局部阻力实验

合集下载

实验三 管路局部阻力系数测定实验

实验三  管路局部阻力系数测定实验

实验三 管路局部阻力系数测定实验一、实验目的要求:1.掌握三点法,四点法测量局部阻力系数的技能。

2.通过对圆管突扩局部阻力系数的表达公式和突缩局部阻力系数的经验公式的实验与分析,熟悉用理论分析法和经验法建立函数式的途径。

3.加深对局部阻力损失机理的理解。

二、实验成果及要求1.记录计算有关常数。

实验装置台号Nod 1=D 1= 1.4 cm , d 2=d 3= d 4= D 2=1.9 cm , d 5=d 6=D 3= 1.4 cm , l 1—2=12cm , l 2—3=24cm ,l 3—4=12cm , l 4—B =6cm , l B —5=6cm , l 5—6=6cm ,221)1(A A e -='ξ= 0.21 ,)31(5.05A A s -='ξ= 0.23 。

2.整理记录、计算表。

表1 记录表表2 计算表3.将实测ζ值与理论值(突扩)或公认值(突缩)比较。

三、实验分析与讨论1.结合实验成果,分析比较突扩与突缩在相应条件下的局部损失大小关系:1)不同R e 的突扩ξe 是否相同?2)在管径比变化相同的条件下,其突扩ξe 是否一定大于突缩ξs ? 答:由式gvh j 22ζ=及()21d d f =ζ表明影响局部阻力损失的因素是v 和21d d 。

由于有突扩:2211⎪⎪⎭⎫⎝⎛-=A A eζ突缩:⎪⎪⎭⎫⎝⎛-=2115.0A A s ζ 则有()()212212115.0115.0A A A A A A K es-=--==ζζ当 5.021〈A A或707.021〈d d时,突然扩大的水头损失比相应的突然收缩的要大。

在本实验最大流量Q 下,突然扩大损失较突然缩小损失约大一倍,即817.160.3/54.6==js je h h 。

21d d 接近于1时,突然扩大的水流形态接近于逐渐扩大管的流动,因而阻力损失显著减小。

2.结合流动仪演示的水力现象,分析局部阻力损失机理何在?产生突扩与突缩局部阻力损失的主要部位在哪里?怎样减小局部阻力损失? 答:流动演示仪1-7型可显示突扩、突缩、渐扩、渐缩、分流、合流、阀道、绕流等三十多种内、外流的流动图谱。

局部阻力系数实验报告

局部阻力系数实验报告

局部阻力系数实验报告局部阻力系数实验报告引言:局部阻力系数是研究流体力学中的一个重要参数,用来描述流体在通过管道、河道等局部几何构造时所产生的阻力。

本实验旨在通过测量和分析局部阻力系数,深入了解流体在不同局部几何构造中的流动特性,并为相关工程设计提供参考依据。

实验装置:本次实验使用的装置主要包括一个实验水槽、一系列不同形状的模型以及相应的测量设备。

实验水槽具有透明的侧面,便于观察流动现象。

模型的形状包括圆柱体、球体、锥体等,以模拟实际工程中常见的局部几何构造。

测量设备包括流速计、压力计等,用于测量流体的速度和压力。

实验步骤:1. 准备工作:清洗实验装置,确保无杂质干扰。

校准流速计和压力计,保证测量结果的准确性。

2. 测量局部阻力系数:选取不同形状的模型,将其放置在水槽中,并调整流速,使流体通过模型。

同时记录流速计和压力计的读数。

3. 数据处理:根据测得的数据,计算流体通过不同模型时的局部阻力系数。

利用流体力学的基本原理和公式,结合实验数据进行分析和计算。

4. 结果分析:对实验结果进行统计和比较,分析不同模型的局部阻力系数差异。

探讨局部几何构造对流体流动的影响,并提出相应的结论。

实验结果与讨论:通过实验测量和计算,得到了不同模型的局部阻力系数。

以圆柱体为例,其局部阻力系数随流速的增加而增加,但增幅逐渐减小。

这是由于流体在通过圆柱体时,会产生较大的湍流现象,增加了阻力。

而随着流速的增加,流体在圆柱体周围形成的涡流逐渐稳定,阻力增加的速度减缓。

与圆柱体相比,球体的局部阻力系数较小。

这是因为球体的流体流动更加均匀,湍流现象较少,阻力相对较小。

而锥体的局部阻力系数则介于圆柱体和球体之间,其形状导致了一定的湍流现象,但相对于圆柱体而言,阻力较小。

实验结果表明,局部几何构造对流体的阻力有着显著影响。

在工程设计中,合理选择和优化局部几何构造,可以降低流体的阻力,提高工程效率。

例如,在管道设计中,可以采用球体或锥体等较为流线型的构造,减少流体的阻力损失。

《工程流体力学》局部阻力损失实验

《工程流体力学》局部阻力损失实验

《工程流体力学》局部阻力损失实验【实验目的】(1)掌握三点法,四点法测量局部阻力系数的技能;(2)通过对圆管突扩局部阻力系数的计算公式和突缩局部阻力系数的经验公式的实验验证与分析,熟悉用理论分析法和经验法建立函数式的途径。

(3)加深对局部阻力损失机理的理解。

【实验装置】在流体力学综合实验台中,局部阻力损失实验涉及的部分有局部阻力实验管、上水阀、出水阀,水泵和计量水箱等,时间及温度可由显示面板直接读出。

【实验原理】写出局部阻力前后两断面的能量方程,根据曲线推导条件,扣除沿程水头损失可得: (1)突然扩大采用三点法计算,下式中21-f h 由32-f h 按流长比例换算得出:]]2/)/[(]2/)/[(2122222111-+++-++=f ie h g au y p Z g au y p Z h]2//[21g au h ie e =ξ 理论221)/1(A A e-=ξg au h e is 2/21⋅=ξ (2)突然缩小采用四点法计算,下式中B 点为突缩点,hf4-B 由hf3-4换算得出,hfB-5由hf5-6换算得出。

实测 ])2/)/[())2/)/[(5255542444--+++--++=fB B f fs h g au Y P Z h g au Y P Z h]2//[25g au h is s =ξ经验公式235)/1(5.0A A e-=ξg au h e is 2/25⋅=ξ 【实验步骤】(1)测记实验有关的常数。

(2)打开水泵,排除实验管道中的滞留气体及测压管气体。

(3)打开出水阀至最大开度,等流量稳定后,测记测压管读数,同时用体积法计量流量。

(4)打开出水阀开度3次,分别测记压管读数及流量。

【实验数据记录】 1、记录有关常数实验装置台号_____________,水温______________。

2、实验数据表5-1 局部阻力损失系数数据表。

局部阻力实验报告

局部阻力实验报告

局部阻力实验报告概述在物理学中,阻力是指物体在运动中受到的阻碍其前进速度的力量。

本实验旨在通过对局部阻力的观察与分析,深入了解物体受到的阻力与各种因素的关系。

实验目的1. 通过实验观察,了解不同形状、不同材质物体受到的阻力大小有何差异;2. 探究不同物体在相同条件下受到阻力时的运动规律。

实验设备与材料1. 床单或大块布料;2. 钢珠或小球(两个);3. 牛尾巴毛或羽毛(两根);4. 溶液容器(一个);5. 水(适量)。

实验原理1. 阻力的定义与影响因素:阻力是物体在流体或其他介质中前进时遇到的阻碍力量。

其大小与物体运动速度、物体形状、物体表面积、介质的粘稠度等因素有关。

通常可以通过安培法进行测量。

2. 流体阻力的特点:当物体运动速度较低时,流体阻力与速度成正比,符合斯托克斯定律;当物体运动速度较高时,流体阻力与速度平方成正比,符合牛顿定律。

实验过程1. 制备实验装置:将布料铺在光滑的实验台上,将溶液容器放在布料上。

2. 求解钢珠阻力:将一个钢珠放入溶液容器中,观察其在水中的运动情况。

通过观察钢珠在水中的速度变化,可以推测出阻力的大小。

进一步改变钢珠的半径,重复实验,得出与半径大小和速度的关系。

3. 求解球形阻力:将一个小球放入溶液容器中,观察其在水中的运动情况,并记录下其速度变化。

通过观察小球在水中的速度变化,可以推测球形物体受到的阻力大小。

4. 求解羽毛阻力:将一根牛尾巴毛和一根羽毛放入溶液容器中,观察它们在水中的运动情况。

对比两种物体在相同条件下受到的阻力差异,得出结论。

实验结果分析1. 钢珠实验:根据观察发现,钢珠半径越大,则在相同条件下受到的阻力越大。

这是因为钢珠半径增大,有效面积增加,与流体接触面积增加,从而增大了阻力。

2. 球形实验:通过观察小球在水中的运动情况,发现小球在初速度较快的情况下,逐渐减速直至停止。

这说明小球受到了一个与速度平方成正比的阻力。

根据牛顿定律,可以得出速度越大,受到的阻力越大的结论。

局部阻力系数测定实验报告

局部阻力系数测定实验报告

局部阻力系数测定实验报告局部阻力系数测定实验报告引言:阻力是物体在流体中运动时所受到的阻碍力,它是流体动力学中的重要概念。

在实际的工程设计和流体力学研究中,准确地测定局部阻力系数对于预测流体运动的行为和优化设计至关重要。

本实验旨在通过测定不同物体在流体中的阻力,计算出局部阻力系数,从而对流体力学的研究和应用提供实验依据。

实验设计:本实验采用静水槽法进行局部阻力系数测定。

实验装置包括一长方形静水槽、一台流量计、一台电子天平、一组试验物体和一台计算机。

实验过程如下:1. 准备工作:a. 检查实验装置是否完好,确保流量计和电子天平的正常工作。

b. 根据实验要求,选择合适的试验物体,如球体、圆柱体等,并记录其几何参数。

2. 实验步骤:a. 将静水槽填满流体,确保流体表面平稳。

b. 将流量计安装在静水槽的一侧,并校准流量计的读数。

c. 将待测试验物体放置在流体中,并调整其位置,使其与流体的运动方向垂直。

d. 打开流量计,并记录流量计的读数和试验物体的质量。

e. 重复步骤c和d,分别测定不同试验物体的阻力和质量。

3. 数据处理:a. 根据测得的流量计读数和试验物体的质量,计算出流体通过试验物体的体积流量。

b. 利用流体动力学的基本原理,计算出试验物体所受到的阻力。

c. 根据阻力和流体的特性参数,计算出试验物体的局部阻力系数。

d. 对实验数据进行统计分析,得出不同试验物体的局部阻力系数的平均值和标准差。

结果与讨论:通过实验测定,得到了不同试验物体的局部阻力系数。

以球体为例,其局部阻力系数的平均值为0.47,标准差为0.03。

而对于圆柱体,其局部阻力系数的平均值为0.62,标准差为0.04。

通过对比不同试验物体的局部阻力系数,可以发现不同形状和尺寸的物体在流体中所受到的阻力也不同。

这与流体力学的基本原理相符合。

在实验过程中,可能存在一些误差,如流量计的读数误差、试验物体表面的粗糙度等。

为了提高实验的准确性和可靠性,可以采取一些措施,如增加实验重复次数、改进实验装置等。

局部阻力系数实验报告

局部阻力系数实验报告

局部阻力系数实验报告
本实验报告是基于研究局部空气阻力系数研究而撰写。

首先,实验室进行局部空气阻力系数的应力测试,其目的是为了获得空气的阻力系数。

其次,实验室采用了一种名为“局部空气阻力系数模拟实验”的物理实验方法,目的在于获取模拟实验中不同表面结构及条件下局部空气阻力系数的数值。

实验室研究了不同表面和条件下的空气阻力系数。

实验室实施基于该方法的空气阻力系数测量,在不同的条件下,实验室建造了各种不同的空气阻力模型,包括使用板材、柱杆和龙门架结构,测试了不同尺寸和几何构型的空气流条件下的局部空气阻力系数。

各测试试验的数据和实验结果报告由实验室提供,其中包括空气阻力模型各种参数、测试条件(即空气流速、压力状态、温度以及流体介质)以及各结构物表面状态等。

测量得到的数据用于计算各种表面构造结构介质空气阻力系数。

实验结果表明,不同表面构造和不同条件下的空气阻力系数均呈显著差异。

在同一表面构造的情况下,空气流的速度越快,局部空气阻力系数也越大。

压力及温度的变化也会引起空气阻力系数的增长,以及表面凹凸状态的变化也会导致阻力系数的变化。

同样的,空气的动力学性质也会影响空气阻力系数的值。

总之,通过本次对局部空气阻力系数文献研究,得到了一系列有助于深入理解和研究局部空气阻力系数特性的实验结果。

这些结果为现有空气动力学研究提供了有益的实验经验基础,可以为未来的空气动力学方面的研究提供重要的参考。

实验三局部阻力系数的测定

实验三局部阻力系数的测定

实验三局部阻力系数的测定
静态压力测试是测量局部阻力系数的一种有效方法。

本实验旨在通过静态压力测试的
方法,测定一些流体中的局部阻力系数。

实验装置如下图所示,由蒸汽控制器SMATR 3000组成,内部装有压力传感器Pt-100,用于检测被测流体的压力;进水口为球形阀门,可对被测流体的流量进行调节;出水口为
蝶阀,用于控制取样气体量;并设有进水和出水管,连接入口,接出口以及压力传感器之间。

实验操作,首先在进水球形阀门上安装手轮,使其开启程度到指定位置,以便改变流速,其次,调节蒸汽控制器,把被测流体的进水压力调至预定值,压力传感器读出被测流
体的压力值;最后,在一定的流速下,通过调节蝶阀,把被测流体的压力与流速结合起来,测得流体的局部阻力系数。

实验结果表明,当流速恒定时,随着被测流体的进水压力的增加,求出的局部阻力系
数也有所增加。

另外,在实验过程中,还要及时对入口管道中的垃圾进行清扫,以保证实
验测量的精确度。

局部阻力系数测定实验报告

局部阻力系数测定实验报告

局部阻力系数测定实验报告实验报告:局部阻力系数测定一、实验目的通过测量不同圆柱体在定直径管段中的局部阻力系数,研究流体在局部几何变化处流动情况,并进一步了解阻力系数的概念及其影响因素。

二、实验原理1. 局部阻力系数的概念:在定直径管段中,将局部凸起或凹陷的柱体与平面平行柱体的阻力比值称为局部阻力系数。

2. 测量方法:利用水流实验装置,即在定直径管道中放置圆柱体,通过调节流量、水位及圆柱体位置、方向等条件,测量圆柱体处的局部阻力系数。

3. 实验装置:由水泵、水槽、进口流量计、出口压差计、定直径管段及圆柱体组成。

三、实验步骤1. 将水槽中的水抽入管道内,调节水泵及进口流量计,控制入口水流量。

2. 分别选用不同圆柱体,放置在定直径管段中,并调节固定夹具,保持圆柱体位置、方向等条件一致。

3. 调节流量及水位,使水流经过圆柱体处,记录出口压差及入口流量。

4. 更换不同圆柱体,重复测量操作。

四、实验结果及分析通过多次实验测量和计算,得到不同圆柱体在定直径管段中的局部阻力系数,如下表所示:圆柱体形状|局部阻力系数-|-圆柱形|0.2等角三角柱|0.4方柱|0.6锥形|0.8可见,不同形状的圆柱体在定直径管段中的局部阻力系数是不同的,其中锥形的局部阻力系数最大,即圆锥形状对于流体的阻力最大。

五、实验结论1. 局部阻力系数反映了流体在局部几何变化处的阻力情况。

2. 圆柱体的形状及其在定直径管段中的位置及方向等因素都会影响其局部阻力系数。

3. 实验结果表明,不同形状的圆柱体在定直径管段中的局部阻力系数不同,其中锥形的局部阻力系数最大。

六、注意事项1. 实验中要注意安全,注意防范水流对人体及设备的影响。

2. 实验中要注意调节流量、水位等条件,确保实验数据准确性。

3. 实验中要严格按照实验方法操作,不得随意更改实验条件。

4. 实验过程中如出现异常情况,应及时停止并报告实验人员。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

局部水头损失实验
一、实验目的要求
1.掌握三点法、四点法量测局部阻力系数的技能;
2.通过对铜闸阀阻力系数和弯管阻力系数的实验验证与分析,熟悉用理论分析法和经验法建立函数式的途径;
3.加深对局部阻力损失机理的理解。

二、实验装置
本实验装置见设备
三、实验方法与步骤 1.测记实验有关常数。

2.打开电子调速器开关,使恒压水箱充水,排除实验管道中的滞留气体。

待水箱溢流后,检查泄水阀全关时,各测压管液面是否齐平,若不平,则需排气调平。

3.打开泄水阀至最大开度,待流量稳定后,测记测压管读数,同时用体积法测记流量。

4.改变泄水阀开度3~4次,分别测记测压管读数及流量。

5.实验完成后关闭泄水阀,检查测压管液面是否齐平?否则,需重做。

四、实验成果及要求
1.记录、计算有关常数: 实验装置台号No
11d D == cm , 2342d d d D ==== cm ,
563d d D === cm , 212
(1)e A
A ζ'=-= ,
5
3
0.5(1)s A A ζ'=-
= 。

2.整理记录、计算表。

3.将实测ζ值与理论值(突扩)或公认值(突缩)比较。

实验数据 记录表
六、实验分析与讨论
1.结合实验成果,分析比较突扩与突缩在相应条件下的局部损
失大小关系。

2.结合流动仪演示的水力现象,分析局部阻力损失机理何在?产生突扩与突缩局部阻力损失的主要部位在哪里?怎样减小局部阻力损失?
3.现备有一段长度及联接方式与调节阀相同,内径与实验管道相同的直管段,如何用两点法测量阀门的局部阻力系数?
4.实验测得突缩管在不同管径比时的局部阻力系数(5
10
R )
e
如下:试用最小二乘法建立局部阻力系数的经验公式.
5.试说明用理论分析法和经验法建立相关物理量间函数关系式的途径。

相关文档
最新文档