1集合间的基本运算

合集下载

集合间的基本运算教案

集合间的基本运算教案

集合间的基本运算教案一、教学目标1.理解集合间的基本运算概念,掌握集合间的基本运算方法。

2.学会运用集合间的基本运算解决实际问题。

3.培养学生对数学的兴趣和解决问题的能力。

二、教学重点和难点1.重点:集合间的基本运算方法、规则和技巧。

2.难点:如何运用集合间的基本运算解决实际问题。

三、教学过程1.课程导入:通过实例引入集合间的运算概念,如两个集合的并集、交集、补集等,并简要介绍这些运算的意义和用途。

2.知识点讲解:详细阐述集合间的基本运算方法,包括并集、交集、补集、差集等,讲解它们的定义、性质和计算方法。

通过实例分析,让学生更好地理解这些运算的应用。

3.解题思路:举例说明如何解决集合间的应用题。

通过分析问题、建立数学模型、执行计算和整合答案等步骤,让学生掌握解决集合间应用题的方法。

4.注意事项:提醒学生在学习过程中需要注意哪些问题,如准确理解集合间的基本运算概念、熟练掌握基本运算方法、正确运用解决实际问题等。

5.课堂练习:布置相关练习题,让学生现场计算并集体讨论,及时纠正错误和理解不到位的地方。

6.作业与评价方式:布置课后作业,要求学生在规定时间内完成,并提交电子版练习题。

根据学生的练习情况和作业完成质量,进行评价和反馈,针对存在的问题进行纠错和指导。

四、教学方法和手段1.示范+讲解:教师通过讲解、示范、引导等方式帮助学生理解集合间的基本运算方法。

在知识点讲解和解题思路部分,注重示范和举例说明,帮助学生掌握基本概念和方法。

2.实例分析:教师通过分析实例,让学生更好地理解集合间基本运算的应用。

通过选取具有代表性的例题,引导学生分析问题、建立数学模型并解决问题,培养学生的解题能力和应用能力。

3.课堂互动:在教学过程中,注重与学生互动,鼓励学生提问和发表自己的观点。

通过组织小组讨论和集体评价等方式,激发学生的学习兴趣和参与度。

五、辅助教学资源与工具1.多媒体课件:使用多媒体课件展示教学重点和难点,帮助学生更好地理解集合间的基本运算方法和技巧。

人教版高一必修1 集合的基本运算

人教版高一必修1 集合的基本运算

类型五 用描述法表示集合的应用. 【例 5】 已知集合 A={x|ax2-3x+2=0,a∈R} (1)若 A 中只有一个元素,求 a 的值,并把这个元素写出来; (2)A 中至少有一个元素,求 a 的取值范围.
思维启迪:集合 A 中只有一个元素,即为方程 ax2-3x+2=0 只有一个根或两个相等的根.分 a=0 和 a≠0 两种情况讨论求解.
点评 在已知元素与集合的关系求字母的值时,一定要注意检验,保 证集合的互异性.
变式训练 2 已知集合 A={a-2,2a2+5a,12},且-3∈A,求 a 的值.
解析:∵-3∈A,则-3=a-2 或-3=2a2+5a. 3 ∴a=-1 或 a=-2, 当 a=-1 时,a-2=-3, 2a2+5a=-3,不符合集合中元素的互异性. 3 ∴a=-1 应舍去,故 a=-2.
解析:(1)∵x2-9=(x-3)(x+3), ∴x2-9 的一次因式组成的集合为{x-3,x+3}. (2)由 5x-3<3x+5,解得 x<4. ∵x∈N*,∴x 的值为 1,2,3. ∴不等式的解集中的正整数组成的集合为{1,2,3}. x=-1, (3)由|x+1|+ y-3=0,得 y=3. ∴方程|x+1|+ y-3=0 的解集为{(-1,3)}.
解析:方程组的解集中元素应是有序数对形式,排除 A,B, 而 D 中表示的不是集合,排除 D,故选 C. 答案:C
3.已知集合 A={x|x≤10},a= 2+ 3,则 a 与集合 A 的关 系是( ) A.a∈A B.a∉A C.a=A D.{a}∈A
解析:由于 2+ 3<10,所以 a∈A,故选 A. 答案:A
5.已知集合
12 A=x5-x∈N,x∈N

集合的基本运算交集并集练习题

集合的基本运算交集并集练习题

集合的基本运算交集并集练习题1.1. 集合间的基本运算考察下列集合,说出集合C与集合A,B之间的关系: A?{1,3,5},B?{2,4,6},C??1,2,3,4,5,6?;A?{xx是有理数},B?{xx是无理数},用Venn图分别表示上面各组中的3组集合。

思考:上述每组集合中,A,B,C之间均有怎样的关系?1、交集定义:一般地,由所有属于集合A且属于集合B的元素组成的集合,叫作集合A、B的交集。

记作:A∩B 读作:“A交B” 。

即:A∩B={x|x∈A,且x∈B}用Venn图表示:常见的3种交集的情况:说明:当两个集合没有公共元素时,两个集合的交集是空集,而不能说两个集合没有交集讨论:A∩B与A、B、B∩A的关系?A∩A=A∩?=A∩BB∩AA∩B=A ? A∩B=B?:1、A={3,5,6,8},B={4,5,7,8},则A∩B=;2、A={等腰三角形},B={直角三角形},则A∩B=3、A={x|x>3},B={x|x 2、并集定义:一般地,由所有属于集合A或者属于集合B的元素组成的集合,称为集合A与集合B 的并集,记作A∪B,读作:“A 并B”即A∪B={x|x∈A或x∈B}。

用Venn图表示:说明:定义中要注意“所有”和“或者”这两个条件。

讨论:A∪B与集合A、B有什么特殊的关系?A∪A=, A∪Ф=, A∪B∪AA∪B=A? , A∪B=B?:1、A={3,5,6,8},B={4,5,7,8},则A∪B=2、设A ={锐角三角形},B={钝角三角形},则A∪B=;3、A={x|x>3},B={x|x 3、一些特殊结论⑴若A?B,则A∩B=A;⑵若B?A,则A∪B=A;⑶若A,B两集合中,B=?,,则A∩?=?, A∪?=A。

1求A∪B。

2、设A={x|x>-2},B={x|x3、已知集合A={y|y=x2-2x-3,x∈R},B={y|y=-x2+2x+13,x∈R}。

新教材人教版高中数学必修1 第五章 复习知识点

新教材人教版高中数学必修1 第五章  复习知识点

A.(1,2)
B.(1,+∞)
C.[2,+∞)
D.[1,+∞)
【解析】 由题意M=(1,+∞),N=(0,2), 则M∩N=(1,2),故选A. 【答案】 A
3.设集合A={5,log2(a+3) },集合B={a,b}. 若A∩B={2},则A∪B=________. 【解析】 ∵A∩B={2},∴ log2(a+3) =2. ∴a=1.∴b=2. ∴A={5,2},B={1,2}. ∴A∪B={1,2,5}.
集合中元素的互异性,故a≠1,
∴a=-1,此时集合为{-1,0,1},符合题意, ∴a2012+b2012=(-1)2012+02012=1.
【答案】 1
【发散思维】 在利用集合相等或其他相关概念求字母的 值时,特别需注意利用集合中元素的互异性来检验所得 结果是否正确.
1.集合A={0,2,a},B={1,a2 },
2.(2011·海淀模拟)已知集合S= P={x|a+1<x<2a+15}.
xxx+ -25<0

(1)求集合S;
(2)若S⊆P,求实数a的取值范围.
【解析】
(1)由
x+2 x-5
<0得-2<x<5,∴S={x|-2<x<5}
(2)由S⊆P得
a+1≤-2 2a+15≥5
解之得-5≤a≤-3.
(7,1),(5,3),(8,1). 【答案】 C
则A∩( NB )为( )
A.{1,5,7}
B.{3,5,7}
C.{1,3,9}
D.{1,2,3}
【解析】 显然A∩( NB )= A(A∩B), 且A∩B={3,9},所以结果为{1,5,7}.
【答案】 A
2.(2011·东北四校模拟)已知集合M={y|y=2x ,

1.3.1集合的基本运算(并集与交集)

1.3.1集合的基本运算(并集与交集)
A={4,5,6,8}, B={3,5,7,8}, C={5,8}
定义
一般地,由既属于集合A又属于集合 B的所有元素组成的集合叫做A与 B的交集.
记作 A∩B 读作 A交 B
即 A∩B={x x∈A,且x∈B}
A
B
A∩B
性质
⑴ A∩A = A A∩φ = φ A∩B =B∩A
⑵ A∪A = A A∪φ = A A∪B = B∪A
例6 设A={x x2+4x=0}, bbbbbcB={x x2+2(a+1)x+a2-1=0},
(1) 若A∩B=B,求a的值.
(2) 若A∪B=B,求a的值.
探究
(A∩B)∩C = A∩( B∩C ) A∩B∩C
(A∪B)∪C= A∪( B∪C ) A∪B∪C
课堂小结
1. 理解两个集合交集与并集的概念 bb和性质. 2. 求两个集合的交集与并集,常用 bbb数轴法和图示法. 3.注意灵活、准确地运用性质解题;
观察集合A,B,C元素间的关系: A={4,5,6,8}, B={3,5,7,8}, C={3,4,5,6,7,8}
定义
一般地,由属于集合A或属于集合B 的所有元素组成的集合叫做A与B
的并集,
记作 A∪B 读作 A并 B
即A∪B={x x∈A,或x∈B}
A
B
A∪B
观察集合A,B,C元素间的关系:
则A∩B= Φ
A∪B= {斜三角形}
例3 设A={x x>-2},B={x x<3}, 求A∩B, A∪B.
例4 已知A={2,-1,x2-x+1}, B={2y,-4,x+4}, C={-1,7}
且A∩B=C 求x,y的值及A∪B.

集合间的基本运算教学设计

集合间的基本运算教学设计

集合间的基本运算教学设计这是集合间的基本运算教学设计,是优秀的数学教案文章,供老师家长们参考学习。

集合间的基本运算教学设计第1篇【教学目标】1.使学生进一步熟悉面积单位的大小。

2.掌握面积单位间的进率。

【教学重点】掌握面积单位间的进率,会进行常用面积单位之间的改写。

【教学过程】一、课题引入:1.师:同学们,我们都学过哪些长度单位?(米、分米、厘米、还有千米、公里等等)(出示ppt课件:面积单位间的进率)师:同学们说得都对,那么我们看一下:米、分米和厘米之间的进率是多少呢?(相邻两个的长度单位之间的进率是10)师:我们已经学习了面积单位,常用的面积单位平方厘米、平方分米、平方米,每相邻两个面积单位间的进率是多少呢?请同学们猜测一下。

(分小组,猜测,然后分派代表回答问题)师:看来各小组讨论,得出不同的意见,下面我们就来动手动脑,探究一下“面积单位间的进率”二、探究新知(一)师:老师这里有一张边长是1分米的正方形纸。

请同学们拿出自己的正方形,它的边长是1分米,谁来说一说它的面积是多少?生:边长是1分米的正方形面积是1×1=1(平方分米)师:如果这个正方形的面积用平方厘米做单位,是多少平方厘米呢?请同学们开动脑筋,发挥四人小组合作的力量,动手做一做实验(学生动手操作,教师巡视)。

师:请各小组汇报实验的结果。

(用直尺去量正方形的边,边长正好是10厘米,所以它的面积就是10×10=100(平方厘米))。

师:你们真聪明,大家同意他们的意见吗?还有更好的主意吗?(正方形边长是1分米,1分米=10厘米,这个红色正方形面积是10×10=100(平方厘米)。

师:刚才大家想的方法都很好,有的用摆,有的用量,还有的直接将分米换算成厘米来计算。

同学们真聪明。

但不管用什么方法,这个边长是1分米的正方形面积如果用平方厘米做单位都是 100平方厘米。

师:同一个正方形,我们用平方分米作单位是1平方分米,用平方厘米作单位是100平方厘米,那么1平方分米等于多少平方厘米呢。

集合间的基本运算(交集,并集,补集)非常全面的题型分类

集合间的基本运算(交集,并集,补集)非常全面的题型分类

集合间的基本运算一、并集(1)文字语言:由所有属于集合A或属于集合B的元素组成的集合,称为集合A 与B的并集.(2)符号语言:A∪B={x|x∈A,或x∈B}.(3)图形语言;如图所示.二、交集交集的三种语言表示:(1)文字语言:由属于集合A且属于集合B的所有元素组成的集合,称为A与B 的交集.(2)符号语言:A∩B={x|x∈A,且x∈B}.(3)图形语言:如图所示.三、并集与交集的运算性质题型一 并集及其运算例1 (1)设集合M ={4,5,6,8},集合N ={3,5,7,8},那么M ∪N 等于( ) A.{3,4,5,6,7,8} B.{5,8} C.{3,5,7,8} D.{4,5,6,8}(2)已知集合P ={x |x <3},Q ={x |-1≤x ≤4},那么P ∪Q 等于( ) A.{x |-1≤x <3} B.{x |-1≤x ≤4} C.{x |x ≤4}D.{x |x ≥-1} (3).已知集合=A {}31<≤-x x ,=B {}52≤<x x ,则B A ⋃=( )A .{}32<<x xB .{}51≤≤-x xC .{}51<<-x xD .{}51≤<-x x变式练习1 已知集合A ={x |(x -1)(x +2)=0};B ={x |(x +2)(x -3)=0},则集合A ∪B 是( ) A.{-1,2,3}B.{-1,-2,3}C.{1,-2,3}D.{1,-2,-3}2.若集合=A {}x ,3,1,=B {}2,1x ,B A ⋃={}x ,3,1,则满足条件的实数x 有( )A .1个B .2个C .3个D .4个题型二 交集及其运算例2 (1)设集合M ={m ∈Z |-3<m <2},N ={n ∈Z |-1≤n ≤3},则M ∩N 等于( ) A.{0,1} B.{-1,0,1} C.{0,1,2}D.{-1,0,1,2}(2)若集合A ={x |1≤x ≤3},B ={x |x >2},则A ∩B 等于( ) A.{x |2<x ≤3} B.{x |x ≥1} C.{x |2≤x <3} D.{x |x >2}变式练习2(1)设集合A ={x |x ∈N ,x ≤4},B ={x |x ∈N ,x >1},则A ∩B =________. (2)集合A ={x |x ≥2或-2<x ≤0},B ={x |0<x ≤2或x ≥5},则A ∩B =________.(3).设集合=M {}23<<-∈m Z m ,{}31≤≤-∈=n Z n N ,则N M ⋂=( ) A .{}1,0 B .{}1,0,1- C .{}2,1,0 D .{}2,1,0,1-(4).集合=A {}121+<<-a x a x ,=B {}10<<x x ,若=⋂B A ∅,求实数a 的取值范围.题型三已知集合的交集、并集求参数例3已知集合A={x|2a≤x≤a+3},B={x|x<-1,或x>5},若A∩B=∅,求实数a的取值范围变式练习3设集合M={x|-3≤x<7},N={x|2x+k≤0},若M∩N≠∅,则实数k的取值范围为________.例4设集合A={x|x2-x-2=0},B={x|x2+x+a=0},若A∪B=A,求实数a 的取值范围.变式练习4设集合A={x|x2-3x+2=0},集合B={x|2x2-ax+2=0},若A∪B =A,求实数a的取值范围.例5 (1)设集合A={(x,y)|x-2y=1},集合B={(x,y)|x+y=2},则A∩B 等于( )A.∅B.{53,13}C.{(53,13)} D.{x=53,y=13}(2)已知集合A={y|y=x2-2x-3,x∈R},B={y|y=-x2+2x+13,x∈R},求A∩B.变式练习5(1)设集合A={y|y=x2-2x+3,x∈R},B={y|y=-x2+2x+10,x∈R},求A∪B;(2)设集合A ={(x ,y )|y =x +1,x ∈R },集合B ={(x ,y )|y =-x 2+2x +34,x ∈R },求A ∩B .6.设集合A ={x |x 2=4x },B ={x |x 2+2(a -1)x +a 2-1=0}. (1)若A ∩B =B ,求a 的取值范围; (2)若A ∪B =B ,求a 的值.课后练习 一、选择题1.设集合A ={-1,0,-2},B ={x |x 2-x -6=0},则A ∪B 等于( ) A.{-2} B.{-2,3} C.{-1,0,-2}D.{-1,0,-2,3}2.已知集合M ={x |-1≤x ≤1,x ∈Z },N ={x |x 2=x },则M ∩N 等于( ) A.{1} B.{-1,1} C.{0,1}D.{-1,0,1}3.已知集合M ={0,1,2,3,4},N ={1,3,5},P =M ∩N ,则P 的子集共有( )A.2个B.4个C.6个D.8个4.已知集合M={x|-3<x≤5},N={x|x<-5或x>5},则M∪N等于( )A.{x|x<-5或x>-3}B.{x|-5<x<5}C.{x|-3<x<5}D.{x|x<-3或x>5}三、解答题5.已知集合A={x|-2≤x≤5},B={x|2a≤x≤a+3},若A∪B=A,求实数a的取值范围.6.已知集合A={x|x2-px+15=0}和B={x|x2-ax-b=0},若A∪B={2,3,5},A∩B={3},分别求实数p,a,b的值.7.(1)已知集合A={-4,2a-1,a2},B={a-5,1-a,9},若A∩B={9},求a的值;(2)若P={1,2,3,m},Q={m2,3},且满足P∩Q=Q,求m的值.四、全集(1)定义:如果一个集合含有我们所研究问题中涉及的所有元素,那么就称这个集合为全集.(2)记法:全集通常记作U.五、补集对于一个集合A,由全集U中不属于集合A的所有元素组成的集合称为集合A相对于全集U的补集,记作∁U A符号语言为∁U A={x|x∈U,且x∉A}图形语言为六、补集的性质①A∪(∁U A)=U;②A∩(∁U A)=∅;③∁U U=∅,∁U∅=U,∁U(∁U A)=A;④(∁U A)∩(∁U B)=∁U(A∪B);⑤(∁U A )∪(∁U B )=∁U (A ∩B ).题型一 补集运算例1 (1)设全集U ={1,2,3,4,5},集合A ={1,2},则∁U A 等于( ) A.{1,2} B.{3,4,5} C.{1,2,3,4,5}D.∅(2)若全集U =R ,集合A ={x |x ≥1},则∁U A =________.变式练习 1 已知全集U ={x |x ≥-3},集合A ={x |-3<x ≤4},则A C U =________.2.已知全集U ={x |1≤x ≤5},A ={x |1≤x <a },若∁U A ={x |2≤x ≤5},则a =________.题型二 补集的应用例2 设全集U ={2,3,a 2+2a -3},A ={|2a -1|,2},∁U A ={5},求实数a 的值.变式练习2若全集U={2,4,a2-a+1},A={a+4,4},∁U A={7},则实数a=________.题型三并集、交集、补集的综合运算例3 已知全集U={x|-5≤x≤3},A={x|-5≤x<-1},B={x|-1≤x<1},求∁U A,∁U B,(∁U A)∩(∁U B).变式练习3设全集为R,A={x|3≤x<7},B={x|2<x<10},求∁R(A∪B)及(∁R A)∩B.题型四利用Venn图解题例4 设全集U={不大于20的质数},A∩∁U B={3,5},(∁U A)∩B={7,11},(∁U A)∩(∁UB)={2,17},求集合A,B.变式练习4全集U={x|x<10,x∈N*},A⊆U,B⊆U,(∁U B)∩A={1,9},A∩B={3},(∁U A)∩(∁U B)={4,6,7},求集合A,B.变式练习5已知集合A={x|x2-4ax+2a+6=0},B={x|x<0},若A∩B≠∅,求a的取值范围.课后作业一、选择题1.已知全集U={1,2,3,4},集合A={1,2},B={2,3},则∁U(A∪B)等于( )A.{1,3,4}B.{3,4}C.{3}D.{4}2.已知全集U={1,2,3,4,5,6,7},A={3,4,5},B={1,3,6},则A∩(∁U B)等于( )A.{4,5}B.{2,4,5,7}C.{1,6}D.{3}3.设全集U={a,b,c,d,e},集合M={a,c,d},N={b,d,e},那么(∁U M)∩(∁N)等于( )UA.∅B.{d }C.{a ,c }D.{b ,e }4.已知集合A ={x |x <a },B ={x |1<x <2},且A ∪(∁R B )=R ,则实数a 的取值范围是( )A.{a |a ≤1}B.{a |a <1}C.{a |a ≥2}D.{a |a >2}5.设全集是实数集R ,M ={x |-2≤x ≤2},N ={x |x <1},则(∁R M )∩N 等于( )A.{x |x <-2}B.{x |-2<x <1}C.{x |x <1}D.{x |-2≤x <1}6.已知集合A ={x |-4≤x ≤-2},集合B ={x |x -a ≥0},若全集U =R ,且A ⊆∁U B ,则a 的取值范围为________.7.设U ={1,2,3,4,5,6,7,8,9},(∁U A )∩B ={3,7},(∁U B )∩A ={2,8},(∁U A )∩(∁U B )={1,5,6},则集合A =________,B =________.8.已知全集U =R ,A ={x ||3x -1|≤3},B ={x |⎩⎨⎧ 3x +2>0,x -2<0},求∁U (A ∩B ).9.已知集合A ={x |3≤x <6},B ={x |2<x <9}.(1)分别求∁R (A ∩B ),(∁R B )∪A ;(2)已知C ={x |a <x <a +1},若C ⊆B ,求实数a 的取值范围.10.已知A ={x |-1<x ≤3},B ={x |m ≤x <1+3m }.(1)当m =1时,求A ∪B ;(2)若B ⊆∁R A ,求实数m 的取值范围.11.已知集合{}31<≤-=x x A ;{}242-≥-=x x x B .(1)求B A ⋂;(2)若集合{}02>+=a x x C ,满足C C B =⋃,求实数a 的取值范围.12.设集合A ={x |x 2=4x },B ={x |x 2+2(a -1)x +a 2-1=0}.(1)若A ∩B =B ,求a 的取值范围;(2)若A ∪B =B ,求a 的值.。

集合间的基本运算(三)[1] 2

集合间的基本运算(三)[1] 2

1.1.3集合间的基本运算一.课标要求:(1)理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集.(2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集.(3)能使用韦恩图(Venn)表达两个简单集合间的关系及两个简单集合的运算,体会直观图示对理解抽象概念的作用。

二.问题引入我们两个实数除了可以比较大小外,还可以进行加法运算,类比实数的加法运算,两个集合是否也可以“相加”呢?三.构建数学1.并集考察下面的集合,你能说出集合C与集合A、B之前的关系吗?(1)A=﹛x|x是有理数﹜B=﹛x|x是无理数﹜C=﹛x|x是实数﹜(2)A=﹛1、3、5﹜B=﹛2、4、6﹜C=﹛1、2、3、4、5、6﹜一般地,由所有属于集合A或属于集合B的元素所组成的集合,称为集合A 与B的并集(Union)记作:A∪B 读作:“A并B”即:A∪B={x|x∈A,或x∈B}V enn图表示:说明:两个集合求并集,结果还是一个集合,是由集合A与B的所有元素组成的集合(重复元素只看成一个元素)。

注:通过V enn图表示级并集的含义我们可以得到并集的性质:(1)A⊆A∪B,B⊆A∪B,A∪A=A,A∪∅=A,A∪B=B∪A(2)若A∪B=B,则A⊆B,反之也成立2.交集考察下面问题,集合A、B与集合C之间有什么关系?(1)A=﹛2、4、6、8、10﹜ B=﹛3、5、8、12﹜C=﹛8﹜(2)A=﹛x|x是新华中学2004年9月在校的女同学﹜B=﹛x|x是新华中学2004年9月在校的高一年级同学﹜C=﹛x|x是新华中学2004年9月在校的高一年级女同学﹜一般地,由属于集合A且属于集合B的元素所组成的集合,叫做集合A与B的交集(intersection)。

记作:A∩B 读作:“A交B”即:A∩B={x|∈A,且x∈B}交集的V enn图表示说明:两个集合求交集,结果还是一个集合,是由集合A与B的公共元素组成的集合。

交集的性质:(1)A∩B⊆A,A∩B⊆B,A∩A=A,A∩∅=∅,A∩B=B∩A (2)若A∩B=A,则A⊆B,反之也成立。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§1.3集合的基本运算
教学目的:(1)理解两个集合的并集与交集的的含义,会求两个简单集合的并集与交集;
(2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集;(3)能用
Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用。

课型:新授课
教学重点:集合的交集与并集、补集的概念;
教学难点:集合的交集与并集、补集“是什么”,“为什么”,“怎样做”;
教学过程:
一、引入课题
我们两个实数除了可以比较大小外,还可以进行加法运算,类比实数的加法运算,两个集合是否也可以“相加”呢?
思考(P9思考题),引入并集概念。

二、新课教学
1.并集
一般地,由所有属于集合A或属于集合B的元素所组成的集合,称为集合A与B的并集(Union)
记作:A∪B 读作:“A并B”
即:A∪B={x|x∈A,或x∈B}
Venn图表示:
A与B的所有元素组成的集合(重复元素只看成一个元素)。

例题(P9-10例4、例5)
说明:连续的(用不等式表示的)实数集合可以用数轴上的一段封闭曲线来表示。

问题:在上图中我们除了研究集合A与B的并集外,它们的公共部分(即问号部分)还应是我们所关心的,我们称其为集合A与B的交集。

2.交集
一般地,由属于集合A且属于集合B的元素所组成的集合,叫做集合A与B的交集(intersection)。

记作:A∩B 读作:“A交B”
即:A∩B={x|∈A,且x∈B}
交集的Venn图表示
说明:两个集合求交集,结果还是一个集合,是由集合A 与B 的公共元素组成的集合。

例题(P 9-10例6、例7)
拓展:求下列各图中集合A 与B 的并集与交集
当两个集合没有公共元素时,两个集合的交集是空集,集
3. 补集
全集:一般地,如果一个集合含有我们所研究问题中所涉及的所有元素,那么就称这个集合为全集(Universe ),通常记作U 。

补集:对于全集U 的一个子集A ,由全集U 中所有不属于集合A 的所有元素组成的集合称为集合A 相对于全集U 的补集(complementary set ),简称为集合A 的补集, 记作:C U A
即:C U A={x|x ∈U 且x ∈A}
补集的Venn 图表示
说明:补集的概念必须要有全集的限制
例题(P 12例8、例9)
4. 求集合的并、交、补是集合间的基本运算,运算结果仍然还是集合,区分交集与并集的
关键是“且”与“或”,在处理有关交集与并集的问题时,常常从这两个字眼出发去揭示、挖掘题设条件,结合Venn 图或数轴进而用集合语言表达,增强数形结合的思想方法。

5. 集合基本运算的一些结论:
A ∩
B ⊆A ,A ∩B ⊆B ,A ∩A=A ,A ∩∅=∅,A ∩B=B ∩A
A ⊆A ∪
B ,B ⊆A ∪B ,A ∪A=A ,A ∪∅=A,A ∪B=B ∪A
(C U A )∪A=U ,(C U A )∩A=∅
若A ∩B=A ,则A ⊆B ,反之也成立
若A ∪B=B ,则A ⊆B ,反之也成立
A
若x∈(A∩B),则x∈A且x∈B
若x∈(A∪B),则x∈A,或x∈B
课堂练习
(1)设A={奇数}、B={偶数},则A∩Z=A,B∩Z=B,A∩B= (2)设A={奇数}、B={偶数},则A∪Z=Z,B∪Z=Z,A∪B=Z。

相关文档
最新文档