电力系统微机继电保护
微机继电保护在电力系统中的应用分析

送入计算机 的电压、 行状态中, 最 常见 同时也是 最危险的故障是发生各种形式的短 器 、电流变换器等信 号传送环 节的影响 , 这 样会 引起 计算误差 , 尤其是非周期分 路。 在发 生短路 时可 能产 生以下后果。 故障点很大的短路 电流 电流信 号会 发生畸变 ,
高频 分量 的相 位移等 因素 的影 响使得 畸变 尤为突 和所燃 起的 电弧, 使故障元件损坏 。 短 路电流通 过非故障元件 量 的衰减 、
切除故障的时间常常要求短到十分之几秒甚至百分之几秒, 切 除故 障元件 , 这是保证 电力系统安全 运行 的最有 效方法 之 人 员做 好继 电保 护装 置的清扫 工作 。 在 对微 机继 电保 护装 置
一
。
实践证明只有在每个 电气元件上装设保 护装置才有 可能满足这 合打扫 , 以防止一位 工作人员打扫 时误 碰运行 设备, 导致设备 个要求。
关键词 : 电力系统 ; 微 机继 电保 护; 应用
1 电力系统 继 电保 护的作 用
差, 特别是在 高频情况下, 它 的分布 电容 的容抗较小, 计算结果
但 实际上, 由于 电压互感器 、 电流互感器 、 电压变换 电力系 统在 运行 中, 可能发 生各种 故障 或 处于不正常运 误差更大。
性, 引起 系统振荡, 甚至使整个系统瓦解。 在 电力系统 的运行 过程 中需要 有人 定时定期 的过去进行 电力系统 中电气元件 的正常工作环 境遭 到破坏 , 但没有发 有效 的维护, 以保证 电力系统能够正常的运行。 对此, 有关工作 生故 障, 这种情 况属于不正常运行状 态 。 例如 , 因负荷超过 电 人员会按照规定对微 机继电保护装 置进行定期的勘查 , 并且还
2 微机继电保护装置的算法运用
《电力系统微机保护》赵建文、付周兴(习题解答)

第 1 章 习题
什么是微机继电保护?电力系统对微机继电保护的要求有哪些? 答:微机继电保护装置就是,利用微型计算机来反映电力系统故障或不正常的运 行状态,并动作于断路器跳闸或发出信号的一种自动化装置。电力系统对微机继电保 护的要求与传统继电保护的要求一致,即选择性,速动性、灵敏性、可靠性。 2. 简要说明微机继电保护的特点。 答:(1)集保护、测量、监视、控制、人机接口、通信等多种功能于一体;代替 了各种常规继电器和测量仪表,节省了大量的安装空间和控制电缆。(2)维护调试方 便。(3)可靠性容易提高。(4)可以方便的扩充其他辅助功能。(5)改善和提高保 护的动作特性和性能。 3. 如何理解微机保护比常规继电保护性能好? 答:(1)逻辑判断清楚、正确。(2)可以实现模拟式继电保护无法实现的优良 保护性能。(3)调试维护方便。(4)在线运行的可靠性高。(5)能够提供更多的系 统运行的信息量。 4. 相对于传统继电保护,微机继电保护的缺点有哪些? 答:(1)对硬件和软件的可靠性要求较高,且硬件很容易过时。(2)保护的内 (4) 部动作过程不像模拟式保护那样直观。 (3)使用者较难掌握它的操作和维护过程。 要求硬件和软件有较高的可靠性。(5)由于微机保护装置中使用了大量集成芯片,以 及软硬件的不断升级,增加了用户掌握其原理的难度。 5. 简要说明微机继电保护技术的出现及发展与哪些技术有关,为什么? 答:半导体技术,电力电子技术,计算机与微型计算机技术、信息技术等。继电 保护装置发展初期,主要是电磁性、干硬性继电器构成的我继电保护装置;20 世纪 60 年代由于半导体二极管的问世,出现了整流型继电保护装置;20 世纪 70 年代,由于 半导体技术的进一步发展,出现了晶体管继电保护装置;20 世纪 80 年代中期,由于 计算机技术和微型计算机的快速发展,出现了微型继电保护装置;电力系统的飞速发 展对继电保护不断提出新的要求,电力电子技术、计算机技术和信息技术的飞速发展 尤为继电保护技术的发展不断注入新活力。 6. 微机保护的发展大体分哪几个阶段,各阶段的特点如何。 答:微机保护的发展大体经历了三个阶段: (1) 理论研究阶段,主要是采样技 术;数字虑波及各种算法的研究。(2)试验室研究阶段 主要是微机保护硬件、软件 的研究,并制成样机 (3)工业化应用阶段 20 世纪 70 年代末,80 年代初,微机保 护在电力系统中得到应用,并且发展十分迅速。 1984 年华北电力学院研制的一套微 机距离保护通过鉴定。87 年投入批量生产。以后,微机保护发展迅速,90 年华北电 力学院研制的 WXB—11 投入运行。现在微机保护已得到广泛应用。
电力系统微型计算机继电保护

2002年4月电力系统微型计算机继电保护1.以微型计算机为核心的继电保护装置称为微型机继电保护装置。
2.交流电流交换器输出量的幅值与输入模拟电流量的幅值成正比。
3.脉冲传递函数定义为:在零初始条件下,离散系统输出响应的Z变换与输入信号的Z变换之比值4.当离散系统特征方程的根,都位于Z平面的单位圆之外时,离散系统不稳定。
5.在一个控制系统中,只要有一处或几处的信号是离散信号时,这样的控制系统称为离散_控制系统。
6.反映电力系统输电设备运行状态的模拟电气量主要有两种:来自电压互感器和电流互感器二次侧的交流电压和交流电流信号。
7.在一个采样周期内,依次对每一个模拟输入信号进行采样的采样方式称为顺序采样。
8.脉冲传递函数分子多项式为零的根,称为脉冲传递函数的零点。
9.从某一信号中,提取出有用频率成份信号的过程,称为滤波。
10.合理配置数字滤波器脉冲传递函数的零点,能够滤除输入信号中不需要的频率成份。
11.合理配置数字滤波器脉冲传递函数的极点,能够提取输入信号中需要的频率成份信号。
12.数字滤波器脉冲传递函数的零点z i在脉冲传递函数表达式中以因子1-Z i Z-1的形式出现。
13.如果设计样本的频率特性频谱的最大截止频率为fmax,则要求对设计样本的单位冲激响应h(t)进行采样时,采样频率要求大于2fmax。
14.为了提高微型机继电保护装置的抗干扰能力,在开关量输入电路中采取的隔离技术是光电隔离。
15.利用正弦函数的三个_瞬时采样值的乘积来计算正弦函数的幅值和相位的算法称为三点采样值乘积算法。
16.在电力系统正常运行时,微型机距离保护的软件程序工作在自检循环并每隔一个采样周期中断一次,进行数据采集。
17.微型机距离保护的软件程序主要有三个模块—初始化及自检循环程序、采样中断子程序和故障处理程序。
18.在电力系统正常运行时,相电流瞬时采值差的突变量起动元件△I bc等于零。
19.电力系统在非全相运行时,一旦发生故障,则健全相电流差起动元件起动。
电力系统继电保护微机保护基础

装置外部引入的触点应经光电隔离
第二节 微机继电保护的基本算法 与数字滤波
一、 微机继电保护的基本算法 算法是微机继电保护的数学模型,
是微机继电保护工作原理的数学表达式,是 编制微机继电保护计算程序的依据。
1.采样及微分法 设电压和电流分别为 :
u Umsint (1) i Imsin(t ) (2)
Um
u2
u2
2
(4)
式中 u —任一时刻电压的采样值; uˊ—采样值u的微分。
如图所示,uk为当前采样值。
图中:uk-1为tk-1时刻的采样值;uk+1为tk+1时刻的采样值,则
Um u2k(uk21 T uk1)2/2 (5)
2.半周积分算法
S 0 T /2U m sitn d U t m co t0 T /2 s 2 U m T U m
N/2
S uk
k1
12N()Um
式中 S——半周内N/2个采样值的总和; uk——第k个采样值; N——工频周采样次数; α——第一个采样值的初相角。
3.傅氏算法
u(t) U 0 (U nc R o n ts U nsj in nt) n 1
U nR
2 N
N
u(k) cosk
k 0
2
N
Unj
输入模拟信号的电平变换主要由各种电压、 电流变换器来实现。
二、采样、采样定理及采样保持器 采样 — 周期性的抽取或测量连续信号。 采样定理 —为了能根据采样信号完全重现 原来的信号。采样频率fs必须大于输入连续信 号最高频率的2倍。 即:
fs 2fmax
采样周期: T=1/ fs
采样频率fs在240Hz到2000Hz之间。
电力系统微机继电保护第二版课程设计

电力系统微机继电保护第二版课程设计一、选题背景电力系统是一个高度复杂的系统,其中包含了大量的电气设备和线路,而这些设备和线路都需要得到可靠的保护,以确保电力系统能够正常运行。
因此,电力系统保护是电力系统中的一个重要环节。
为了确保电力系统保护的可靠性和高效性,需要采用对保护装置进行继电保护。
在电力系统中,微机继电保护是一种保护技术,它是在传统继电保护的基础上发展而来,具有更高的可靠性、更灵活的功能和更完善的通讯能力。
为了在工程实践中更好地应用微机继电保护技术,需要对其进行深入的研究和学习。
因此,电力系统微机继电保护第二版课程设计具有重要的意义。
二、课程设计内容2.1 课程设计目标通过电力系统微机继电保护第二版课程设计,使学生:1.熟悉微机继电保护技术的基本理论和应用;2.掌握微机继电保护的主要原理和技术特点;3.学会应用微机继电保护技术来设计实际电力系统保护方案;4.培养学生分析和解决实际电力系统保护问题的能力。
2.2 课程设计具体内容本次课程设计将涉及以下内容:1.微机继电保护技术概述;2.微机继电保护的工作原理;3.微机继电保护在电力系统中的应用;4.微机继电保护的设备接线和调试方法;5.微机继电保护系统的组成和通信原理;6.微机继电保护的应用案例分析;7.微机继电保护实验设计和仿真。
2.3 课程设计方案本次课程设计要求学生自主选择一个电力系统保护方案,并基于微机继电保护技术对其进行综合设计。
具体方案需包括以下内容:1.保护原理和方案选取;2.微机继电保护方案实现;3.保护系统调试和测试;4.系统运行效果评估。
学生可以自主选择保护方案的类型、系统电气拓扑、保护功能、保护参数等设计要素,并结合实际情况进行综合设计。
同时,本课程设计要求学生将设计结果进行实验验证,以提高学生实践能力。
三、课程设计要求1.熟读电力系统微机继电保护的相关技术文献,并有一定的电气基础;2.结合实际情况,组织系统保护方案设计和仿真实验;3.撰写并提交完整的课程设计报告,其中应包括设计方案、实验过程、测试结果、数据分析和结论等内容;4.设计报告需使用Markdown文本格式,文字规范、排版清晰、结论合理;5.课程设计评分标准包括:课程设计报告完整度、设计方案合理性、设计实验的规范性和完整性、数据分析的准确性和结论合理性。
电力系统微机继电保护运行分析与维护

微机继 电保 护技术 的发展是 电 网安全运行 发展趋势 的一种 必然选 择, 也是 电网在 输 、变 电过程 中不可 缺 少 的一 种 重要 应 用 设备 。该 技术 的 运用 必 将 随着 电网 的不 断发展 而 提 升 。在现代 化 的 电力 系 统需 求 中, 电设 备 增多 、 家 企业 用 电机 器增 多、发 电机 容量增 大等 多种 客观方 面 的原 因使得 电力 系统 中 正常 工 作电流 和短 路 电流 都不 断增 大 。这 就 需要 既能 保证 电网可靠 运 行, 又 能够对 电网异常 运行 、短 路 故障等 作 出快 速 的反映 , 因此 , 机继 电保护 技术 微 便应运而 生。 1电力系统 维 电保 护 的发晨 现 状 11微 机 在继 电保护 中的 大量普 及 . 利 用微型 计算 机超 强 的数学 运 算能 力和 逻辑 处理 能力 , 应用 其独 特 、优 秀的 原理和算 法, 而提 高保护 的性 能是 微机保 护 的最大 优势 。因此, 些年 从 近 来 我 国 电力 系统 继 电保 护 的微 机 化率 越 来越 高 。 1 2继 电保 护与前 沿技 术相 结合 . 伴 随着现 代化 科技 的发 展, 现如 今的继 电保护技术 已经逐 步实现 网络化 和 测 量 、控 制 、 保护 、数 据 通 信 一 体 化 。现 代化 的 电力 系 统 继 电保 护 需 要 每个 保护 单元都能共 享系 统的运行 和故 障信息 , 个保 护单元 与重合 闸在分 使每 析这 些数据和 信息 上协调动 作, 实现 这种系 统保护 的基本 条件是 将系统 中主要 电气 设 备的保 护装 置和 计 算机连 接起 来 , 现计 算机 保护 装置 的 网络化 。计 实 算机 和网络作 为信 息和数据 通信工 具 已经 成为信 息时代 的支柱 , 其与继 电保护 的 结合 是实现 现代 化 电力 系统 安全 、稳定 运 行的 重要 保证 。如 今, 计算机 保 护 的网络 化 已经 开始 实施, 是仍 处于初 期阶段 , 但 要想实 现我 国计 算机保 护 的 全面 网络 化, 还需 要 电力部 门 的不懈 努 力 。在 实现 继 电保护 的微 机 化和 网络 化 的前提 下, 保护装 置 实际 上就 是整 个 电力系 统 计算机 网络上 的一 个智 能终 端。 它可 从网上 获取 电力 系统运 行和 故障 的所有 信息 , 也可将 它所 获得 的保护 单元 的所有 信息 传送给 网络 控制 中心 或任一 终端 。 因此, 每个微 机 保护装 置不 但可 以完 成继 电保 护的 功 能, 且在 电网故 障或正 常运 行 情况 下还 可完 成测 而 量、控 制 、 数据 通信 等功 能。继 电保护通 过 与这些 社会 前沿 技术 相结合 , 大大 提高 了继 电保护 的可 靠性 和 电网的 运行 水平 1 3现 代化 的技 术管 理手段 得到 应用 . 电网的发展 和保 护技 术升级 对继 电保 护工 作提 出 了更 高 的要求 。保护 装 置数量 的快速 增长 和 电网结 构的频 繁变 动要求 我们 必须 借助现 代 化的科 学手 段来全 面提升 工作 效率和 工作 质量 。 目前 大多 数省 电力调 度通 信 中心均配 置 了故障信 息管 理系 统、继 电保 护整 定计算 和运 行管理 系 统 。故 障信 息管理 系 统可 以方 便地调取 保护和 故障录 波数据, 使得 维护 人员 能以最短 的时 间给 出保 护 动作 的行为分 析, 加快 电网事故 处理和 系统 恢复 镬 & 电保 护整定 计算 和运 行 管理 系统 能大大 提 高保护 消缺 、 作统计 以及 整定 计算 效率, 动 将有 限 的人力 从 繁琐 的工作 中尽可 能多地解放 出来, 更多 的精力投 入到 提高运行 管理 水平和 将 技术 监督 上来 。 技术 设备 的升 级提 高了继 电保 护运行 管 理水平 , 确保 电 网安 为 全稳 定运 行打下 了 良好 的基础 。
电力系统微机继电保护第二版教学设计

电力系统微机继电保护第二版教学设计一、教学目标1.掌握电力系统微机继电保护的工作原理;2.掌握电力系统微机继电保护应用过程中的主要技术问题;3.了解电力系统微机继电保护的发展趋势。
二、教学内容1. 基础知识1.电力系统微机继电保护的组成和功能;2.电力系统微机继电保护的标准与规程。
2. 技术细节1.微机继电保护的硬件及软件设计;2.微机继电保护的一些特殊技术问题;3.微机继电保护的工作流程及应用方法。
3. 实践操作1.学生通过上机操作模拟电力系统微机继电保护的应用实践;2.学生通过对一些电力系统微机继电保护系统的实际案例进行分析,了解电力系统微机继电保护的实际应用。
4. 学习方法1.学生通过课堂学习理解电力系统微机继电保护的理论;2.学生通过实践操作了解电力系统微机继电保护的应用方法。
三、教学过程安排1.引入环节(10分钟):通过引入电力系统微机继电保护的相关背景和现状,引起学生的兴趣。
2.理论知识讲解(60分钟):讲解电力系统微机继电保护的相关理论,包括组成和功能,标准与规程。
3.实践操作(60分钟):学生通过上机操作模拟电力系统微机继电保护的应用实践。
4.实例分析(60分钟):学生通过对电力系统微机继电保护实际案例的分析,进一步了解电力系统微机继电保护的实际应用。
5.教学总结(10分钟):对本次课程的主要内容进行总结,强化学生的学习效果。
四、教学方法1.讲解法:通过讲解电力系统微机继电保护的理论知识,让学生了解基本概念和原理。
2.实践操作:学生通过上机操作模拟电力系统微机继电保护的应用实践,增加实践经验。
3.案例分析:通过对电力系统微机继电保护实际案例的分析,让学生了解电力系统微机继电保护的实际应用。
4.课堂互动:通过课堂提问、小组讨论等方式增加学生的参与度和学习效果。
五、教学评估1.通过学生的上机操作和实际应用案例的分析,考核学生对电力系统微机继电保护的实际应用能力。
2.通过期末考试,考核学生对电力系统微机继电保护相关理论知识的掌握程度。
电力系统微机继电保护课程设计

电力系统微机继电保护课程设计一、绪论为了提高电力系统运行的可靠性和安全性,保护措施是不可或缺的一部分。
在电力系统中,继电保护是其中最重要的一种保护措施。
继电保护的核心是电路保护,主要包括潮流保护和差动保护两大类。
然而,由于电力系统的复杂性,基于传统继电保护的方法难以满足当前电力系统的保护要求。
因此,微机继电保护的出现,为电力系统保护和安全稳定运行提供了新的技术手段。
二、微机继电保护原理微机继电保护是电力系统中采用电子技术实现的高速、准确地检测故障和定位故障位置的自动化设备。
其原理是在故障的瞬间,通过采集电力系统中的各种信号,并对其进行快速的计算和分析,最终实现对电力系统有序、快速、准确的保护。
其中,微机继电保护的核心是数字信号处理器(DSP)和程序控制器,通过高速计算和分析电力系统中各种数据,最终实现对电力系统的保护。
三、课程设计任务1. 设计任务设计一台基于微机继电保护的电路保护系统,实现对电力系统中的故障进行快速的检测和定位,并保障电力系统的安全稳定运行。
2. 设计内容本次课程设计主要涉及以下内容:1.潮流保护的设计2.差动保护的设计3.基于DSP的高速计算技术4.程序控制器的设计3. 设计思路本次课程设计的思路是:在故障的瞬间,通过采集电力系统中各种信号(如电压、电流等),并通过潮流保护和差动保护等方式对其进行分析,最终实现电力系统的保护。
同时,电路保护系统通过DSP和程序控制器的协同控制,实现对电路保护过程的快速问题诊断。
本次课程设计的关键技术是程序控制器和DSP技术。
四、设计实现步骤1. 选题本次课程设计选题为电力系统微机继电保护课程设计。
2. 分工合作在确定选题之后,按照小组成员的各自特长和兴趣分配任务,各自完成设计和编程任务。
3. 设计和编程根据选题确定设计思路,开始进行电路保护系统的潮流保护和差动保护的设计和编程。
4. 单元测试设计和编程完成后,进行单元测试,分别测试各个模块的功能是否正常。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
研究生专业课程考试答题册学号姓名考试课程考时日期西北工业大学研究生院1.答:微机继电保护装置的硬件一般包括以下三大部分:(1)数据采集系统 (或称模拟量输入系统)包括电压形成、模拟滤波、采样保持(S/H)、多路转换、模数转换等功能块。
(2)微型机主系统主要包括:微处理器(MPU)、存储器、定时器、并行接口和串行接口。
(3)开关量(或数字量)输入/输出系统主要组成:微型机的并行接口、光电隔离器、有触点的中间继电器。
2.答:分辨率一般用A/D 转换器输出的数字量位数来衡量。
VFC 等效的位数取决于两个因素:一是VFC 的最高频率VFC f ;二是采样间隔S T 和积分间隔S NT 的大小。
VFC 的最大输出数字量max D 与VFC 最大频率VFC f 之间的关系如下:max VFCVFC S sf D f NT Nf == 3.答:A/D 转换器可以认为是一个编码电路。
它将输入的模拟量sr U 相对于模拟参考量R U 经编码电路转换成数字量D 输出。
一个理想的A/D 转换器,其输出与输入的关系式为srRU D U =。
由于编码电路的位数总是有限的,而实际的模拟量公式sr U /R U 却可能为任意值,因而对连续的模拟量用有限长位数的二进制数表示时,不可避免的要舍去比最低位更小的数,从而引入一定的误差。
A/D 转换是对瞬时值进行变换,而VFC 变换是对输入信号的连续积分,因此,具有低滤波的效果,同时,可以大大抑制噪声。
且VFC 变换位数可调,只要调整积分间隔S NT 即可;与微型机接口简单;易于实现同时采样;但不适合高频信号的采集。
4.解:T=5/3ms , f=1/T=600Hz1()1 , ()1 , 2/jw jw s H z z H e e w f f π--=+=+=W=0时,即为直流分量时,0()1()2jw j H e H e =+=f=300Hz 时,2*300/600 ()10jw j w H e e πππ-===+=所以可以滤除300Hz 的信号分量,但不能滤除直流分量。
5. 解:(1)1()()(1)y n x n x n =-- 2121126826232221343()1()()(6)()(2)(6)(8)()1(1)(1)()()(1)(2)=()(1)(3)(4)(6)(7)(9)(10)()1H z z y n y n y n x n x n x n x n H z z z z z z y n y n y n y n x n x n x n x n x n x n x n x n H z z z z ---------=-=--=----+-=--+=--=+-+-+---------+-+-=+--6791013633334(1)(1)(1)()()(1)(2)(3)=()2(1)2(2)(3)(4)2(5)3(6) 3(7)2(8)(9)(10)2(11)2(12)(13)()(1z z z z z z z y n y n y n y n y n x n x n x n x n x n x n x n x n x n x n x n x n x n x n H z ---------++=+--=+-+-+-+-+-+-------------+-+-+-+-=122361322232631234)(1)(1)(1)()()()()()(1)(1)(1)(1)(1)z z z z H z H z H z H z H z z z z z z ---------++--==++---可画幅频特性如下:(2)135/321.67S KT ms τ==⨯= 113114d W k =+=+= 6. 解:1/600s s f T Hz ==32 1230,2, 232s s f f w w w f f ππππ===== 所以滤除直流分量的滤波器的传递函数为()111H z z -=-滤除100Hz 的信号分量的滤波器的传递函数为12122()12cos13H z z z z z π----=-∙+=-+滤除150Hz 的信号分量的滤波器的传递函数为1222()12cos12H z z z z π---=-∙+=+所以设计此数字滤波器的脉冲传递函数为1122123()()()()(1)(1)(1)H z H z H z H z z z z z ----==--++7. 解:(1)12/1/500.02T w s π====20ms 由以下采样图可得采样值:(2)根据以上取值,取第一点和第四值(相差/2π角度)的进行计算:则u1=21.1325V , u2=78.8675Vi1=0A , i2=7.0711A则222121122 t g /0.2679U U u u u u α=+== 222121122 tg /0I I i i i i α=+==得电压幅值 U=57.735V电流幅值 I=5A相位差为1110.2679015U I tg ααα-=-=-=︒ 有功功率为cos15278.84P UI W =︒= 无功功率为sin1574.71var Q UI =︒= 电阻阻值 1122221211.1535u i u i R i i +==Ω+电抗值 122122122.9886u i u i X i i +==Ω+ 8. 基于DSP 的微机继电保护装置的数据采集系统设计: 1.数据采集系统设计方案微机继电保护装置的数据采集系统是由二次互感器、滤波器、放大器、AD 转换器、计算机及外设等部分组成。
由于电力系统电压很高,如果直接把系统接入,肯定会烧毁芯片,所以在一次回路将高电压电流变换为低电压(100V 或100/√3V)、低电流(5A 或1A),再通过二次回路,即数据采集系统的互感器将二次变换输出的电压电流变换成系统芯片能够接受的范围。
为了抑制高频信号,信号经过二次互感器,需要对信号进行低通滤波。
为了使信号扰动、噪声减小,需要对信号隔离处理。
处理的信号经过A/D 转换后输出数字信号,经过电平转换输入计算机,进行数据处理。
系统基本组成框图如图1所示。
1.1 多通道模拟数据采集方法确定由于继电保护装置需要同步采集多路信号,对精度和数据处理要求高,而且体积不能过大,因此,本设计选用单A/D多通道数据采集系统。
单A/D多通道同步采集系统:每个通道都有自己单独的采样保持器,共用一个数模转换器。
多路信号可以在采样保持器内保持,再依次进行转换,只要转换的速度足够快,完全可以满足多路信号的同时采集。
如图2所示图2单A/D多通道同步采集系统1.2系统CPU的选取本数据采集系统应用在继电保护装置中实现数据的高精度采集和处理,综合开发成本和芯片供应情况综合考虑,选用TI公司TMS320F2812芯片作为主控CPU。
1.3 A/D转换器的选取由于模拟信号到数字信号是由A/D转换器实现的,所以A/D转换器的优劣对信号的转换起到决定性的作用。
对本系统而言,精度和转换速率是最主要的指标,本系统选用精度和转换速率都能满足要求的MAX125芯片作为系统采样芯片。
1.4 数据采集系统总体结构确定根据系统技术要求和上述分析,确定数据釆集系统总体结构如图3所示。
系统采用多通道同步采样,采集三相电压、三相电流信号。
通过信号处理电路,实现DSP对MAX125的控制。
图3数据采集系统总体结构2.数据采集系统硬件电路详细设计2.1 TMS320F2812系统TMS320F2812是TI公司推出的32位定点芯片,采用先进的哈佛总线结构,将程序存储器和数据存储器分开,程序存储器和数据存储器分别通过程序总线和数据总线进行数据的处理。
(1)TMS320F2812的供电电源及复位电路设计TMS320F2812 要求双电源(1.8V 和3.3V)为CPU、Flash、ROM、AD和I/O接口供电。
本设计选用TPS767D301芯片,输入电压为5V,芯片起振,正常工作之后,能够产生3.3V和1.8V两种电压供DSP使用。
TPS767D301芯片具有复位功能,无需再设计TMS320F2812专用的复位电路。
2.2 多通道同步采样电路设计(1)电压电流互感器选取本系统采用电磁式的互感器。
由于A/D只能接收电压信号,所以经过电流互感器的信号,通常使用并联电阻使电流变换为电压信号,再送入A/D进行采集,最后通过欧姆定律,还原电流值。
(2)低通滤波器电路由于简单的前置模拟滤波器很难达到很低的截止频率和理想的高频截断功能,为了避免混叠,滤波器的设计需要在满足采样定理的要求的同时,先通过低通滤波器滤除高频的信号,再通过提高采样信号频率,可以大大提高滤波的性能。
低通滤波器设计电路如图4所示。
图4 低通滤波器电路(3)隔离电路设计本系统采用射极跟随器不仅可以避免负载变化对LC电路的影响,而且由于其输入电阻高、输出电阻低,可以抑制噪声和高频信号。
隔离电路如图5所示。
图5 隔离电路2.3 A/D转换器与DSP接口设计(1)MAX 125芯片MAX125是2x4通道的具有高速转换性能的14位A/D转换芯片,内设可同时保持4路采样值的采样保持器(T/H),数模转换的单次转换时间仅为3us,内部有2.5V参考电源,可选择外接或使用内部参考电源。
MAX125具有正负5V的输入电压,可通过编程A0~A3地址线,实现指定通道上的转换。
当或通过TMS320F2812给予低电平时有效,当或由低电平转为高电平时,数据被锁存并等待转换。
写入控制字,指定转换通道后,当低电平时,编程的每个通道分别进行数模转换,每进行一次A/D转换,检查是否出现了中断信号。
如果中断信号出现低电平,则转换结束,否则继续进行转换,直到最后一个通道转换结束,系统自动给端一个低电平信号,以表明转换工作己经结束。
多路A/D转换的顺序是固定的,读取数据时也是顺序读取。
图6为MAX125的内部结构图。
图6 MAX125的内部结构图(2)电平转换电路MAX125的输出数据要经过电平转换后才能送到TMS320F2812的数据线上,如果直接将MAX125的输出直接送到TMS320F2812的数据输入引脚上,则有可能超过TMS320F2812的引脚的耐压值(3.3V)。
本系统采用一片74HC245作为5V-3V的双向电平转换。
MAX125的输出Dn接入74HC245的An端口,数据锁存后进行电平转换,再接入TMS320X2812数据总线。
74HC245的DIR端口和OE端口分别接TMS320X2812相应的RD引脚和XZCS0AND1引脚,只有当XZCS0AND1有效、RD有效同时满足时,才能进行电平转换。
图7为电平转换电路图。
图7 电平转换电路3. 系统精度分析A/D转换器的精度为:1/(2^14 -1) = 0.000061 系统的采集精度受所选传感器而定。