐步发展的视角思考问题,培养科学的思维方式.下面是王老师结合旋转与其他知识内容所设计的问题,请你解答.(1)如图1,在平面直角坐标系中,点A(0,3),x轴上有一点P,现将点A绕点P按顺时针方向旋转n°至点B(4,1),则点P的坐标是 ,n= .(2)如图2,在△ABC中,∠B=∠C=α,点D,E分别在BC,AC上,将线段DE绕点D按逆时针方向旋转α至DF,点F恰好落在边AB上,求证:BC=CE+BF.(3)如图3,△ABC是底角为30°的等腰三角形,AB=6,F为AC的中点,D为射线BF上一个动点.连接AD,将AD绕点D按逆时针方向旋转120°得到DE,连接EA,EF,EC.当△CEF是直角三角形时,请直接写出BD的长.。
河南省漯河市中考数学一模试卷

河南省漯河市中考数学一模试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)(2019·威海) 计算的结果是()A .B .C .D .2. (2分) (2018八下·邯郸开学考) 某细胞的直径是0.00000095米,将0.00000095用科学记数法表示为()。
A .B .C .D .3. (2分)如图,三棱柱ABC﹣A1B1C1的侧棱长和底面边长均为2,且侧棱AA1⊥底面ABC,其正(主)视图是边长为2的正方形,则此三棱柱侧(左)视图的面积为()A .B . 2C . 2D . 44. (2分)若关于x的不等式mx-n>0 的解集为,则关于x的不等式(m+n)x>m-n 的解集为()A .B .C .D .5. (2分) (2018八下·句容月考) 如图,正方形ABCD的对角线长为8 ,E为AB上一点,若EF⊥AC于F,EG⊥BD于G,则EF+EG=()A . 4B . 8C . 8D . 46. (2分)(2015·温州) 如图,点A的坐标是(2,0),△ABO是等边三角形,点B在第一象限.若反比例函数y= 的图象经过点B,则k的值是()A . 1B . 2C .D . 27. (2分)下列四个命题中,真命题是()A . “任意四边形内角和为360°”是不可能事件B . “湘潭市明天会下雨”是必然事件C . “预计本题的正确率是95%”表示100位考生中一定有95人做对D . 抛掷一枚质地均匀的硬币,正面朝上的概率是8. (2分)如图,在△ABD中,两个顶点A、B的坐标分别为A(6,6),B(8,2),线段CD是以O为位似中心,在第一象限内将线段AB缩小为原来的一半后得到线段,则端点D的坐标为()A . (3,3)B . (4,3)C . (3,1)D . (4,1)9. (2分)(2013·深圳) 某校有21名同学们参加某比赛,预赛成绩各不同,要取前11名参加决赛,小颖已经知道了自己的成绩,她想知道自己能否进入决赛,只需要再知道这21名同学成绩的()A . 最高分B . 中位数C . 极差D . 平均数10. (2分)如图,在Rt△ABC中,∠ACB=90,C D⊥AB,垂足为D,若AC=, BC=2.则sin∠ACD的值为()A .B .C .D .11. (2分)(2018·舟山) 用反证法证明时,假设结论“点在圆外”不成立,那么点与圆的位置关系只能是()A . 点在圆内B . 点在圆上C . 点在圆心上D . 点在圆上或圆内12. (2分)全等三角形是()A . 面积和周长相等的两个三角形B . 形状相同的两个三角形C . 能够完全重合的两个三角形D . 三个角对应相等的两个三角形二、填空题: (共6题;共6分)13. (1分)﹣2a(3a﹣4b)=________ .14. (1分)(2017·苏州模拟) 如图,在△ABC中,AB=5,AC=3,AD,AE分别为△ABC的中线和角平分线,过点C作CH⊥AE于点H,并延长交AB于点F,连结DH,则线段DH的长为________.15. (1分)已知a=3+ ,b=3﹣,则a2b+ab2=________.16. (1分) (2016九上·南开期中) 如图,P是抛物线y=2(x﹣2)2对称轴上的一个动点,直线x=t平行y 轴,分别与y=x、抛物线交于点A,B.若△ABP是以点A或点B为直角顶点的等腰直角三角形,求满足条件的t的值,则t=________.17. (1分)如图,把△ABC绕点C顺时针旋转得到△A′B′C,此时A′B′⊥AC于D,已知∠A=54°,则∠B′CB 的度数是________18. (1分) (2020九上·海曙期末) 如图,点BEC在一直线上,△ BEA,△CED在直线BC同侧,BE=BA=4,CE=CD=6,∠B=∠C=a,当tan 时,△ADE外接圆的半径为________。
2022学年漯河市重点中学中考数学模试卷(含答案解析)

2022学年漯河市重点中学中考数学模试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(共10小题,每小题3分,共30分)1.在Rt△ABC中,∠C=90°,那么sin∠B等于()A.ACABB.BCABC.ACBCD.BCAC2.若|a|=﹣a,则a为()A.a是负数B.a是正数C.a=0 D.负数或零3.下列计算正确的是()A.x4•x4=x16B.(a+b)2=a2+b2C.=±4 D.(a6)2÷(a4)3=14.反比例函数y=ax(a>0,a为常数)和y=2x在第一象限内的图象如图所示,点M在y=ax的图象上,MC⊥x轴于点C,交y=2x的图象于点A;MD⊥y轴于点D,交y=2x的图象于点B,当点M在y=ax的图象上运动时,以下结论:①S△ODB=S△OCA;②四边形OAMB的面积不变;③当点A是MC的中点时,则点B是MD的中点.其中正确结论的个数是()A.0 B.1 C.2 D.3 5.下列计算正确的是().A.(x+y)2=x2+y2B.(-12xy2)3=-16x3y6C.x6÷x3=x2D2(2)6.3-的相反数是()A.33B.-33C.3D.3-7.如图,将矩形ABCD沿对角线BD折叠,点C落在点E处,BE交AD于点F,已知∠BDC=62°,则∠DFE的度数为()A.31°B.28°C.62°D.56°8.如图,点A为∠α边上任意一点,作AC⊥BC于点C,CD⊥AB于点D,下列用线段比表示cosα的值,错误的是()A.CDACB.BCABC.BDBCD.ADAC9.用一根长为a(单位:cm)的铁丝,首尾相接围成一个正方形,要将它按图的方式向外等距扩1(单位:cm)得到新的正方形,则这根铁丝需增加()A.4cm B.8cm C.(a+4)cm D.(a+8)cm10.我国古代数学家刘徽用“牟合方盖”找到了球体体积的计算方法.“牟合方盖”是由两个圆柱分别从纵横两个方向嵌入一个正方体时两圆柱公共部分形成的几何体.如图所示的几何体是可以形成“牟合方盖”的一种模型,它的俯视图是()A .B .C .D .二、填空题(本大题共6个小题,每小题3分,共18分)11.一个等腰三角形的两边长分别为4cm 和9cm ,则它的周长为__cm .12.因式分解:2mn +6mn+9m=_________________.13.如图,在矩形ABCD 中,AB=5,BC=3,将矩形ABCD 绕点B 按顺时针方向旋转得到矩形GBEF ,点A 落在矩形ABCD 的边CD 上,连接CE ,则CE 的长是________.14.分解因式:244m m ++=___________.15.因式分解23a a +=______.16.如图,矩形纸片ABCD 中,AB=3,AD=5,点P 是边BC 上的动点,现将纸片折叠使点A 与点P 重合,折痕与矩形边的交点分别为E ,F ,要使折痕始终与边AB ,AD 有交点,BP 的取值范围是_____.三、解答题(共8题,共72分)17.(8分)如图,已知点A (﹣2,0),B (4,0),C (0,3),以D 为顶点的抛物线y=ax 2+bx+c 过A ,B ,C 三点.(1)求抛物线的解析式及顶点D 的坐标;(2)设抛物线的对称轴DE 交线段BC 于点E ,P 为第一象限内抛物线上一点,过点P 作x 轴的垂线,交线段BC 于点F ,若四边形DEFP 为平行四边形,求点P 的坐标.18.(8分)抛物线2y x bx c =-++与x 轴交于A ,B 两点(点A 在点B 的左边),与y 轴正半轴交于点C .(1)如图1,若A (-1,0),B (3,0),① 求抛物线2y x bx c =-++的解析式;② P 为抛物线上一点,连接AC ,PC ,若∠PCO=3∠ACO ,求点P 的横坐标;(2)如图2,D 为x 轴下方抛物线上一点,连DA ,DB ,若∠BDA+2∠BAD=90°,求点D 的纵坐标.19.(8分)如图,已知▱ABCD .作∠B 的平分线交AD 于E 点。
河南省漯河市郾城区重点中学2024届中考数学最后冲刺模拟试卷含解析

河南省漯河市郾城区重点中学2024学年中考数学最后冲刺模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。
写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(共10小题,每小题3分,共30分)1.在0,-2,5,14,-0.3中,负数的个数是().A.1 B.2 C.3 D.42.已知正方形MNOK和正六边形ABCDEF边长均为1,把正方形放在正六边形外,使OK边与AB边重合,如图所示,按下列步骤操作:将正方形在正六边形外绕点B逆时针旋转,使ON边与BC边重合,完成第一次旋转;再绕点C逆时针旋转,使MN边与CD边重合,完成第二次旋转;……在这样连续6次旋转的过程中,点B,O间的距离不可能是()A.0 B.0.8 C.2.5 D.3.43.小带和小路两个人开车从A城出发匀速行驶至B城.在整个行驶过程中,小带和小路两人车离开A城的距离y(km)与行驶的时间t(h)之间的函数关系如图所示.有下列结论;①A,B两城相距300 km;②小路的车比小带的车晚出发1h,却早到1 h;③小路的车出发后2.5 h追上小带的车;④当小带和小路的车相距50 km时,t=54或t=154.其中正确的结论有()A.①②③④B.①②④C.①②D.②③④A.0.156×10-5B.0.156×105C.1.56×10-6D.1.56×1065.某班将举行“庆祝建党95周年知识竞赛”活动,班长安排小明购买奖品,如图是小明买回奖品时与班长的对话情境:请根据如图对话信息,计算乙种笔记本买了()A.25本B.20本C.15本D.10本6.我国作家莫言获得诺贝尔文学奖之后,他的代表作品《蛙》的销售量就比获奖之前增长了180倍,达到2100000册.把2100000用科学记数法表示为()A.0.21×108B.21×106C.2.1×107D.2.1×1067.已知一元二次方程ax2+ax﹣4=0有一个根是﹣2,则a值是()A.﹣2 B.23C.2 D.48.小明乘出租车去体育场,有两条路线可供选择:路线一的全程是25千米,但交通比较拥堵,路线二的全程是30千米,平均车速比走路线一时的平均车速能提高80%,因此能比走路线一少用10分钟到达.若设走路线一时的平均速度为x千米/小时,根据题意,得A.B.C.D.9.如图,O为原点,点A的坐标为(3,0),点B的坐标为(0,4),⊙D过A、B、O三点,点C为AB上一点(不与O、A两点重合),则cosC的值为()A.34B.35C.43D.4510.如图,在直角坐标系中,有两点A(6,3)、B(6,0).以原点O为位似中心,相似比为13,在第一象限内把线段AB缩小后得到线段CD,则点C的坐标为()A.(2,1) B.(2,0) C.(3,3) D.(3,1)二、填空题(本大题共6个小题,每小题3分,共18分)11.如图,在△ABC中,DE∥BC,BF平分∠ABC,交DE的延长线于点F,若AD=1,BD=2,BC=4,则EF=________.12.桌上摆着一个由若干个相同正方体组成的几何体,其主视图和左视图如图所示,这个几何体最多可以由___________个这样的正方体组成.13.已知α是锐角1sin2α=,那么cosα=_________.14.不等式组5243xx+>⎧⎨-≥⎩的最小整数解是_____.15.一个三角形的两边长分别为3和6,第三边长是方程x2-10x+21=0的根,则三角形的周长为______________.16.在Rt△ABC中,∠C=90∘,若AB=4,sin A =35,则斜边AB边上的高CD的长为________.三、解答题(共8题,共72分)17.(8分)“足球运球”是中考体育必考项目之一.兰州市某学校为了解今年九年级学生足球运球的掌握情况,随机抽取部分九年级学生足球运球的测试成绩作为一个样本,按A,B,C,D四个等级进行统计,制成了如下不完整的统计图.(说明:A级:8分﹣10分,B级:7分﹣7.9分,C级:6分﹣6.9分,D级:1分﹣5.9分)(1)在扇形统计图中,C 对应的扇形的圆心角是 度;(2)补全条形统计图;(3)所抽取学生的足球运球测试成绩的中位数会落在 等级;(4)该校九年级有300名学生,请估计足球运球测试成绩达到A 级的学生有多少人?18.(8分)如图,在平面直角坐标系中,抛物线212y x bx c =-++与x 轴交于点A 、B ,与y 轴交于点C ,直线y =x +4经过点A 、C ,点P 为抛物线上位于直线AC 上方的一个动点.(1)求抛物线的表达式;(2)如图,当CP //AO 时,求∠PAC 的正切值;(3)当以AP 、AO 为邻边的平行四边形第四个顶点恰好也在抛物线上时,求出此时点P 的坐标.19.(8分)抛物线y =x 2+bx+c 经过点A 、B 、C ,已知A (﹣1,0),C (0,﹣3).求抛物线的解析式;如图1,抛物线顶点为E ,EF ⊥x 轴于F点,M (m ,0)是x 轴上一动点,N 是线段EF 上一点,若∠MNC =90°,请指出实数m 的变化范围,并说明理由.如图2,将抛物线平移,使其顶点E 与原点O 重合,直线y =kx+2(k >0)与抛物线相交于点P 、Q (点P 在左边),过20.(8分)如图山坡上有一根旗杆AB,旗杆底部B点到山脚C点的距离BC为63米,斜坡BC的坡度i=1:3.小明在山脚的平地F处测量旗杆的高,点C到测角仪EF的水平距离CF=1米,从E处测得旗杆顶部A的仰角为45°,旗杆底部B的仰角为20°.(1)求坡角∠BCD;(2)求旗杆AB的高度.(参考数值:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)21.(8分)如图,已知A(a,4),B(﹣4,b)是一次函数与反比例函数图象的两个交点.(1)若a=1,求反比例函数的解析式及b的值;(2)在(1)的条件下,根据图象直接回答:当x取何值时,反比例函数大于一次函数的值?(3)若a﹣b=4,求一次函数的函数解析式.22.(10分)某工厂计划生产A,B两种产品共10件,其生产成本和利润如下表.A种产品B种产品成本(万元/件) 2 5利润(万元/件) 1 3(1)若工厂计划获利14万元,问A,B两种产品应分别生产多少件?(2)若工厂计划投入资金不多于44万元,且获利多于22万元,问工厂有哪几种生产方案?23.(12分)某文具店购进一批纪念册,每本进价为20元,出于营销考虑,要求每本纪念册的售价不低于20元且不高于28元,在销售过程中发现该纪念册每周的销售量y(本)与每本纪念册的售价x(元)之间满足一次函数关系:当销售单价为22元时,销售量为36本;当销售单价为24元时,销售量为32本.求出y与x的函数关系式;当文具得的利润为w元,将该纪念册销售单价定为多少元时,才能使文具店销售该纪念册所获利润最大?最大利润是多少?24.(2016山东省烟台市)由于雾霾天气频发,市场上防护口罩出现热销,某医药公司每月固定生产甲、乙两种型号的防雾霾口罩共20万只,且所有产品当月全部售出,原料成本、销售单价及工人生产提成如表:(1)若该公司五月份的销售收入为300万元,求甲、乙两种型号的产品分别是多少万只?(2)公司实行计件工资制,即工人每生产一只口罩获得一定金额的提成,如果公司六月份投入总成本(原料总成本+生产提成总额)不超过239万元,应怎样安排甲、乙两种型号的产量,可使该月公司所获利润最大?并求出最大利润(利润=销售收入﹣投入总成本)参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解题分析】根据负数的定义判断即可【题目详解】解:根据负数的定义可知,这一组数中,负数有两个,即-2和-0.1.故选B.2、D【解题分析】如图,点O的运动轨迹是图在黄线,点B,O间的距离d的最小值为0,最大值为线段BK32可得0≤d32即0≤d≤3.1,由此即可判断;【题目详解】作CH⊥BD于点H,∵六边形ABCDE是正六边形,∴∠BCD=120º,∴∠CBH=30º,∴BH=cos30 º·BC 33 BC=,∴BD3.∵DK22112+=∴BK32点B,O间的距离d的最小值为0,最大值为线段BK32+∴0≤d320≤d≤3.1,故点B,O间的距离不可能是3.4,故选:D.【题目点拨】本题考查正多边形与圆、旋转变换等知识,解题的关键是正确作出点O的运动轨迹,求出点B,O间的距离的最小值以及最大值是解答本题的关键.3、C【解题分析】观察图象可判断①②,由图象所给数据可求得小带、小路两车离开A城的距离y与时间t的关系式,可求得两函数图象的交点,可判断③,再令两函数解析式的差为50,可求得t,可判断④,可得出答案.【题目详解】由图象可知A,B两城市之间的距离为300 km,小带行驶的时间为5 h,而小路是在小带出发1 h后出发的,且用时3 h,即比小带早到1 h,∴①②都正确;设小带车离开A城的距离y与t的关系式为y小带=kt,把(5,300)代入可求得k=60,∴y小带=60t,设小路车离开A城的距离y与t的关系式为y小路=mt+n,把(1,0)和(4,300)代入可得0 4300 m nm n+=⎧⎨+=⎩解得100100 mn=⎧⎨=-⎩∴y小路=100t-100,令y小带=y小路,可得60t=100t-100,解得t=2.5,即小带和小路两直线的交点横坐标为t=2.5,此时小路出发时间为1.5 h,即小路车出发1.5 h后追上甲车,∴③不正确;令|y小带-y小路|=50,可得|60t-100t+100|=50,即|100-40t|=50,当100-40t=50时,可解得t=54,当100-40t=-50时,可解得t=154,又当t=56时,y小带=50,此时小路还没出发,当t=256时,小路到达B城,y小带=250.综上可知当t的值为54或154或56或256时,两车相距50 km,∴④不正确.故选C.【题目点拨】本题主要考查一次函数的应用,掌握一次函数图象的意义是解题的关键,特别注意t 是甲车所用的时间.4、C【解题分析】 解:,故选C. 5、C【解题分析】设甲种笔记本买了x 本,甲种笔记本的单价是y 元,则乙种笔记本买了(40﹣x )本,乙种笔记本的单价是(y +3)元,根据题意列出关于x 、y 的二元一次方程组,求出x 、y 的值即可.【题目详解】解:设甲种笔记本买了x 本,甲种笔记本的单价是y 元,则乙种笔记本买了(40﹣x )本,乙种笔记本的单价是(y +3)元,根据题意,得:()()1254033006813xy xy x y =⎧⎨+-+=-+⎩, 解得:2515x y =⎧⎨=⎩, 答:甲种笔记本买了25本,乙种笔记本买了15本.故选C .【题目点拨】本题考查的是二元二次方程组的应用,能根据题意得出关于x 、y 的二元二次方程组是解答此题的关键.6、D【解题分析】2100000=2.1×106.点睛:对于一个绝对值较大的数,用科学记数法写成10n a ⨯ 的形式,其中110a ≤<,n 是比原整数位数少1的数. 7、C【解题分析】分析:将x=-2代入方程即可求出a 的值.详解:将x=-2代入可得:4a -2a -4=0, 解得:a=2,故选C .点睛:本题主要考查的是解一元一次方程,属于基础题型.解方程的一般方法的掌握是解题的关键.8、A【解题分析】若设走路线一时的平均速度为x千米/小时,根据路线一的全程是25千米,但交通比较拥堵,路线二的全程是30千米,平均车速比走路线一时的平均车速能提高80%,因此能比走路线一少用10分钟到达可列出方程.解:设走路线一时的平均速度为x千米/小时,故选A.9、D【解题分析】如图,连接AB,由圆周角定理,得∠C=∠ABO,在Rt△ABO中,OA=3,OB=4,由勾股定理,得AB=5,∴4 cos cos5OBC ABOAB=∠==.故选D.10、A【解题分析】根据位似变换的性质可知,△ODC∽△OBA,相似比是13,根据已知数据可以求出点C的坐标.【题目详解】由题意得,△ODC∽△OBA,相似比是13,∴OD DC OB AB=,又OB=6,AB=3,∴OD=2,CD=1,∴点C的坐标为:(2,1),故选A.本题考查的是位似变换,掌握位似变换与相似的关系是解题的关键,注意位似比与相似比的关系的应用.二、填空题(本大题共6个小题,每小题3分,共18分)11、2 3【解题分析】由DE∥BC可得出△ADE∽△ABC,根据相似三角形的性质和平行线的性质解答即可.【题目详解】∵DE∥BC,∴∠F=∠FBC,∵BF平分∠ABC,∴∠DBF=∠FBC,∴∠F=∠DBF,∴DB=DF,∵DE∥BC,∴△ADE∽△ABC,∴AD DEAD DB BC=+,即1124DE=+,解得:DE=43,∵DF=DB=2,∴EF=DF-DE=2-43=23,故答案为2 3 .【题目点拨】此题考查相似三角形的判定和性质,关键是由DE∥BC可得出△ADE∽△ABC.12、1【解题分析】主视图、左视图是分别从物体正面、左面看,所得到的图形.【题目详解】易得第一层最多有9个正方体,第二层最多有4个正方体,所以此几何体共有1个正方体.故答案为1.13【解题分析】根据已知条件设出直角三角形一直角边与斜边的长,再根据勾股定理求出另一直角边的长,由三角函数的定义直接解答即可.【题目详解】由sinα=ac=12知,如果设a=x,则c=2x,结合a2+b2=c2得∴cosα=bc=2.故答案为2.【题目点拨】本题考查的知识点是同角三角函数的关系,解题的关键是熟练的掌握同角三角函数的关系.14、-1【解题分析】分析:先求出每个不等式的解集,再求出不等式组的解集,即可得出答案.详解:5243xx+⎧⎨-≥⎩>①②.∵解不等式①得:x>-3,解不等式②得:x≤1,∴不等式组的解集为-3<x≤1,∴不等式组的最小整数解是-1,故答案为:-1.点睛:本题考查了解一元一次不等式组和不等式组的整数解,能根据不等式的解集得出不等式组的解集是解此题的关键.15、2【解题分析】分析:首先求出方程的根,再根据三角形三边关系定理,确定第三边的长,进而求其周长.详解:解方程x2-10x+21=0得x1=3、x2=1,∵3<第三边的边长<9,∴第三边的边长为1.∴这个三角形的周长是3+6+1=2.故答案为2.点睛:本题考查了解一元二次方程和三角形的三边关系.已知三角形的两边,则第三边的范围是:大于已知的两边的差,而小于两边的和.16、4825 【解题分析】 如图,∵在Rt △ABC 中,∠C=90∘,AB=4,sinA=35BC AB =, ∴BC=125, ∴AC=2212164()55-=, ∵CD 是AB 边上的高,∴CD=AC·sinA=16348=5525⨯. 故答案为:4825.三、解答题(共8题,共72分)17、(1)117(2)见解析(3)B (4)30【解题分析】(1)先根据B 等级人数及其百分比求得总人数,总人数减去其他等级人数求得C 等级人数,继而用360°乘以C 等级人数所占比例即可得;(2)根据以上所求结果即可补全图形;(3)根据中位数的定义求解可得;(4)总人数乘以样本中A 等级人数所占比例可得.【题目详解】解:(1)∵总人数为18÷45%=40人, ∴C 等级人数为40﹣(4+18+5)=13人,则C 对应的扇形的圆心角是360°×1340=117°, 故答案为117;(2)补全条形图如下:(3)因为共有40个数据,其中位数是第20、21个数据的平均数,而第20、21个数据均落在B 等级,所以所抽取学生的足球运球测试成绩的中位数会落在B 等级,故答案为B .(4)估计足球运球测试成绩达到A 级的学生有300×440=30人. 【题目点拨】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小. 18、(1)抛物线的表达式为2142y x x =--+;(2)1tan 3∠PAC =;(3)P 点的坐标是5(3,)2-. 【解题分析】分析:(1)由题意易得点A 、C 的坐标分别为(-1,0),(0,1),将这两点坐标代入抛物线212y x bx c =-++列出方程组,解得b 、c 的值即可求得抛物线的解析式;(2)如下图,作PH ⊥AC 于H ,连接OP ,由已知条件先求得PC=2,AC=42S △APC ,可求得2,再由OA=OC 得到∠CAO=15°,结合CP ∥OA 可得∠PCA=15°,即可得到2,由此可得AH=32Rt △APH 中由tan ∠PAC=PH AH即可求得所求答案了; (3)如图,当四边形AOPQ 为符合要求的平行四边形时,则此时PQ=AO=1,且点P 、Q 关于抛物线的对称轴x=-1对称,由此可得点P 的横坐标为-3,代入抛物线解析即可求得此时的点P 的坐标.详解:(1)∵直线y=x+1经过点A 、C ,点A 在x 轴上,点C 在y 轴上∴A 点坐标是(﹣1,0),点C 坐标是(0,1),又∵抛物线过A ,C 两点, ∴()21440,2 4.b c c ⎧-⨯--+=⎪⎨⎪=⎩解得14b c =-⎧⎨=⎩, ∴抛物线的表达式为2142y x x =--+; (2)作PH ⊥AC 于H ,∵点C 、P 在抛物线上,CP//AO , C (0,1),A (-1,0)∴P (-2,1),AC=42,∴PC=2,AC PH PC CO ⋅=⋅,∴PH=2,∵A (﹣1,0),C (0,1),∴∠CAO=15°.∵CP//AO ,∴∠ACP=∠CAO=15°,∵PH ⊥AC ,∴CH=PH=2,∴AH 42232=-=.∴PH 1tan PAC AH 3∠==;(3)∵221114(1)4222y x x x =--+=-++, ∴抛物线的对称轴为直线1x =-,∵以AP ,AO 为邻边的平行四边形的第四个顶点Q 恰好也在抛物线上,∴PQ ∥AO ,且PQ=AO=1.∵P ,Q 都在抛物线上,∴P ,Q 关于直线1x =-对称,∴P 点的横坐标是﹣3,∵当x=﹣3时,()()215y 33422=-⋅---+=, ∴P 点的坐标是53,2⎛⎫- ⎪⎝⎭.点睛:(1)解第2小题的关键是:作出如图所示的辅助线,构造出Rt △APH ,并结合题中的已知条件求出PH 和AH 的长;(2)解第3小题的关键是:根据题意画出符合要求的示意图,并由PQ ∥AO ,PQ=AO 及P 、Q 关于抛物线的对称轴对称得到点P 的横坐标.【题目详解】请在此输入详解!19、(1)y =x 2﹣2x ﹣3;(2)554m -<;(3)当k 发生改变时,直线QH 过定点,定点坐标为(0,﹣2) 【解题分析】(1)把点A (﹣1,0),C (0,﹣3)代入抛物线表达式求得b ,c ,即可得出抛物线的解析式;(2)作CH ⊥EF 于H ,设N 的坐标为(1,n ),证明Rt △NCH ∽△MNF ,可得m =n 2+3n +1,因为﹣4≤n ≤0,即可得出m 的取值范围;(3)设点P (x 1,y 1),Q (x 2,y 2),则点H (﹣x 1,y 1),设直线HQ 表达式为y =ax +t ,用待定系数法和韦达定理可求得a =x 2﹣x 1,t =﹣2,即可得出直线QH 过定点(0,﹣2).【题目详解】解:(1)∵抛物线y =x 2+bx +c 经过点A 、C , 把点A (﹣1,0),C (0,﹣3)代入,得:013b c c =-+⎧⎨-=⎩, 解得23b c =-⎧⎨=-⎩,∴抛物线的解析式为y =x 2﹣2x ﹣3;(2)如图,作CH ⊥EF 于H ,∵y =x 2﹣2x ﹣3=(x ﹣1)2﹣4,∴抛物线的顶点坐标E (1,﹣4),设N 的坐标为(1,n ),﹣4≤n ≤0∵∠MNC =90°,∴∠CNH +∠MNF =90°,又∵∠CNH +∠NCH =90°,∴∠NCH =∠MNF ,又∵∠NHC =∠MFN =90°,∴Rt △NCH ∽△MNF , ∴CH HN NF FM =,即131n n m+=-- 解得:m =n 2+3n +1=23524n ⎛⎫+- ⎪⎝⎭, ∴当32n =-时,m 最小值为54-; 当n =﹣4时,m 有最大值,m 的最大值=16﹣12+1=1.∴m 的取值范围是554m -<. (3)设点P (x 1,y 1),Q (x 2,y 2),∵过点P 作x 轴平行线交抛物线于点H ,∴H (﹣x 1,y 1),∵y =kx +2,y =x 2,消去y 得,x 2﹣kx ﹣2=0,x 1+x 2=k ,x 1x 2=﹣2,设直线HQ 表达式为y =ax +t ,将点Q (x 2,y 2),H (﹣x 1,y 1)代入,得2211y ax t y ax t =+⎧⎨=-+⎩, ∴y 2﹣y 1=a (x 1+x 2),即k (x 2﹣x 1)=ka ,∴a =x 2﹣x 1,∵22x =( x 2﹣x 1)x 2+t ,∴t =﹣2,∴直线HQ表达式为y=(x2﹣x1)x﹣2,∴当k发生改变时,直线QH过定点,定点坐标为(0,﹣2).【题目点拨】本题主要考查的是二次函数的综合应用,解答本题主要应用了配方法求二次函数的最值、待定系数法求一次函数的解析式、(2)问通过相似三角形建立m与n的函数关系式是解题的关键.20、旗杆AB的高度为6.4米.【解题分析】分析:(1)根据坡度i与坡角α之间的关系为:i=tanα进行计算;(2)根据余弦的概念求出CD,根据正切的概念求出AG、BG,计算即可.本题解析:(1)∵斜坡BC的坡度3,∴tan∠BCD=3 BDDC∴∠BCD=30°;(2)在Rt△BCD中,CD=BC×cos∠3×3,则DF=DC+CF=10(米),∵四边形GDFE为矩形,∴GE=DF=10(米),∵∠AEG=45°,∴AG=DE=10(米),在Rt△BEG中,BG=GE×tan∠BEG=10×0.36=3.6(米),则AB=AG−BG=10−3.6=6.4(米).答:旗杆AB的高度为6.4米。
2024届河南省漯河郾城区六校联考中考数学五模试卷含解析

2024届河南省漯河郾城区六校联考中考数学五模试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,在△ABC中,∠B=46°,∠C=54°,AD平分∠BAC,交BC于D,DE∥AB,交AC于E,则∠CDE的大小是()A.40°B.43°C.46°D.54°2.要使分式有意义,则x的取值应满足()A.x=﹣2 B.x≠2C.x>﹣2 D.x≠﹣23.若顺次连接四边形ABCD各边中点所得的四边形是菱形,则四边形ABCD一定是()A.矩形B.菱形C.对角线互相垂直的四边形D.对角线相等的四边形4.如图,四边形ABCD是⊙O的内接四边形,⊙O的半径为6,∠ADC=60°,则劣弧AC的长为()A.2πB.4πC.5πD.6π5.如图,点A为∠α边上任意一点,作AC⊥BC于点C,CD⊥AB于点D,下列用线段比表示cosα的值,错误的是()A.CDACB.BCABC.BDBCD.ADAC6.化简:xx y--yx y+,结果正确的是()A.1 B.2222x yx y+-C.x yx y-+D.22x y+7.长江经济带覆盖上海、江苏、浙江、安徽、江西、湖北、湖南、重庆、四川、云南、贵州等11省市,面积约2 050 000平方公里,约占全国面积的21% .将2 050 000用科学记数法表示应为()A.205万B.420510⨯C.62.0510⨯D.72.0510⨯8.苹果的单价为a元/千克,香蕉的单价为b元/千克,买2千克苹果和3千克香蕉共需()A.(a+b)元B.(3a+2b)元C.(2a+3b)元D.5(a+b)元9.下列解方程去分母正确的是( )A.由,得2x﹣1=3﹣3xB.由,得2x﹣2﹣x=﹣4C.由,得2y-15=3yD.由,得3(y+1)=2y+610.“保护水资源,节约用水”应成为每个公民的自觉行为.下表是某个小区随机抽查到的10户家庭的月用水情况,则下列关于这10户家庭的月用水量说法错误的是()月用水量(吨) 4 5 6 9户数(户) 3 4 2 1A.中位数是5吨B.众数是5吨C.极差是3吨D.平均数是5.3吨11.在Rt△ABC中,∠C=90°,BC=a,AC=b,AB=c,下列各式中正确的是()A.a=b•cosA B.c=a•sinA C.a•cotA=b D.a•tanA=b12.为了解当地气温变化情况,某研究小组记录了寒假期间连续6天的最高气温,结果如下(单位C︒:﹣6,﹣1,x,2,﹣1,1.若这组数据的中位数是﹣1,则下列结论错误的是()A.方差是8 B.极差是9 C.众数是﹣1 D.平均数是﹣1二、填空题:(本大题共6个小题,每小题4分,共24分.)13.若代数式211x--的值为零,则x=_____.14.如图所示,直线y=x+b 交x 轴A 点,交y 轴于B 点,交双曲线8(0)y x x=>于P 点,连OP ,则OP 2﹣OA 2=__.15.如图,在矩形ABCD 中,AB=2,E 是BC 的中点,AE ⊥BD 于点F ,则CF 的长是_________.16.如果关于x 的一元二次方程22(21)10k x k x -++=有两个不相等的实数根,那么k 的取值范围是__________.17.抛物线243y x x =-+向右平移1个单位,再向下平移2个单位所得抛物线是__________.18.如图,在平面直角坐标系中,以点O 为圆心,适当长为半径画弧,交x 轴于点M ,交y 轴于点N ,再分别以点M ,N 为圆心.大于12MN 的长为半径画弧,两弧在第二象限内交于点p (a ,b ),则a 与b 的数量关系是________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)已知:二次函数2y ax bx =+满足下列条件:①抛物线y =ax 2+bx 与直线y =x 只有一个交点;②对于任意实数x ,a (-x +5)2+b (-x +5)=a (x -3)2+b (x -3)都成立.(1)求二次函数y =ax 2+bx 的解析式;(2)若当-2≤x ≤r (r ≠0)时,恰有t ≤y ≤1.5r 成立,求t 和r 的值.20.(6分)如图,某校数学兴趣小组要测量大楼AB 的高度,他们在点C 处测得楼顶B 的仰角为32°,再往大楼AB 方向前进至点D 处测得楼顶B 的仰角为48°,CD =96m ,其中点A 、D 、C 在同一直线上.求AD 的长和大楼AB 的高度(结果精确到2m )参考数据:sin48°≈2.74,cos48°≈2.67,tan48°≈2.223≈2.7321.(6分)如图,AB是⊙O的直径,点C是⊙O上一点,AD与过点C的切线垂直,垂足为点D,直线DC与AB 的延长线相交于点P,弦CE平分∠ACB,交AB点F,连接BE.(1)求证:AC平分∠DAB;(2)求证:PC=PF;(3)若tan∠ABC=43,AB=14,求线段PC的长.22.(8分)在▱ABCD中,过点D作DE⊥AB于点E,点F在CD上,CF=AE,连接BF,AF.(1)求证:四边形BFDE是矩形;(2)若AF平分∠BAD,且AE=3,DE=4,求tan∠BAF的值.23.(8分)如图,CD是一高为4米的平台,AB是与CD底部相平的一棵树,在平台顶C点测得树顶A点的仰角30α=︒,从平台底部向树的方向水平前进3米到达点E,在点E处测得树顶A点的仰角60β=︒,求树高AB(结果保留根号).24.(10分)已知:如图,四边形ABCD的对角线AC和BD相交于点E,AD=DC,DC2=DE•DB,求证:(1)△BCE∽△ADE;(2)AB•BC=BD•BE.25.(10分)根据函数学习中积累的知识与经验,李老师要求学生探究函数y=1x+1的图象.同学们通过列表、描点、画图象,发现它的图象特征,请你补充完整.(1)函数y=1x+1的图象可以由我们熟悉的函数的图象向上平移个单位得到;(2)函数y=1x+1的图象与x轴、y轴交点的情况是:;(3)请你构造一个函数,使其图象与x轴的交点为(2,0),且与y轴无交点,这个函数表达式可以是.26.(12分)如图,在平面直角坐标系xOy中,一次函数y=kx+b的图象与反比例函数y=6x的图象相交于点A(m,3)、B(–6,n),与x轴交于点C.(1)求一次函数y=kx+b的关系式;(2)结合图象,直接写出满足kx+b>6x的x的取值范围;(3)若点P在x轴上,且S△ACP=32BOCS△,求点P的坐标.27.(12分)已知△OAB在平面直角坐标系中的位置如图所示.请解答以下问题:按要求作图:先将△ABO绕原点O 逆时针旋转90°得△OA1B1,再以原点O为位似中心,将△OA1B1在原点异侧按位似比2:1进行放大得到△OA2B2;直接写出点A1的坐标,点A2的坐标.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、C【解题分析】根据DE∥AB可求得∠CDE=∠B解答即可.【题目详解】解:∵DE∥AB,∴∠CDE=∠B=46°,故选:C.【题目点拨】本题主要考查平行线的性质:两直线平行,同位角相等.快速解题的关键是牢记平行线的性质.2、D【解题分析】试题分析:∵分式有意义,∴x+1≠0,∴x≠﹣1,即x的取值应满足:x≠﹣1.故选D.考点:分式有意义的条件.3、C【解题分析】【分析】如图,根据三角形的中位线定理得到EH∥FG,EH=FG,EF=12BD,则可得四边形EFGH是平行四边形,若平行四边形EFGH是菱形,则可有EF=EH,由此即可得到答案.【题目点拨】如图,∵E,F,G,H分别是边AD,DC,CB,AB的中点,∴EH=12AC,EH∥AC,FG=12AC,FG∥AC,EF=12BD,∴EH∥FG,EH=FG,∴四边形EFGH是平行四边形,假设AC=BD,∵EH=12AC,EF=12BD,则EF=EH,∴平行四边形EFGH是菱形,即只有具备AC=BD即可推出四边形是菱形,故选D.【题目点拨】本题考查了中点四边形,涉及到菱形的判定,三角形的中位线定理,平行四边形的判定等知识,熟练掌握和灵活运用相关性质进行推理是解此题的关键.4、B【解题分析】连接OA、OC,然后根据圆周角定理求得∠AOC的度数,最后根据弧长公式求解.【题目详解】连接OA、OC,∵∠ADC=60°,∴∠AOC=2∠ADC=120°,则劣弧AC的长为:=4π.故选B.【题目点拨】 本题考查了弧长的计算以及圆周角定理,解答本题的关键是掌握弧长公式180n r l π=. 5、D【解题分析】根据锐角三角函数的定义,余弦是邻边比斜边,可得答案.【题目详解】cos α=BD BC CD BC AB AC==. 故选D.【题目点拨】熟悉掌握锐角三角函数的定义是关键.6、B【解题分析】先将分母进行通分,化为(x+y )(x-y )的形式,分子乘上相应的分式,进行化简.【题目详解】()()()()222222x y x +xy xy-y x +y -=-=x-y x+y x+y x-y x+y x-y x -y 【题目点拨】本题考查的是分式的混合运算,解题的关键就是熟练掌握运算规则.7、C【解题分析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【题目详解】2 050 000将小数点向左移6位得到2.05,所以2 050 000用科学记数法表示为:20.5×106,故选C.【题目点拨】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.8、C【解题分析】用单价乘数量得出买2千克苹果和3千克香蕉的总价,再进一步相加即可.【题目详解】买单价为a元的苹果2千克用去2a元,买单价为b元的香蕉3千克用去3b元,共用去:(2a+3b)元.故选C.【题目点拨】本题主要考查列代数式,总价=单价乘数量.9、D【解题分析】根据等式的性质2,A方程的两边都乘以6,B方程的两边都乘以4,C方程的两边都乘以15,D方程的两边都乘以6,去分母后判断即可.【题目详解】A.由,得:2x﹣6=3﹣3x,此选项错误;B.由,得:2x﹣4﹣x=﹣4,此选项错误;C.由,得:5y﹣15=3y,此选项错误;D.由,得:3(y+1)=2y+6,此选项正确.故选D.【题目点拨】本题考查了解一元一次方程,注意在去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.10、C【解题分析】根据中位数、众数、极差和平均数的概念,对选项一一分析,即可选择正确答案.【题目详解】解:A、中位数=(5+5)÷2=5(吨),正确,故选项错误;B、数据5吨出现4次,次数最多,所以5吨是众数,正确,故选项错误;C、极差为9﹣4=5(吨),错误,故选项正确;D、平均数=(4×3+5×4+6×2+9×1)÷10=5.3,正确,故选项错误.故选:C.【题目点拨】此题主要考查了平均数、中位数、众数和极差的概念.要掌握这些基本概念才能熟练解题.11、C【解题分析】∵∠C=90°,∴cosA=bc,sinA=ac,tanA=ab,cotA=ba,∴c·cosA=b,c·sinA=a,b·tanA=a,a·cotA=b,∴只有选项C正确,故选C.【题目点拨】本题考查了三角函数的定义,熟练掌握三角函数的定义并且灵活运用是解题的关键.12、A【解题分析】根据题意可知x=-1,平均数=(-6-1-1-1+2+1)÷6=-1,∵数据-1出现两次最多,∴众数为-1,极差=1-(-6)=2,方差=16[(-6+1)2+(-1+1)2+(-1+1)2+(2+1)2+(-1+1)2+(1+1)2]=2.故选A.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、3【解题分析】由题意得,21x1--=0,解得:x=3,经检验的x=3是原方程的根.14、1【解题分析】解:∵直线y =x +b 与双曲线8y x = (x>0)交于点P ,设P 点的坐标(x ,y ), ∴x ﹣y =﹣b ,xy =8, 而直线y =x +b 与x 轴交于A 点,∴OA =b .又∵OP 2=x 2+y 2,OA 2=b 2,∴OP 2﹣OA 2=x 2+y 2﹣b 2=(x ﹣y )2+2xy ﹣b 2=1.故答案为1.15、2【解题分析】试题解析:∵四边形ABCD 是矩形,90ABE BAD ∴∠=∠=,∵AE ⊥BD , 90AFB ∴∠=,90BAF ABD ABD ADB ∴∠+∠=∠+∠=,BAE ADB ∴∠=∠,∴△ABE ∽△ADB , AD AB AB BE,∴= ∵E 是BC 的中点, 2AD BE ∴=, 2222BE AB ∴==, 12BE BC ∴=∴=,,22223,6AE AB BE BD BC CD ∴=+==+=,6.3AB BE BF AE ⋅∴== 过F 作FG ⊥BC 于G ,FG CD ∴, BFG BDC ∽,∴ FG BF BG CD BD BC ∴==,223FG BG ∴==, 43CG ∴=, 22 2.CF FG CG ∴=+=2.16、k >-14且k≠1 【解题分析】由题意知,k≠1,方程有两个不相等的实数根,所以△>1,△=b 2-4ac=(2k+1)2-4k 2=4k+1>1.又∵方程是一元二次方程,∴k≠1,∴k >-1/4 且k≠1.17、2(3)3y x =--(或266y x x =-+)【解题分析】将抛物线243y x x =-+化为顶点式,再按照“左加右减,上加下减”的规律平移即可.【题目详解】解:243y x x =-+化为顶点式得:2(2)1y x =--,∴2(2)1y x =--向右平移1个单位,再向下平移2个单位得:22(21)12(3)3=----=--y x x ,2(3)3y x =--化为一般式得:266y x x =-+,故答案为:2(3)3y x =--(或266y x x =-+).【题目点拨】此题不仅考查了对图象平移的理解,同时考查了学生将一般式转化顶点式的能力.18、a+b=1.【解题分析】试题分析:根据作图可知,OP 为第二象限角平分线,所以P 点的横纵坐标互为相反数,故a+b=1.考点:1角平分线;2平面直角坐标系.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)y=12-x 2+x ;(2)t=-4,r=-1. 【解题分析】(1)由①联立方程组,根据抛物线y=ax 2+bx 与直线y=x 只有一个交点可以求出b 的值,由②可得对称轴为x=1,从而得a 的值,进而得出结论;(2)进行分类讨论,分别求出t 和r 的值.【题目详解】(1)y=ax 2+bx 和y=x 联立得:ax 2+(b+1)x=0,Δ=0得:(b-1)2=0,得b=1, ∵对称轴为532x x -++-=1, ∴2b a-=1, ∴a=12-, ∴y=12-x 2+x. (2)因为y=12-x 2+x=12-(x-1)2+12, 所以顶点(1,12) 当-2<r<1,且r≠0时,当x=r 时,y 最大=12-r 2+r=1.5r ,得r=-1, 当x=-2时,y 最小=-4,所以,这时t=-4,r=-1.当r≥1时,y 最大=12,所以1.5r=12, 所以r=13,不合题意,舍去, 综上可得,t=-4,r=-1.【题目点拨】本题考查二次函数综合题,解题的关键是理解题意,利用二次函数的性质解决问题.20、AD 的长约为225m ,大楼AB 的高约为226m【解题分析】首先设大楼AB 的高度为xm ,在Rt △ABC 中利用正切函数的定义可求得 ,然后根据∠ADB 的正切表示出AD 的长,又由CD=96m x 961.11-= ,解此方程即可求得答案. 【题目详解】解:设大楼AB 的高度为xm ,在Rt △ABC 中,∵∠C=32°,∠BAC=92°,∴ABAC=tan 30== ,在Rt△ABD中,ABtan ADB tan48AD ∠=︒=,∴AB xAD=tan48 1.11=︒,∵CD=AC-AD,CD=96m,∴x3x961.11-=,解得:x≈226,∴x116AD1051.11 1.11=≈≈答:大楼AB的高度约为226m,AD的长约为225m.【题目点拨】本题考查解直角三角形的应用.要求学生能借助仰角构造直角三角形并解直角三角形,注意数形结合思想与方程思想的应用.21、(1)(2)证明见解析;(3)1.【解题分析】(1)由PD切⊙O于点C,AD与过点C的切线垂直,易证得OC∥AD,继而证得AC平分∠DAB;(2)由条件可得∠CAO=∠PCB,结合条件可得∠PCF=∠PFC,即可证得PC=PF;(3)易证△PAC∽△PCB,由相似三角形的性质可得到PC APPB PC=,又因为tan∠ABC=43,所以可得ACBC=43,进而可得到PCPB=43,设PC=4k,PB=3k,则在Rt△POC中,利用勾股定理可得PC2+OC2=OP2,进而可建立关于k的方程,解方程求出k的值即可求出PC的长.【题目详解】(1)证明:∵PD切⊙O于点C,∴OC⊥PD,又∵AD⊥PD,∴OC∥AD,∴∠A CO=∠DAC.∵OC=OA,∴∠ACO=∠CAO,∴∠DAC=∠CAO,即AC平分∠DAB;(2)证明:∵AD⊥PD,∴∠DAC+∠ACD=90°.又∵AB为⊙O的直径,∴∠ACB=90°.∴∠PCB+∠ACD=90°,∴∠DAC=∠PCB.又∵∠DAC=∠CAO,∴∠CAO=∠PCB.∵CE平分∠ACB,∴∠ACF=∠BCF,∴∠CAO+∠ACF=∠PCB+∠BCF,∴∠PFC=∠PCF,∴PC=PF;(3)解:∵∠PAC=∠PCB,∠P=∠P,∴△PAC∽△PCB,∴.又∵tan∠ABC=,∴,∴,设PC=4k,PB=3k,则在Rt△POC中,PO=3k+7,OC=7,∵PC2+OC2=OP2,∴(4k)2+72=(3k+7)2,∴k=6 (k=0不合题意,舍去).∴PC=4k=4×6=1.【题目点拨】此题考查了和圆有关的综合性题目,用到的知识点有:切线的性质、相似三角形的判定与性质、垂径定理、圆周角定理、勾股定理以及等腰三角形的判定与性质.22、(1)证明见解析(2)1 2【解题分析】分析:(1)由已知条件易得BE=DF且BE∥DF,从而可得四边BFDE是平行四边形,结合∠EDB=90°即可得到四边形BFDE是矩形;(2)由已知易得AB=5,由AF平分∠DAB,DC∥AB可得∠DAF=∠BAF=∠DFA,由此可得DF=AD=5,结合BE=DF可得BE=5,由此可得AB=8,结合BF=DE=4即可求得tan∠BAF=4182 BFAB==.详解:(1)∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∵AE=CF,∴BE=DF,∴四边形BFDE是平行四边形.∵DE⊥AB,∴∠DEB=90°,∴四边形BFDE是矩形;(2)在Rt△BCF中,由勾股定理,得5==,∵四边形ABCD是平行四边形,∴AB∥DC,∴∠DFA=∠FAB.∵AF平分∠DAB∴∠DAF=∠FAB,∴∠DAF=∠DFA,∴DF=AD=5,∵四边形BFDE是矩形,∴BE=DF=5,BF=DE=4,∠ABF=90°,∴AB=AE+BE=8,∴tan∠BAF=41 82 =.点睛:(1)熟悉平行四边形的性质和矩形的判定方法是解答第1小题的关键;(2)能由AF平分∠DAB,DC∥AB得到∠DAF=∠BAF=∠DFA,进而推得DF=AD=5是解答第2小题的关键.23、【解题分析】如下图,过点C作CF⊥AB于点F,设AB长为x,则易得AF=x-4,在Rt△ACF中利用∠α的正切函数可由AF把CF 表达出来,在Rt △ABE 中,利用∠β的正切函数可由AB 把BE 表达出来,这样结合BD=CF ,DE=BD-BE 即可列出关于x 的方程,解方程求得x 的值即可得到AB 的长.【题目详解】解:如图,过点C 作CF ⊥AB ,垂足为F ,设AB =x ,则AF =x -4,∵在Rt △ACF 中,tan ∠α=AF CF , ∴CF =4tan30x -︒=BD , 同理,Rt △ABE 中,BE =tan60x ︒, ∵BD -BE =DE ,∴4tan30x -︒-tan60x ︒=3, 解得x =6+332. 答:树高AB 为(6+332)米 . 【题目点拨】作出如图所示的辅助线,利用三角函数把CF 和BE 分别用含x 的式子表达出来是解答本题的关键.24、(1)见解析;(2)见解析.【解题分析】(1)由∠DAC =∠DCA ,对顶角∠AED =∠BEC ,可证△BCE ∽△ADE .(2)根据相似三角形判定得出△ADE ∽△BDA ,进而得出△BCE ∽△BDA ,利用相似三角形的性质解答即可.【题目详解】证明:(1)∵AD=DC ,∴∠DAC=∠DCA ,∵DC 2=DE•DB ,∴=,∵∠CDE=∠BDC ,∴△CDE∽△BDC,∴∠DCE=∠DBC,∴∠DAE=∠EBC,∵∠AED=∠BEC,∴△BCE∽△ADE,(2)∵DC2=DE•DB,AD=DC∴AD2=DE•DB,同法可得△ADE∽△BDA,∴∠DAE=∠ABD=∠EBC,∵△BCE∽△ADE,∴∠ADE=∠BCE,∴△BCE∽△BDA,∴=,∴AB•BC=BD•BE.【题目点拨】本题考查了相似三角形的判定与性质.关键是要懂得找相似三角形,利用相似三角形的性质求解.25、(1)1yx=,1;(2)与x轴交于(﹣1,0),与y轴没交点;(3)答案不唯一,如:y=﹣2x+1.【解题分析】(1)根据函数图象的平移规律,可得答案;(2)根据自变量与函数值的对应关系,可得答案;(3)根据点的坐标满足函数解析式,可得答案.【题目详解】(1)函数11yx=+的图象可以由我们熟悉的函数1yx=的图象向上平移1个单位得到,故答案为:1yx=,1;(2)函数11yx=+的图象与x轴、y轴交点的情况是:与x轴交于(﹣1,0),与y轴没交点,故答案为:与x轴交于(﹣1,0),与y轴没交点;(3)请你构造一个函数,使其图象与x轴的交点为(2,0),且与y轴无交点,这个函数表达式可以是:y=﹣2x+1,答案不唯一,故答案为:y=﹣2x+1.【题目点拨】本题考查了函数图像的平移变换,函数自变量的取值范围,函数图象与坐标轴的交点等知识,利用函数图象的平移规律是解题关键.26、(1)122y x=+;(1)-6<x<0或1<x;(3)(-1,0)或(-6,0)【解题分析】(1)利用反比例函数图象上点的坐标特征可求出点A、B的坐标,再利用待定系数法即可求出直线AB的解析式;(1)根据函数图像判断即可;(3)利用一次函数图象上点的坐标特征可求出点C的坐标,设点P的坐标为(x,0),根据三角形的面积公式结合S△ACP=32S△BOC,即可得出|x+4|=1,解之即可得出结论.【题目详解】(1)∵点A(m,3),B(-6,n)在双曲线y=6x上,∴m=1,n=-1,∴A(1,3),B(-6,-1).将(1,3),B(-6,-1)带入y=kx+b,得:3216k bk b+⎧⎨--+⎩==,解得,122kb==⎧⎪⎨⎪⎩.∴直线的解析式为y=12x+1.(1)由函数图像可知,当kx+b>6x时,-6<x<0或1<x;(3)当y=12x+1=0时,x=-4,∴点C(-4,0).设点P的坐标为(x,0),如图,∵S△ACP=32S△BOC,A(1,3),B(-6,-1),∴12×3|x-(-4)|=32×12×|0-(-4)|×|-1|,即|x+4|=1,解得:x1=-6,x1=-1.∴点P的坐标为(-6,0)或(-1,0).【题目点拨】本题考查了反比例函数与一次函数的交点问题、一次(反比例)函数图象上点的坐标特征、待定系数法求一次函数解析式以及三角形的面积,解题的关键是:(1)根据点的坐标利用待定系数法求出直线AB的解析式;(1)根据函数图像判断不等式取值范围;(3)根据三角形的面积公式以及S△ACP=32S△BOC,得出|x+4|=1.27、(1)见解析;(2)点A1的坐标为:(﹣1,3),点A2的坐标为:(2,﹣6).【解题分析】(1)直接利用位似图形的性质得出对应点位置进而得出答案;(2)利用(1)中所画图形进而得出答案.【题目详解】(1)如图所示:△OA1B1,△OA2B2,即为所求;(2)点A1的坐标为:(﹣1,3),点A2的坐标为:(2,﹣6).【题目点拨】此题主要考查了位似变换以及旋转变换,正确得出对应点位置是解题关键.。
漯河市重点中学2024届中考数学考试模拟冲刺卷含解析

漯河市重点中学2024学年中考数学考试模拟冲刺卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.某体育用品商店一天中卖出某种品牌的运动鞋15双,其中各种尺码的鞋的销售量如表所示:鞋的尺码/cm 23 23.5 24 24.5 25销售量/双 1 3 3 6 2则这15双鞋的尺码组成的一组数据中,众数和中位数分别为()A.24.5,24.5 B.24.5,24 C.24,24 D.23.5,242.直线AB、CD相交于点O,射线OM平分∠AOD,点P在射线OM上(点P与点O不重合),如果以点P为圆心的圆与直线AB相离,那么圆P与直线CD的位置关系是()A.相离B.相切C.相交D.不确定3.如图,已知四边形ABCD,R,P分别是DC,BC上的点,E,F分别是AP,RP的中点,当点P在BC上从点B 向点C移动而点R不动时,那么下列结论成立的是().A.线段EF的长逐渐增大B.线段EF的长逐渐减少C.线段EF的长不变D.线段EF的长不能确定4.如图,在Rt△ABC中,∠B=90º,AB=6,BC=8,点D在BC上,以AC为对角线的所有□ADCE中,DE的最小值是()A.4 B.6 C.8 D.105.如果a ﹣b=5,那么代数式(22a b ab+﹣2)•ab a b -的值是( )A .﹣15B .15C .﹣5D .56.若关于x 的不等式组2x ax >⎧⎨<⎩恰有3个整数解,则字母a 的取值范围是( ) A .a≤﹣1B .﹣2≤a <﹣1C .a <﹣1D .﹣2<a≤﹣17.如图,AB 是半圆圆O 的直径,ABC ∆的两边,AC BC 分别交半圆于,D E ,则E 为BC 的中点,已知50BAC ∠=,则C ∠=( )A .55B .60C .65D .708.如图,在矩形ABCD 中,E ,F 分别是边AB ,CD 上的点,AE=CF ,连接EF ,BF ,EF 与对角线AC 交于点O ,且BE=BF ,∠BEF=2∠BAC ,FC=2,则AB 的长为( )A .83B .8C .43D .69.下列运算正确的是( ) A .3a 2﹣2a 2=1B .a 2•a 3=a 6C .(a ﹣b )2=a 2﹣b 2D .(a+b )2=a 2+2ab+b 210.如图,矩形 ABCD 的边 AB=1,BE 平分∠ABC ,交 AD 于点 E ,若点 E 是 AD 的中点,以点 B 为圆心,BE 长为半径画弧,交 BC 于点 F ,则图中阴影部分的面积是( )A .2-4πB .324π- C .2-8π D .324π- 11.如图,点A 为∠α边上任意一点,作AC ⊥BC 于点C ,CD ⊥AB 于点D ,下列用线段比表示sinα的值,错误的是( )A.CDBCB.ACABC .ADACD.CDAC12.如图是由若干个小正方体组成的几何体从上面看到的图形,小正方形中的数字表示该位置小正方体的个数,这个几何体从正面看到的图形是()A.B .C.D.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,10块相同的小长方形墙砖拼成一个大长方形,设小长方形墙砖的长和宽分别为x厘米和y厘米,则列出的方程组为_____.14.某风扇在网上累计销量约1570000台,请将1570000用科学记数法表示为_____.15.关于x的不等式组20113x axx+>⎧⎪-⎨-≤⎪⎩的整数解有4个,那么a的取值范围( )A.4<a<6 B.4≤a<6 C.4<a≤6D.2<a≤416.下列对于随机事件的概率的描述:①抛掷一枚均匀的硬币,因为“正面朝上”的概率是0.5,所以抛掷该硬币100次时,就会有50次“正面朝上”;②一个不透明的袋子里装有4个黑球,1个白球,这些球除了颜色外无其他差别.从中随机摸出一个球,恰好是白球的概率是0.2;③测试某射击运动员在同一条件下的成绩,随着射击次数的增加,“射中9环以上”的频率总是在0.85附近摆动,显示出一定的稳定性,可以估计该运动员“射中9环以上”的概率是0.85其中合理的有______(只填写序号).17.请写出一个一次函数的解析式,满足过点(1,0),且y随x的增大而减小_____.18.王经理到襄阳出差带回襄阳特产——孔明菜若干袋,分给朋友们品尝.如果每人分5袋,还余3袋;如果每人分6袋,还差3袋,则王经理带回孔明菜_________袋三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在Rt △ABC 中,∠B=90°,点O 在边AB 上,以点O 为圆心,OA 为半径的圆经过点C ,过点C 作直线MN ,使∠BCM=2∠A .判断直线MN 与⊙O 的位置关系,并说明理由;若OA=4,∠BCM=60°,求图中阴影部分的面积.20.(6分)某商场一种商品的进价为每件30元,售价为每件40元.每天可以销售48件,为尽快减少库存,商场决定降价促销.若该商品连续两次下调相同的百分率后售价降至每件32.4元,求两次下降的百分率;经调查,若该商品每降价0.5元,每天可多销售4件,那么每天要想获得510元的利润,每件应降价多少元?21.(6分)如图,一次函数y=kx+b 的图象与二次函数y=﹣x 2+c 的图象相交于A (﹣1,2),B (2,n )两点. (1)求一次函数和二次函数的解析式;(2)根据图象直接写出使二次函数的值大于一次函数的值的x 的取值范围;(3)设二次函数y=﹣x 2+c 的图象与y 轴相交于点C ,连接AC ,BC ,求△ABC 的面积.22.(8分)如图,在ABC ∆中,AB AC =,AE 是BC 边上的高线,BM 平分ABC ∠交AE 于点M ,经过B ,M 两点的O 交BC 于点G ,交AB 于点F ,FB 为O 的直径.(1)求证:AM 是O 的切线;(2)当3BE =,2cos 5C =时,求O 的半径. 23.(8分)瑞安市曹村镇“八百年灯会”成为温州“申遗”的宝贵项目.某公司生产了一种纪念花灯,每件纪念花灯制造成本为18元.设销售单价x (元),每日销售量y (件)每日的利润w (元).在试销过程中,每日销售量y (件)、每日的利润w (元)与销售单价x (元)之间存在一定的关系,其几组对应量如下表所示: (元) 19 20 21 30 (件)62605840(1)根据表中数据的规律,分别写出毎日销售量y (件),每日的利润w (元)关于销售单价x (元)之间的函数表达式.(利润=(销售单价﹣成本单价)×销售件数).当销售单价为多少元时,公司每日能够获得最大利润?最大利润是多少?根据物价局规定,这种纪念品的销售单价不得高于32元,如果公司要获得每日不低于350元的利润,那么制造这种纪念花灯每日的最低制造成本需要多少元?24.(10分)从广州去某市,可乘坐普通列车或高铁,已知高铁的行驶路程是400千米,普通列车的行驶路程是高铁的行驶路程的1.3倍.求普通列车的行驶路程;若高铁的平均速度(千米/时)是普通列车平均速度(千米/时)的2.5倍,且乘坐高铁所需时间比乘坐普通列车所需时间缩短3小时,求高铁的平均速度. 25.(10分)如图,已知在Rt ABC 中,90C ∠=︒,AD 是BAC ∠的平分线.(1)作一个O 使它经过A D 、两点,且圆心O 在AB 边上;(不写作法,保留作图痕迹)(2)判断直线BC 与O 的位置关系,并说明理由.26.(12分)如图,在△ABC 中,AD=15,AC=12,DC=9,点B 是CD 延长线上一点,连接AB ,若AB=1. 求:△ABD 的面积.27.(12分)已知反比例函数的图象经过三个点A (﹣4,﹣3),B (2m ,y 1),C (6m ,y 2),其中m >1. (1)当y 1﹣y 2=4时,求m 的值;(2)如图,过点B、C分别作x轴、y轴的垂线,两垂线相交于点D,点P在x轴上,若三角形PBD的面积是8,请写出点P坐标(不需要写解答过程).参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、A【解题分析】【分析】根据众数和中位数的定义进行求解即可得.【题目详解】这组数据中,24.5出现了6次,出现的次数最多,所以众数为24.5,这组数据一共有15个数,按从小到大排序后第8个数是24.5,所以中位数为24.5,故选A.【题目点拨】本题考查了众数、中位数,熟练掌握中位数、众数的定义以及求解方法是解题的关键.2、A【解题分析】根据角平分线的性质和点与直线的位置关系解答即可.【题目详解】解:如图所示;∵OM平分∠AOD,以点P为圆心的圆与直线AB相离,∴以点P为圆心的圆与直线CD相离,故选:A.【题目点拨】此题考查直线与圆的位置关系,关键是根据角平分线的性质解答.3、C【解题分析】因为R不动,所以AR不变.根据三角形中位线定理可得EF= 12AR,因此线段EF的长不变.【题目详解】如图,连接AR,∵E、F分别是AP、RP的中点,∴EF为△APR的中位线,∴EF= 12AR,为定值.∴线段EF的长不改变.故选:C.【题目点拨】本题考查了三角形的中位线定理,只要三角形的边AR不变,则对应的中位线的长度就不变.4、B【解题分析】平行四边形ADCE的对角线的交点是AC的中点O,当OD⊥BC时,OD最小,即DE最小,根据三角形中位线定理即可求解.【题目详解】平行四边形ADCE的对角线的交点是AC的中点O,当OD⊥BC时,OD最小,即DE最小。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
河南省漯河市中考数学模拟试卷
姓名:________ 班级:________ 成绩:________
一、选择题 (共12题;共24分)
1. (2分)下列不是具有相反意义的量是()
A . 前进5米和后退5米
B . 收入30元和支出10元
C . 向东走10米和向北走10米
D . 超过5克和不足2克
2. (2分)(2016·海拉尔模拟) 如图,有一矩形纸片ABCD,AB=6,AD=8,将纸片折叠使AB落在AD边上,折痕为AE,再将△ABE以BE为折痕向右折叠,AE与CD交于点F,则的值是()
A . 1
B .
C .
D .
3. (2分) (2018七上·忻城期中) 下列式子中,正确的是()
A . (﹣6)2=36
B . (﹣2)3=(﹣3)2
C . ﹣62=(﹣6)2
D . 52=2×5
4. (2分) (2020九上·永嘉期中) 下列图形中,既是轴对称图形又是中心对称图形的是()
A .
B .
C .
D .
5. (2分) (2019七下·重庆期中) 如图,,,则()
A .
B .
C .
D .
6. (2分)(2018·无锡模拟) 一组数据:2,-1,0,3,-3,2.则这组数据的中位数和众数分别是()
A . 0,2
B . 1.5,2
C . 1,2
D . 1,3
7. (2分)下列运算正确的是()
A . 4a3÷2a=2a3
B . (3a2)2=6a4
C . ab+ba=2ab
D . (﹣3a+2)(3a﹣2)=9a2﹣4
8. (2分)(2017·市中区模拟) 将一次函数y=x的图象向上平移2个单位,平移后,若y>0,则x的取值范围是()
A . x>4
B . x>﹣4
C . x>2
D . x>﹣2
9. (2分)三角形的两边长分别为2cm和9cm,第三边长为奇数,则第三边的长为()
A . 5 cm
B . 7 cm
C . 9 cm
D . 11 cm
10. (2分)(2019·广西模拟) 已知关于x的一元二次方程x2-bx+c=0的两根分别为x1=1,x2=-2,则b与c 的值分别是()
A . b=-1,C=2
B . b=1,C=-2
C . b=1,c=2
D . b=-1,c=-2
11. (2分) (2019九上·西城月考) 如图,在▱ABCD中,E是AB的中点,EC交BD于点F ,那么EF与CF 的比是()
A . 1:2
B . 1:3
C . 2:1
D . 3:1
12. (2分) (2019九上·西城期中) 已知:二次函数y=ax2+bx+c的图象如图,则下列答案正确的是()
A . a>0,b>0,c>0,△<0
B . a<0,b>0,c<0,△>0
C . a>0,b<0,c<0,△>0
D . a<0,b<0,c>0,△<0
二、填空题: (共6题;共6分)
13. (1分)计算4﹣(﹣6)的结果为________ .
14. (1分) (2020八上·南京月考) 若,则a的取值范围是________.
15. (1分)用计算器进行模拟实验,估计6人中有两人同一个月过生日的概率,在选定随机数范围后,每次实验要产生________ 个随机数.
16. (1分) (2020九上·南山期末) 已知,则 =________.
17. (1分)(2020·苏州模拟) 已知圆锥的母线长为6,侧面积为12 ,则圆锥的半径长为________.
18. (1分) (2016七上·牡丹期末) 观察下列等式:13=12 , 13+23=32 , 13+23+33=62 ,13+23+33+43=102…根据等式左边各项幂的底数与等式右边幂的底数的关系,写出第n个等式________
三、解答题: (共7题;共66分)
19. (5分)计算:﹣23+ ×(2005+3)0﹣(﹣)﹣2 .
20. (5分)如图,在△ABC中,AB=AC,D为BC边上一点,∠B=30°,∠DAB=45°.
(1)求∠DAC的度数;
(2)求证:DC=AB.
21. (6分) (2018九上·南召期末) 在一个不透明的盒子中放有四张分别写有数字1、2、3、4的红色卡片和三张分别写有数字1、2、3的蓝色卡片,卡片除颜色和数字外其它完全相同.
(1)从中任意抽取一张卡片,则该卡片上写有数字1的概率是________;
(2)将3张蓝色卡片取出后放入另外一个不透明的盒子内,然后在两个盒子内各任意抽取一张卡片,以红色卡片上的数字作为十位数,蓝色卡片上的数字作为个位数组成一个两位数,求这个两位数大于22的概率.(请利用树状图或列表法说明.)
22. (15分)(2020·黄石模拟) 如图,⊙O是△ABC的外接圆,AB是直径,D是AC中点,直线OD与⊙O相交于E,F两点,P是⊙O外一点,P在直线OD上,连接PA,PC,AF,且满足∠PCA=∠ABC.
(1)求证:PA是⊙O的切线;
(2)证明:;
(3)若BC=8,tan∠AFP= ,求DE的长.
23. (15分)(2016·黔西南) 我州某养殖场计划购买甲、乙两种鱼苗600条,甲种鱼苗每条16元,乙种鱼苗每条20元,相关资料表明:甲、乙两种鱼苗的成活率为80%,90%
(1)若购买这两种鱼苗共用去11000元,则甲、乙两种鱼苗各购买多少条?
(2)若要使这批鱼苗的总成活率不低于85%,则乙种鱼苗至少购买多少条?
(3)在(2)的条件下,应如何选购鱼苗,使购买鱼苗的总费用最低?最低费用是多少?
24. (5分)(2018·昆明) 小婷在放学路上,看到隧道上方有一块宣传“中国﹣南亚博览会”的竖直标语牌CD.她在A点测得标语牌顶端D处的仰角为42°,测得隧道底端B处的俯角为30°(B,C,D在同一条直线上),AB=10m,隧道高6.5m(即BC=6.5m),求标语牌CD的长(结果保留小数点后一位).(参考数据:sin42°≈0.67,cos42°≈0.74,tan42°≈0.90,≈1.73)
25. (15分)(2018·遂宁) 如图,已知抛物线的对称轴是直线x=3,且与x轴相交于A,B两点(B点在A点右侧)与y轴交于C点.
(1)求抛物线的解析式和A、B两点的坐标;
(2)若点P是抛物线上B、C两点之间的一个动点(不与B、C重合),则是否存在一点P,使△PBC的面积最大.若存在,请求出△PBC的最大面积;若不存在,试说明理由;
(3)若M是抛物线上任意一点,过点M作y轴的平行线,交直线BC于点N,当MN=3时,求M点的坐标.
参考答案一、选择题 (共12题;共24分)
答案:1-1、
考点:
解析:
答案:2-1、
考点:
解析:
答案:3-1、
考点:
解析:
答案:4-1、考点:
解析:
答案:5-1、考点:
解析:
答案:6-1、考点:
解析:
答案:7-1、考点:
解析:
答案:8-1、考点:
解析:
答案:9-1、考点:
解析:
答案:10-1、考点:
解析:
答案:11-1、考点:
解析:
答案:12-1、考点:
解析:
二、填空题: (共6题;共6分)答案:13-1、
考点:
解析:
答案:14-1、
考点:
解析:
答案:15-1、
考点:
解析:
答案:16-1、考点:
解析:
答案:17-1、考点:
解析:
答案:18-1、考点:
解析:
三、解答题: (共7题;共66分)
答案:19-1、
考点:
解析:
答案:20-1、考点:
解析:
答案:21-1、
答案:21-2、考点:
解析:
答案:22-1、答案:22-2、
答案:22-3、考点:
解析:
答案:23-1、答案:23-2、
答案:23-3、考点:
解析:
答案:24-1、考点:
解析:
答案:25-1、答案:25-2、
答案:25-3、考点:
解析:。