晶体的对称性教程

合集下载

第三章--晶体对称PPT课件

第三章--晶体对称PPT课件

对称轴以L表示,轴次n写在它的右上角,写作Ln。
.
12
晶体外形上可能出现的对称轴如图 I-4-I所列。
.
13
一次对称轴L1无实际意义,因为晶体围绕任一直线旋 转360度。轴可以恢复原状。轴次高于2的对称轴, 称高次轴。图I一4—6举例绘出了晶体中对称轴L2 L3 L4和L6。
.
14
注意
晶体中不可能出现五次或高于六次的对称 轴。这是由于它们不符合空间格子的规律。 在空间格子中,垂直对称轴一定有面网存 在,围绕该对称轴转动所形成的多边形应 法符合于该面网上结点所围成的网孔。
第三章 晶体对称
.
1
对称性
对称是一个很常见的现象。在自然界我们可 观察到五瓣对称的梅花、桃花,六瓣的水仙花、 雪花、松树叶沿枝干两侧对称,槐树叶、榕树 叶又是另一种对称……在人工建筑中,北京的 古皇城是中轴线对称,在化学中,我们研究的 分子、晶体等也有各种对称性,有时会感觉这 个分子对称性比那个分子高,如何表达、衡量 各种对称?数学中定义了对称元素来描述这些 对称。
称为晶体的对称定律。
.
17
在一个晶体中,可以无也可以有一种或几种对 称轴,而每一种对称轴也可以有一个或多个。 如立方体有3L44L36L2(图I一4—8)。
在晶体中,对称轴可能出露的位置为晶面的中心、 晶棱的中点或角项〔图I-4-8a)。
.
18
3.对称中心(C)
对称中心是一个假想的点;
相应的对称操作是对此点的反伸(或称倒反)。 如果通过此点作任意直线,则在此直线上 距对称中心等距离的两端,必定可以找到 对应点。
个。它们是属于低级晶族的三斜晶系不多于一个)和斜方
晶系(二次轴或对称面多于一个);属于中级晶族的四

固体物理§1.6晶体的对称性

固体物理§1.6晶体的对称性
M
A′ 1
A 1
A
A′
19
例题1:立方系的对称性简析。 例题 :立方系的对称性简析。 (1) 三 个 相 互 垂 直 的 四 度 轴
20
(2)四个三度轴 空间对角线 四个三度轴(空间对角线 四个三度轴 空间对角线)
21
(3)六个 度轴 六个2度轴 六个
22
(4)三个和四度轴垂直的对称面 三个和四度轴垂直的对称面
O(对称心 对称心 )
A
( x, y, z)
y
x
A′
(− x,− y,−z)
10
(2) 2象转轴——实际上就是对镜象 。 实际上就是对镜象m。 象转轴 实际上就是对镜象
z(u轴)
A′′
A
( x, y, z)
(− x,− y, z) −
和O-xy对称面 对称面 的操作相当。 的操作相当。
O(对称心 对称心 )
z
O
A
( x, y, z)
A′
A
y
A′
x
( x, y,−z)
O-xy 相当于镜面。 相当于镜面。
8
度旋转—反演轴 象转轴) 四、n度旋转 反演轴 象转轴 度旋转 反演轴(象转轴
1.象转轴 象转轴 (1)定义 定义 先绕u轴转动 中心反演, 先绕 轴转动2π/n,再经过中心反演,晶体自动重 轴转动 ,再经过中心反演 合,则称 轴为 度旋转 反演轴,又称为 度象转轴。 则称u轴为 度旋转—反演轴 又称为n度象转轴 轴为n度旋转 反演轴, 度象转轴。 只有1, , , , 。 只有 ,2,3,4,6。 (2)符号表示 符号表示 2.n度象转轴简析 度象转轴简析 n度象转轴实际上并不都是独立的,通过下面的分 度象转轴实际上并不都是独立的, 度象转轴实际上并不都是独立的 析,可以得到象旋转轴只有 4 是独立的。 是独立的。

晶体的对称性和分类PPT学习教案

晶体的对称性和分类PPT学习教案
晶体只能具有有限个数的宏观对称操作或对称元素 ,对称元素的组合也是一定的,这称为晶体的宏观对 称性破缺
对于旋转对称操作(rotational symmetry operation)来说,由于晶体周期性的限制,转角θ只能 是2π/n,n=1、2、3、4和6。
如果一个晶体绕某轴旋转2π/n及其倍数不变,称该轴 为n次(或n度)旋转轴。
) a ma
m 1 2 cos
1 cos 1
而且,m必须为整数,所以,m只能取 -1,0,1,2,3 与m=-1,0,1,2,3相应的转角为:
2 , 2 , 2 , 2 , 2 n 1,6,4,3,2 6432
第12页/共57页
通常把晶体中轴次最高的转动轴称作主对称轴,简 称主轴 (但是立方晶系则以3次轴为主轴),其它为副轴.
cos sin 0 1 0 0
Az sin
cos
0
0
1 0
0
0 1 0 0 1
1 0 0 11 12 13 1 0 0
Az
AzT
记为
3 3i
3 3i
1i
2m
3
5
1 1
1
1
4
2
2
6 2
第14页/共57页
6=3+
3m 3
5 5
1
6次旋转反演轴等价于3次纯旋转 轴加上垂直于该轴的对称镜面m
,记为 6 3 m
1
6
2' 2
6 4
4
A B
D C
H G
只有具有4次旋转反演轴的晶体,
既没有4次纯旋转轴,也没有对称
中心i,但包括一个与4次旋转反
第19页/共57页
4. 宏观对称操作和物理性质

晶体的对称性讲解

晶体的对称性讲解

合,则由于晶体的周期性,通过格
点B也有一转轴u。
Байду номын сангаас
B1
A
A
B
A1
AB AB 1 2cosθ, AB 是 AB 的整数倍,
cos 0, 1 ,1
2
π , π ,2π
23
2π , 2π , 2π
461
相反若逆时针转 '角后能自身重合,则 B
A
AB AB 1 2cosθ,
AB 是 AB 的整数倍,
x3
X ( x1, x2 , x3 )
X ( x1 , x2 , x3 )
O
x2
x1
x2 Rcos Rcos cos Rsin sin
x2 cos x3 sin
x3 Rsin Rsin cos Rcos sin
x2 sin x3 cos
x1 x2 x3
1 0 0
( x1, x2 , x3 ) 变为 ( x1, x2 , x3 )
x1 x 2 x 3
x1 x2 x3
A
1 0 0
0 1 0
001
A 1
(4)旋转--反演对称
若晶体绕某一固定轴转 2π 以后,再经过中心反演,晶体自
n
身重合,则此轴称为n次(度)旋转--反演对称轴。
旋转--反演对称轴只能有1,2,3,4,6度轴。
旋转--反演对称轴用 1, 2, 3, 4, 6 表示。
旋转--反演对称轴并不都是独立的基本对称素。如:
1i
1 2
2m
1
1
2
3 3i
3
5
1 4
6 2
6=3+m
3 3
5 5

1.6 晶体的对称性

1.6 晶体的对称性

m 1,3,1,0, 2
即:m只能取 -1, 0, 1, 2, 3
2
,
2
与m = - 1, 0, 1, 2, 3相应的cos 为:
1 1 cos =1 0 -1 2 2 2 2 2 2 2 , , , , n 1, 6, 4,3, 2 6 4 3 2
由于晶体周期性的限制,转角只能是:
3
4 2
6
2
4
4
6=3+m 3 3 5 1 5 1 6 2 ' 6 4 4 2
总结:旋转反演对称操作中只有4度旋转反演对 称操作是独立的。 3、概括:
独立的对称操作有8种:1,2,3,4,6,i,m,4
所有点对称操作都可由这8种操作或它们的组合 来完成。由以上8个独立对称操作组合,可得到32种 宏观对称类型,数学上称为32个点群。
i
1
m
二、晶体的基本对称操作:
1、n度转动对称轴:晶体绕某一对称轴旋转 = 2 n 以后自身能够重合,称该轴为n度旋转对称轴。
n 1 2 3 4 6
2、n度旋转反演轴:晶体绕某一对称轴旋转 = 2 n 后,再经中心反演自身能够重合,称该轴为n度旋 转反演轴。记作 n
n
可取值有:1
2 3 4 6
注意:以上许多的操作并不都是独立的
1 中心反演,称为对称心,记作 i 2 等价于垂直于该轴的镜像操作,记作 m
1i
1 1 2 2
2m
1
3 不是基本操作,等价于3度旋转加上对称心 i。 4 是基本操作。 6 不是基本操作,等价于3度旋转加垂直于该
轴的镜像。
3 3i
3
5
3
1 1 2
4

晶体的对称实验原理

晶体的对称实验原理

晶体的对称实验原理
晶体的对称实验原理是指在晶体学中用来确定晶体对称元素和确定晶体点群的
一种实验方法。

晶体的对称元素是指晶体中具有对称操作的元素,包括旋转轴、平面镜面、反演中心和滑移面。

晶体学家通过对晶体进行一系列对称实验,可以确定晶体中存在的对称元素,从而确定晶体点群和空间群。

对称实验的具体步骤如下:
1. 测定晶体外形:通过测量晶体的外形和尺寸,可以初步了解晶体的对称性。

2. 测定晶体的物理性质:晶体的物理性质,如光学性质、电学性质等,与晶体的对称性有关。

通过测定这些物理性质,可以推断晶体的对称元素。

3. 观察晶体的X射线衍射图样:通过观察晶体的X射线衍射图样,可以得到晶体的间距、面索引和晶体的对称元素。

4. 观察晶体的旋转显微镜图样:通过旋转显微镜观察晶体在不同旋转角度下的图样,可以确定晶体的旋转轴、反演中心和滑移面。

5. 测定晶体的点群和空间群:通过以上实验结果,可以确定晶体的点群和空间群。

这些对称实验原理和方法在晶体学中起着重要的作用,对于研究晶体的物理性质、结构和应用都具有重要意义。

第一章 晶体的对称性

第一章 晶体的对称性

第一章晶体的对称性§1-1 晶体内部结构的周期性---点阵与晶格大家都知道晶体内部原子(分子、离子和原子团等,以后称质点)的排列是规则的,具有一定的周期性,这是晶体的主要特点。

不同晶体中的质点在空间中的排列规律是不同的,有许多种排列方式。

因此,在对晶体进行研究时,为了归类方便,常将构成晶体的实际质点抽象成纯粹的几何点,并称之为阵点。

这样的阵点在空间中周期性规则排列并有相同的周围环境。

这种阵点的空间排列就称为空间点阵,或晶体点阵,也称布拉法格子,简称点阵或晶格,共有14种。

§1-2 晶体的宏观对称性---点对称操作晶体内部结构不仅具有周期性,还具有比较复杂的对称性。

实际上,晶体宏观性质和外形的对称性都是其内部结构对称性的反映,与其有着密切关系。

应该说,人们最初认识晶体,是从它们丰富多彩又有规则的外部形状开始的,后来才逐步认识到,晶体外形上的规则性及其宏观性质的对称性,是与其内部微观结构的对称性密切相关的。

在本节及以下几节中,通过对晶体的宏观对称性的描述,引进群的初步概念,给出晶体的32个点群,并依据晶体对称性特征,区分晶类和晶系。

1.晶体的宏观对称性。

晶体外形上(宏观上)的规律性,突出表现在晶面的对称排列上。

如:把立方体的岩盐晶体绕其中心轴每转900后,晶体自身就会重合,而把六面柱体的石英晶体绕其柱轴每转600后,晶体亦会自身重合。

这里提到的绕轴转动称旋转操作,是一种点对称操作。

通常把经过某种点对称操作后晶体自身重合的性质称为晶体的宏观对称性。

描述晶体宏观对称性的方法,就是列举使其自身重合的所有点对称操作。

为了明确对称性和对称操作的概念,先给出以下概念:●相等图形。

如花瓣。

●等同图形。

如左右手。

相等图形属于等同图形,但等同图形不一定是相等图形。

●对称图形。

由两个或两个以上的等同图形构成的并在空间有规律排列的图形称对称图形。

2.对称性。

对称图形中各等同部分在空间排列的特殊规律性称对称性。

ssp-05-晶体的宏观对称性-2014

ssp-05-晶体的宏观对称性-2014
第5讲_晶体的宏观对称性 —— 晶体结构
中心反演矩阵的行列式等于-1
—— 空间转动加中心反演,矩阵行列式等于-1
不动也是一个操作
1 0 0 0 1 0 0 0 1
对称操作 —— 一个物体在某一个正交变换下保持不变
—— 物体的对称操作越多,其对称性越高
第5讲_晶体的宏观对称性 —— 晶体结构
——

0 0 0 0 0 0 0 0 0
D 0E
—— 正四面体晶体上述结论亦然成立 —— 介电常数的论证和推导也适合于一切具有二阶张量形 式的宏观性质:如导电率、热导率……等
第5讲_晶体的宏观对称性 —— 晶体结构
—— 六角对称晶体,将坐标轴取在 六角轴和垂直于六角轴的平面 内介电常数具有如下形式
在三维情况下,正交变换可以写成
x x ' a11 y y ' a 12 z z ' a 13
{aij }, i, j 1, 2, 3
a12 a22 a13
a13 x a23 y a33 z
B点转到B’点 —— B’点必有一个格点
A和B两点等价——以通过B点 的轴顺时针转过
A点转到A’点 —— A’点必有一个格点 且有 B ' A ' nAB — n为整数
第5讲_晶体的宏观对称性 —— 晶体结构
B ' A ' nAB
B ' A ' AB(1 2cos )
1 2cos n
第五讲: 晶体的宏观对称性
1. 2. 3. 4. 晶体中的基本宏观对称操作 晶体中的32个点群 晶体中的空间群(73点空间群,157复杂空间群) 晶体表面的几何结构
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1i
1 2 1
2m
1
3
3 3i
5
4 2
2
1 6
6=3+m 3 3 5 1 5 1 6 2 ' 6 4 4 2
A C H E F D
A
3
4
1
3
正四面体既无四
1 2
2
D
B
4
4
度轴也无对称心
C
B
G
G
F E
H
点对称操作: (1)旋转对称操作:1,2,3,4,6 度旋转对称操作。 C1,C2,C3,C4,C6 (用熊夫利符号表示) (2)旋转反演对称操作: 1,2,3,4,6度旋转反演对称操作。
, x X ( x1 , x ) 2 3 可以用线性变换来表示。
X AX
x1 X x 2 x 3
a12 a22 a32 a13 a23 33
x1 X x 2 x x 3 3
a11 A a21 a 31
x1 x1
x2 cos x3 sin
x1
R cos cos R sin sin x 2 R cos
x R sin R sin cos R cos sin 3
x2 sin x3 cos
1 0 x1 0 x1 x 0 cos sin x 2 2 x 0 sin cos x 3 3
晶体的对称性
本节主要内容:
1 对称性与对称操作 2 晶系和布喇菲原胞 3 点群的表示符号
1 对称性与对称操作
对称性:经过某种动作后,晶体能够自身重合的特性。
对称操作:使晶体自身重合的动作。
对称素: 对称操作所依赖的几何要素。
1.对称操作与线性变换
经过某一对称操作,把晶体中任一点 X ( x1 , x2 , x3 ) 变为
S1,S2,S3,S4,S6(用熊夫利符号表示)
(3)中心反映:i。
(4)镜象反映:m。
独立的对称操作有8种,即1,2,3,4,6,i,m, 4 。
或C1,C2,C3,C4,C6 ,Ci,Cs,S4。
立方体对称性
(1)立方轴C4:
(2)体对角线C3:
对称轴中不存在五次轴,只有1,2,
3,4,6度旋转对称轴。
(2)中心反演(i,对称素为点)
取中心为原点, 变为 ( x1 , x2 , x3 )
x1 x1 x x 2 2 x x 3 3
0 1 0 A 0 cos sin 0 sin cos
晶体中允许有几度旋转对称轴呢? 设B1ABA1是晶体中某一晶
A 1
B
A
面上的一个晶列,AB为这一晶
列上相邻的两个格点。

B1
A B

A1
若晶体绕通过格点A并垂直于 纸面的u轴顺时针转角后能自身重 合,则由于晶体的周期性,通过格 点B也有一转轴u。 B1
B
A

A B

A1
AB AB 1 2cos θ ,
1 cos 0, ,1 2

AB 是 AB 的整数倍,

2π 2π 2π , , 4 6 1
π π , ,2π 2 3
相反若逆时针转 '角后能自身重合,则
B
A
AB AB 1 2cos θ,
AB 是 AB 的整数倍,
B1



A1
A
B
1 cos 0, ,1 2
θ
π 2π , ,π 2 3
θ
2π 2π 2π , , 4 3 2
2π , n 1, 2, 3, 4, 6 综合上述证明得: θ n
晶体中允许的旋转对称轴只能是1,2,3,4,6度轴。
1
2
3
4
6
正五边形沿竖直轴每旋转720恢 复原状,但它不能重复排列充满一个 平面而不出现空隙。因此晶体的旋转
X ( x1 , x , x ) 2 3
X ( x1 , x2 , x3 )
O x1
操作前后,两点间的距离保持不变, O点和X点间距与O点和 X 点间距相等。
x2
x x1 x 2 x 3 x1 2 x 3
~~ ~ ~~ ~ X X AX AX XAAX XX
2π 以后自身重合,则此轴称为n n
当OX绕Ox1转动角度时,图中
x3
X ( x1 , x2 , x3 )
, x X ( x1 , x ) 2 3
, x X ( x1 , x ) 2 3
若OX在Ox2x3平面上投影的长度为R, O 则


X ( x1 , x2 , x3 )
x2
(4)旋转--反演对称
( x1 , x2 , x3 )
1 0 0 A 0 1 0 0 0 1
A 1
2π 以后,再经过中心反演,晶体自 n 身重合,则此轴称为n次(度)旋转--反演对称轴。
若晶体绕某一固定轴转
旋转--反演对称轴只能有1,2,3,4,6度轴。
旋转--反演对称轴用 1, 2, 3, 4, 6 表示。 旋转--反演对称轴并不都是独立的基本对称素。如:
2
2
2
2
2
2

~ AA I
1 I为单位矩阵,即: I 0 0
0 1 0
0 0 1
或者说A为正交矩阵,其矩阵行列式 A 1 。 2.简单对称操作(旋转对称、中心反映、镜象、旋转反演 对称)
(1)旋转对称(Cn,对称素为线)
若晶体绕某一固定轴转 次(度)旋转对称轴。 下面我们计算与转动对应的变换矩阵。
1 0 0 A 0 1 0 0 0 1
A 1
(3)镜象(m,对称素为面) 如以x3=0面作为对称面,镜象是将图形的任何一点
( x1 , x2 , x3 ) 变为
x1 x1 x x 2 2 x x 3 3
相关文档
最新文档