2019-2020年高中数学《函数及其表示》教案4 新人教A版必修1
【新教材】 新人教A版必修一 函数及其表示 教案

2019—2020学年新人教A版必修一函数及其表示教案1.函数2.函数的有关概念(1)函数的定义域、值域在函数y=f(x),x∈A中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.(2)函数的三要素:定义域、对应关系和值域.(3)函数的表示法表示函数的常用方法有解析法、图象法和列表法.3.分段函数若函数在其定义域的不同子集上,因对应关系不同而分别用几个不同的式子来表示,这种函数称为分段函数.概念方法微思考请你概括一下求函数定义域的类型.提示(1)分式型;(2)根式型;(3)对数式型;(4)指数函数、对数函数型;(5)三角函数型.题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)对于函数f:A→B,其值域就是集合B。
(×)(2)若两个函数的定义域与值域相同,则这两个函数相等.( ×)(3)函数f(x)的图象与直线x=1最多有一个交点.( √)(4)分段函数是由两个或几个函数组成的.(×)题组二教材改编2.函数f(x)=错误!的定义域是________.答案(-∞,1)∪(1,4]3.函数y=f(x)的图象如图所示,那么,f(x)的定义域是________;值域是________;其中只有唯一的x值与之对应的y值的范围是________.答案[-3,0]∪[2,3][1,5][1,2)∪(4,5]题组三易错自纠4.已知集合P={x|0≤x≤4},Q={y|0≤y≤2},下列各对应关系f不能表示从P到Q的函数的是________.(填序号)①f:x→y=错误!x;②f:x→y=错误!x;③f:x→y=错误!x;④f:x→y=错误!.答案③解析对于③,因为当x=4时,y=错误!×4=错误!∉Q,所以③不是从P到Q的函数.5.已知f(错误!)=x-1,则f(x)=____________.答案x2-1(x≥0)解析令t=x,则t≥0,x=t2,所以f(t)=t2-1(t≥0),即f(x)=x2-1(x≥0).6.设f(x)=错误!则f(f(-2))=________.答案1 2解析因为-2〈0,所以f(-2)=2-2=错误!>0,所以f(f(-2))=f错误!=1-错误!=1-错误!=错误!。
高中数学 第1章《函数及其表示复习课》教案 新人教A版必修1

课题:函数及其表示复习课课 型:复习课教学目标:(1)会求一些简单函数的定义域和值域;(2)掌握分段函数、区间、函数的三种表示法;(3)会解决一些函数记号的问题.教学重点:求定义域与值域,解决函数简单应用问题。
教学难点:对函数记号的理解。
教学过程:一、基础习题练习:(口答下列基础题的主要解答过程 → 指出题型解答方法)1.说出下列函数的定义域与值域: 835y x =+; 243y x x =-+; 2143y x x =-+; 2.已知1()1f x x =-,求f , ((3))f f , (())f f x ; 3.已知0(0)()(0)1(0)x f x x x x π<⎧⎪==⎨⎪+>⎩,(1)作出()f x 的图象;(2)求(1),(1),(0),{[(1)]}f f f f f f -- 的值二、讲授典型例题:例1.已知函数)(x f =4x+3,g(x)=x 2, 求f[f(x)],f[g(x)],g[f(x)],g[g(x)].例2.求下列函数的定义域:(1)0y =(2)y =;例3.若函数y =的定义域为R,求实数a 的取值范围. (1,9a ∈)例4. 中山移动公司开展了两种通讯业务:“全球通”,月租50元,每通话1分钟,付费0.4元;“神州行”不缴月租,每通话1分钟,付费0.6元. 若一个月内通话x 分钟,两种通讯方式的费用分别为12,y y (元).(1).写出12,y y 与x 之间的函数关系式?(2).一个月内通话多少分钟,两种通讯方式的费用相同?(3).若某人预计一个月内使用话费200元,应选择哪种通讯方式?三.巩固练习:1.已知)(x f =x 2-x+3 ,求:f(x+1), f(x1)的值;2.若1f x =+)求函数(x f )的解析式;3.设二次函数)(x f 满足)2()2(x f x f -=+且)(x f =0的两实根平方和为10,图象过点(0,3),求)(x f 的解析式.4.已知函数2()3f x ax ax =+-的定义域为R,求实数a 的取值范围. 归纳小结:本节课是函数及其表示的复习课,系统地归纳了函数的有关概念,表示方法. 作业布置:1. 课本P 24习题1.2 B 组题1,3;2. 预习函数的基本性质。
高中数学函数及其表示教案人教版必修一

函数及其表示教案一.【知识回顾】1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B 的一个函数。
记作:y=f(x),x∈A。
其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域。
2.构成函数的三要素:定义域、对应关系和值域3.两个函数的相等:函数的定义含有三个要素,当函数的定义域及从定义域到值域的对应法则确定之后,函数的值域也就随之确定。
因此,定义域和对应法则为函数的两个基本条件,当且仅当两个函数的定义域和对应法则都分别相同时,这两个函数才是同一个函数。
4.区间(1)区间的分类:开区间、闭区间、半开半闭区间;(2)无穷区间;5.映射的概念:一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A→B 为从集合A到集合B的一个映射。
记作“f:A→B”。
函数是建立在两个非空数集间的一种对应,若将其中的条件“非空数集”弱化为“任意两个非空集合”,按照某种法则可以建立起更为普通的元素之间的对应关系,这种的对应就叫映射。
6.常用的函数表示法(1)解析法:就是把两个变量的函数关系,用一个等式来表示;(2)列表法:就是列出表格来表示两个变量的函数关系;(3)图象法:就是用函数图象表示两个变量之间的关系7.分段函数:若一个函数的定义域分成了若干个子区间,而每个子区间的解析式不同;8.复合函数:若y=f(u),u=g(x),x(a,b),u(m,n),那么y=f[g(x)]称为复合函数,u称为中间变量,它的取值范围是g(x)的值域。
二.【课堂练习】1.下列四种说法正确的一个是( C )A.)(xf表示的是含有x的代数式B.函数的值域也就是其定义中的数集BC .函数是一种特殊的映射D .映射是一种特殊的函数2.已知f 满足f (ab )=f (a )+ f (b),且f (2)=p ,q f =)3(那么)72(f 等于 ( B )A .q p +B .q p 23+C .q p 32+D .23q p +3.下列各组函数中,表示同一函数的是( C )A .x x y y ==,1B .1,112-=+⨯-=x y x x yC .33,x y x y ==D . 2)(|,|x y x y == 4.已知函数23212---=x x x y 的定义域为 ( D )A .]1,(-∞B .]2,(-∞C .]1,21()21,(-⋂--∞D . ]1,21()21,(-⋃--∞ 5.在同一坐标系中,函数bx ax y +=2与)0,0(≠≠+=b a b ax y 函数的图象只可能是( B )6.设⎪⎩⎪⎨⎧<=>+=)0(,0)0(,)0(,1)(x x x x x f π,则=-)]}1([{f f f( A )A .1+πB .0C .πD .1-7.设函数x x x f =+-)11(,则)(x f 的表达式为 ( C )A .x x -+11B . 11-+x xC .x x +-11D .12+x x 8.已知二次函数)0()(2>++=a a x x x f ,若0)(<m f ,则)1(+m f 的值为 ( A )A .正数B .负数C .0D .符号与a 有关9.已知在x 克%a 的盐水中,加入y 克%b 的盐水,浓度变为%c ,则y 与x 的函数关系式( B )A .x b c a c y --=B .x c b a c y --=C .x a c b c y --=D .x a c c b y --= 10.已知)(x f 的定义域为)2,1[-,则|)(|x f 的定义域为( C ) A .)2,1[- B .]1,1[- C .)2,2(- D .)2,2[-11.已知x x x f 2)12(2-=+,则)3(f = -1 .12.若记号“*”表示的是2*b a b a +=,则用两边含有“*”和“+”的运算对于任意三个实数“a ,b ,c ”成立一个恒等式c b a c b a *+=+)()*(.13.集合A 中含有2个元素,集合A 到集合A 可构成 4 个不同的映射.14.从盛满20升纯酒精的容器里倒出1升,然后用水加满,再倒出1升混合溶液,再用水加满. 这样继续下去,建立所倒次数x 和酒精残留量y 之间的函数关系式*,)2019(20N x y x ∈⨯=.15.①.求函数|1||1|13-++-=x x x y 的定义域;R ②求函数x x y 21-+=的值域;令t x =-21,0≥t ,)1(212t x -=,原式等于1)1(21)1(2122+--=+-t t t ,故1≤y 。
2019-2020年高中数学《函数及其表示》教案3 新人教A版必修1

2019-2020年高中数学《函数及其表示》教案3 新人教A 版必修1 教学目标:使学生掌握函数图像的画法.教学重点:函数图像的画法.教学难点:函数图像的画法.教学过程:一、复习回顾上节课,我们学习了函数的概念,请同学们回忆一下,函数的定义是怎样的?它有几个要素?分别是什么?设A 、B 是非空的数集,如果按照某个确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有惟一确定的数f(x)和它对应,那么就称f ︰A →B 为从集合A 到集合B 的一个函数.函数有三要素:定义域、值域、对应关系.练习:下列函数中,哪个函数与函数y =x 是同一个函数?()()()()()xx y 4x y 3x y 2x y 122332==== 两个只有当它们的三要素完全相同时才为同一个函数. 二、学生活动在初中,我们已学过函数的图象,并能作出函数y =2x -1,y =1x(x ≠0)以及y =x 2的图象.社会生活中还有许多函数图象的例子,如心电图、示波图等.回想一下,在初中我们是采用什么方法来画出函数的图象?描点法描点法作图的步骤有哪些?列表、描点、连线练习(P25例4)试画出下列函数的图象:⑴f(x)=x +1⑵f(x)=(x -1)2+1,x ∈[1,3)三、建构数学将自变量的一个值x 0作为横坐标,相应的函数值f(x 0)作为纵坐标,就得到坐标平面上的一个点(x 0,f(x 0)).当自变量取遍函数定义域A 中的每一个值时,就得到一系列这样的点.所有这些点组成的集合(点集)为{(x,f(x))|x ∈A},即{(x,f(x))|y =f(x),x ∈A},所有这些点组成的图形就是函数y =f(x)的图象.四、数学运用例5 估计人口数量变化趋势是我们制定一系列相关政策的依据.从人口统计年鉴中可以查得我国从1949年至xx 年人口数据资料如表所示,你能根据这个表说出我国人口变化情况如果把人口数y (百万人)看做年份x 的函数,试画出这个函数的图象.解:由上表的数据,画出的函数图象是11个点.补:一物体从静止开始下落,下落的距离y(m)与下落时间x(s)之间近似地满足关系式y =4.9x 2.若一物体下落2s ,你能求出它下落的距离吗?并画出它的图象.思考:设函数y =f(x)的定义域为A ,则集合P ={(x,y)|y =f(x),x ∈A}与集合Q ={y |y =f(x),x ∈A}相等吗?请说明理由. 解析:P ≠Q ,因为P 、Q 的代表元素不一样,P 是点集,Q 是值域.问题:直线x =1和函数y =x 2+1的图象的公共点可能几个?解析:根据图象知有且仅有一个公共点.变:⑴(P29习题6)直线x =a 和函数y =x 2+1几个? 解析:根据图象知有且仅有一个公共点.⑵直线x =-1和函数y =x 2+1,x ∈[0.+∞)的图象的公共点可能几个?解析:根据图象知没有公共点.⑶直线x =a 和函数y =x 2+1,x ∈A 的图象的公共点可能几个?解析:当a ∈A ,则根据图象知有且仅有一个公共点;当a ∉A 时,没有公共点.例6 试画出函数f(x)=x 2+1的图象,并根据图象回答下列问题:⑴比较f(-2),f(1),f(3)的大小;⑵若0<x 1<x 2,试比较f(x 1)与f(x 2)的大小. 解:函数的图象如下 ⑴根据图象知f(3)>f(-2)>f(1),⑵根据图象知,当0<x 1<x 2f(x 1)<f(x 2).思考:在上例⑵中,⑴如果把“0<x 1<x 2”改为“x 1<x 2<0”,那么f(x 1)与f(x 2)哪个大?⑵如果把“0<x 1<x 2”改为“|x 1|<|x 2|”,那么f(x 1)与f(x 2)哪个大?解析:仍然根据函数的图象,有⑴f(x 1)>f(x 2).⑵∵f(x)的图象关于y 轴对称,∴当|x 1|<|x 2|时有f(x 1)<f(x 2).学生练习P28练习1,2,3五、回顾反思能用描点法画出常见函数的图象,并能根据函数的图象解决有关问题六、作业P20习题2.1⑴7,8,92019-2020年高中数学《函数及其表示》教案4 新人教A 版必修1 教材分析:函数是描述客观世界变化规律的重要数学模型.高中阶段不仅把函数看成变量之间的依赖关系,同时还用集合与对应的语言刻画函数,高中阶段更注重函数模型化的思想.教学目的:(1)通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;(2)了解构成函数的要素;(3)会求一些简单函数的定义域和值域;(4)能够正确使用“区间”的符号表示某些函数的定义域;教学重点:理解函数的模型化思想,用合与对应的语言来刻画函数;教学难点:符号“y=f(x)”的含义,函数定义域和值域的区间表示;教学过程:一、引入课题1. 复习初中所学函数的概念,强调函数的模型化思想;2. 阅读课本引例,体会函数是描述客观事物变化规律的数学模型的思想:(1)炮弹的射高与时间的变化关系问题;(2)南极臭氧空洞面积与时间的变化关系问题;(3)“八五”计划以来我国城镇居民的恩格尔系数与时间的变化关系问题备用实例:3.引导学生应用集合与对应的语言描述各个实例中两个变量间的依赖关系;4.根据初中所学函数的概念,判断各个实例中的两个变量间的关系是否是函数关系.二、新课教学(一)函数的有关概念1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B 的一个函数(function).记作:y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域(domain);与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域(range).注意:○1“y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”;○2函数符号“y=f(x)”中的f(x)表示与x对应的函数值,一个数,而不是f乘x.2.构成函数的三要素:定义域、对应关系和值域3.区间的概念(1)区间的分类:开区间、闭区间、半开半闭区间;(2)无穷区间;(3)区间的数轴表示.4.一次函数、二次函数、反比例函数的定义域和值域讨论(由学生完成,师生共同分析讲评)(二)典型例题1.求函数定义域课本P20例1解:(略)说明:○1函数的定义域通常由问题的实际背景确定,如果课前三个实例;○2如果只给出解析式y=f(x),而没有指明它的定义域,则函数的定义域即是指能使这个式子有意义的实数的集合;○3函数的定义域、值域要写成集合或区间的形式.巩固练习:课本P22第1题2.判断两个函数是否为同一函数课本P21例2解:(略)说明:○1构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数)○2 两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。
2019-2020年高中数学函数的表示方法教案(第一课时)新课标人教版必修1(A)

2019-2020年高中数学函数的表示方法教案(第一课时)新课标人教版必修1(A)教学目标:1.进一步理解函数的概念;2.使学生掌握函数的三种表示方法;教学重点:函数的表示方法 教学难点:函数三种表示方法的选择 教学方法:自学法和尝试指导法 教学过程: (Ⅰ)引入问题 1.回忆函数的两种定义; 2.函数的三要素分别是什么?3.设函数,则 ,若,则= 。
(II )讲授新课 函数的三种表示方法(1)解析法(将两个变量的函数关系,用一个等式表示):如222321,,2,6y x x S r C r S t ππ=++===等。
优点:⎩⎨⎧函数值;意一个自变量所对应的可以通过解析式求出任量间的关系;简明,全面地概括了变(2)列表法(列出表格表示两个变量的函数关系):如:平方表,三角函数表,利息表,列车时刻表,国民生产总值表等。
优点:不需要计算,就可以直接看出与自变量的值相对应的函数值。
(3)图象法(用图象来表示两个变量的函数关系):如:优点:直观形象地表示自变量的变化。
(III )例题分析:例1(书P 22).某种笔记本的单价是5元,买x (个笔记本需要y 元,试用函数的三种表示法表示函数。
解:这个函数的定义域是数集,用解析法可以将函数表示为 ,。
用列表法可以将函数表示为图象法略。
说明:函数的图象通常是一段或几段光滑的曲线,但有时也可以由一些孤立点或几段线段组成。
例2.下表是某校高一(1)班三名同学在高一年度六次数学测试的成绩及班级平均分表。
请你对这三位同学在高一学年度的数学学习情况做一个分析。
分析:画出“成绩”与“测试时间”的函数图象,可以直观地看出:王伟同学的数学学习成绩始终高于班级平均水平,学习情况比较稳定而且成绩优秀。
张城同学的数学成绩不稳定,总是在班级平均水平上下波动,而且波动幅度较大。
赵磊同学的数学学习成绩低于班级平均水平,但他的成绩曲线呈上升趋势,表明他的数学成绩在稳步提高。
(IV)课堂练习:课本P27练习1、2。
2019-2020年高中数学《函数的基本性质》教案4 新人教A版必修1

2019-2020年高中数学《函数的基本性质》教案4 新人教A版必修1理解函数的奇偶性及其几何意义;学会运用函数图象理解和研究函数的性质;函数的奇偶性及其几何意义.判断函数的奇偶性的方法与格式.⑴让学生观察偶函数y=f(x)的图象,若能请说出该图象具有什么特殊的性质?答案:①可以作为某个函数y=f(x)的图象,并且它的图象关于y轴对称;②若点(x,f(x))在函数图象上,则相应的点(-x,f(x))也在函数图象上,即函数图象上横坐标互为相反数的点,它们的纵坐标一定相等.⑵让学生观察奇函数y=f(x)的图象,若能请说出该图象具有什么特殊的性质?答案:①可以作为某个函数y=f(x)的图象,并且它的图象关于原点对称;②若点(x,f(x))在函数图象上,则相应的点(-x,-f(x))也在函数图象上,即函数图象上横坐标互为相反数的点,它们的纵坐标也一定互为相反数.象上面实践操作①中的图象关于y轴对称的函数即是偶函数,操作②中的图象关于原点对称的函数即是奇函数.⑴偶函数一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数.(学生活动):仿照偶函数的定义给出奇函数的定义⑵奇函数一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)= -f(x),那么f(x)就叫做奇函数.①函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质;②由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x,则-x也一定是定义域内的一个自变量(即定义域关于原点对称)③偶函数的图象关于y轴对称;奇函数的图象关于原点对称.二、典型例题⑴判断函数的奇偶性例5.(教材P39例5)应用函数奇偶性定义说明两个观察思考中的四个函数的奇偶性.解:(略)(本例由学生讨论,师生共同总结具体方法步骤)①定义域必关于原点对称,才有奇偶性可言;②确定f(-x)与f(x)的关系;若f(-x)-f(x) = 0,则偶;若f(-x)+f(x) = 0,则奇.巩固练习:(教材P40习题1)[附加题].(教材P43习题1.3 B组每1题)解:(略)说明:函数具有奇偶性的一个必要条件是,定义域关于原点对称,所以判断函数的奇偶性应应首先判断函数的定义域是否关于原点对称,若不是即可断定函数是非奇非偶函数.⑵利用函数的奇偶性补全函数的图象(教材P39思考题)y轴对称;奇函数的图象关于原点对称.说明:这也可以作为判断函数奇偶性的依据.巩固练习:(教材P40练习2)⑶函数的奇偶性与单调性的关系(学生活动)举几个简单的奇函数和偶函数的例子,并画出其图象,根据图象判断奇函数和偶函数的单调性具有什么特殊的特征.[附加题].已知f(x)是奇函数,在(0,+∞)上是增函数,证明:f(x)在(-∞,0)上也是增函数解:任取,使得,则由于f(x) 在(0,+∞)上是增函数所以又由于f(x)是奇函数所以和由上得即f(x)在(-∞,0)上也是增函数奇函数在关于原点对称的区间上单调性一致.[附加题] .已知f(x)是偶函数,当x≥0时,f(x)=x(1+x);求当x <0时,函数f(x)的解析式解:设x <0,则-x >0有f(-x)= -x [1+(-x)]由f(x)是偶函数,则f(-x)=f(x)所以f(x) = -x [1+(-x)]= x(x-1)本节主要学习了函数的奇偶性,判断函数的奇偶性通常有两种方法,即定义法和图象法,用定义法判断函数的奇偶性时,必须注意首先判断函数的定义域是否关于原点对称.单调性与奇偶性的综合应用是本节的一个难点,需要学生结合函数的图象充分理解好单调性和奇偶P46习题1.3(A组)第5、6题, B组第3题课后思考:已知是定义在R上的函数,设,○1试判断的奇偶性;○2试判断的关系;○3由此你能猜想得出什么样的结论,并说明理由.2019-2020年高中数学《函数的基本性质》教案5 新人教A版必修1教学目的:(1)理解函数的奇偶性及其几何意义;(2)学会运用函数图象理解和研究函数的性质;(3)学会判断函数的奇偶性.教学重点:函数的奇偶性及其几何意义.教学难点:判断函数的奇偶性的方法与格式.教学过程:一、引入课题1.实践操作:(也可借助计算机演示)取一张纸,在其上画出平面直角坐标系,并在第一象限任画一可作为函数图象的图形,然后按如下操作并回答相应问题:○1以y轴为折痕将纸对折,并在纸的背面(即第二象限)画出第一象限内图形的痕迹,然后将纸展开,观察坐标系中的图形;问题:将第一象限和第二象限的图形看成一个整体,则这个图形可否作为某个函数y=f(x)的图象,若能请说出该图象具有什么特殊的性质?函数图象上相应的点的坐标有什么特殊的关系?答案:(1)可以作为某个函数y=f(x)的图象,并且它的图象关于y轴对称;(2)若点(x,f(x))在函数图象上,则相应的点(-x,f(x))也在函数图象上,即函数图象上横坐标互为相反数的点,它们的纵坐标一定相等.○2以y轴为折痕将纸对折,然后以x轴为折痕将纸对折,在纸的背面(即第三象限)画出第一象限内图形的痕迹,然后将纸展开,观察坐标系中的图形:问题:将第一象限和第三象限的图形看成一个整体,则这个图形可否作为某个函数y=f(x)的图象,若能请说出该图象具有什么特殊的性质?函数图象上相应的点的坐标有什么特殊的关系?答案:(1)可以作为某个函数y=f(x)的图象,并且它的图象关于原点对称;(2)若点(x,f(x))在函数图象上,则相应的点(-x,-f(x))也在函数图象上,即函数图象上横坐标互为相反数的点,它们的纵坐标也一定互为相反数.2.观察思考(教材P39、P40观察思考)二、新课教学(一)函数的奇偶性定义象上面实践操作○1中的图象关于y轴对称的函数即是偶函数,操作○2中的图象关于原点对称的函数即是奇函数.1.偶函数(even function)一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数.(学生活动):仿照偶函数的定义给出奇函数的定义2.奇函数(odd function)一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做奇函数.注意:○1函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质;○2由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x,则-x也一定是定义域内的一个自变量(即定义域关于原点对称).(二)具有奇偶性的函数的图象的特征偶函数的图象关于y轴对称;奇函数的图象关于原点对称.(三)典型例题1.判断函数的奇偶性例1.(教材P36例3)应用函数奇偶性定义说明两个观察思考中的四个函数的奇偶性.(本例由学生讨论,师生共同总结具体方法步骤)解:(略)总结:利用定义判断函数奇偶性的格式步骤:○1首先确定函数的定义域,并判断其定义域是否关于原点对称;○2确定f(-x)与f(x)的关系;○3作出相应结论:若f(-x) = f(x) 或 f(-x)-f(x) = 0,则f(x)是偶函数;若f(-x) =-f(x) 或 f(-x)+f(x) = 0,则f(x)是奇函数.巩固练习:(教材P41例5)例2.(教材P46习题1.3 B组每1题)解:(略)说明:函数具有奇偶性的一个必要条件是,定义域关于原点对称,所以判断函数的奇偶性应应首先判断函数的定义域是否关于原点对称,若不是即可断定函数是非奇非偶函数.2.利用函数的奇偶性补全函数的图象(教材P41思考题)规律:偶函数的图象关于y轴对称;奇函数的图象关于原点对称.说明:这也可以作为判断函数奇偶性的依据.巩固练习:(教材P42练习1)3.函数的奇偶性与单调性的关系(学生活动)举几个简单的奇函数和偶函数的例子,并画出其图象,根据图象判断奇函数和偶函数的单调性具有什么特殊的特征.例3.已知f(x)是奇函数,在(0,+∞)上是增函数,证明:f(x)在(-∞,0)上也是增函数解:(由一名学生板演,然后师生共同评析,规范格式与步骤)规律:偶函数在关于原点对称的区间上单调性相反;奇函数在关于原点对称的区间上单调性一致.三、归纳小结,强化思想本节主要学习了函数的奇偶性,判断函数的奇偶性通常有两种方法,即定义法和图象法,用定义法判断函数的奇偶性时,必须注意首先判断函数的定义域是否关于原点对称.单调性与奇偶性的综合应用是本节的一个难点,需要学生结合函数的图象充分理解好单调性和奇偶性这两个性质.四、作业布置1.书面作业:课本P46习题1.3(A组)第9、10题, B组第2题.2.补充作业:判断下列函数的奇偶性:○1;○2;○3()○43.课后思考:已知是定义在R上的函数,设,○1试判断的奇偶性;○2试判断的关系;○3由此你能猜想得出什么样的结论,并说明理由.。
高中数学人教A版必修1教案-1.2_函数及其表示_教学设计_教案_6

教学准备1. 教学目标(1)理解函数的概念和记号,掌握函数的三种表示形式;(2)会求基本的代数函数的定义域;(3)掌握两个函数是同一函数的条件,掌握函数的图象特征。
(4)通过问题的讨论、回答,增强数学语言的表达能力,分析、归纳能力,提高数学素质;(5)增强动态意识、通过观察、对比、分析,发展辩证思维能力。
(6)领会一切事物都是在不断变化,而且是相互联系,相互制约的,从而增强辩证唯物主义观点。
2. 教学重点/难点【教学重点】函数的概念【教学难点】深入理解函数的概念3. 教学用具4. 标签教学过程【教学过程】一、新课引入引例:同学们骑车上学,速度越快,用的时间越少。
其中有两个变量某物体运动中距离s,速度v,时间t(1)如果距离s不变,则,变量v与t成反比例(2)如果速度v不变,则s=vt, 变量s与t成正比例复习正比例函数,反比例函数,一次函数和二次函数(板书课题:函数的概念)一、新课讲解l 函数的概念(与映射相结合,回忆初中所学内容)1、判断下面哪些关系是函数关系?6)某自来水厂,水压、时间的对应关系(7)上海市人均住房面积统计表提问:上面各例中的关系哪些是函数关系,为什么?可结合函数定义进行判断回忆函数符号想一想决定一个函数是否仅依靠对应法则?函数的三要素:定义域,对应法则,值域l 函数的表示方法:解析法,列表法,图象法(什么时候用图象法、列表法)l 函数图象具有的特征:三种表示形式各有优劣,互相补充,互相转化。
这种转化思想就是数形结合的思想。
提问:具有函数关系的图象会具有什么特征呢?为此,我们先来判断下列图象是否是函数图象?请同学总结函数图象应具有的特征例:求下列函数的定义域一、课时小结1、函数的三要素:定义域,对应法则,值域2、函数的表示法:解析法,列表法,图象法3、函数图象的特征:经过函数定义域中任何一个点x作垂直于x轴的直线,它与函数的图象恰好有一个交点。
4、两个函数是同一个函数必须满足:定义域相同,对应法则相同二、家庭作业【教学后记】。
2019-2020学年高中数学《1.2 函数及其表示》教学设计 新人教A版必修1.doc

2019-2020学年高中数学《1.2 函数及其表示》教学设计 新人教A版必修1(一)内容及解析1、内容:函数的概念、表示方法2、解析:函数是高中数学的重要内容。
在学生学习用集合与对应的语言刻画函数之前,学生已经会把函数看成变量之间的依赖关系;同时,虽然函数概念比较抽象,但函数现象大量存在于学生周围。
(二)目标及其解析目标1、掌握函数的概念2、掌握函数的定域、值域3、掌握函数的表示方法解析:1、一般地,设非空A 、B 是非空的数集,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x,在集合B 中都有唯一确定的数f(x)和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数,记作 (x)y f =,x ∈A其中,x,叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{(x)f ∣x A ∈}叫做函数的值域。
2、初中已经接触过函数的三种方法表示:解析法、列表法和图像法。
高中阶段是让学生在了解三种表示法各自优点的基础上,重点在于是学生面对实际情景时,会根据不同的需要选择恰当的方法表示函数。
.教学难点函数概念及符号y=f(x)(三)教学问题诊断分析1、学生不容易认识到函数概念的整体性,而将函数单一理解成函数中的对应关系,甚至认为函数就是函数值。
2、学生在学习用集合与对应的语言刻画函数之前,比较习惯的使用解析式表示函数,但这是对函数很不全面认识。
(四)教学支持条件分析为了加强学生对这一节内容的理解,帮助学生克服在学习中遇到的困难,本节尽可能多的对实例进行分析,让学生合作探讨。
(五)教学过程设计1、教学基本流程概述本节内容→本节学习要点→学习过程、实例分析→练习、小结2、问题与例题(1)对教科书中的实例1,你能得出炮弹飞行1s,5s,10s,20s 时距地面多高吗?其中,t 的变化范围是多少? 设计意图:体会用解析式刻画变量之间的对应关系,关注t 和h 范围。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020年高中数学《函数及其表示》教案4 新人教A版必修1
教材分析:函数是描述客观世界变化规律的重要数学模型.高中阶段不仅把函数看成变量之间的依赖关系,同时还用集合与对应的语言刻画函数,高中阶段更注重函数模型
化的思想.
教学目的:(1)通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念
中的作用;
(2)了解构成函数的要素;
(3)会求一些简单函数的定义域和值域;
(4)能够正确使用“区间”的符号表示某些函数的定义域;
教学重点:理解函数的模型化思想,用合与对应的语言来刻画函数;
教学难点:符号“y=f(x)”的含义,函数定义域和值域的区间表示;
教学过程:
一、引入课题
1.复习初中所学函数的概念,强调函数的模型化思想;
2.阅读课本引例,体会函数是描述客观事物变化规律的数学模型的思想:
(1)炮弹的射高与时间的变化关系问题;
(2)南极臭氧空洞面积与时间的变化关系问题;
(3)“八五”计划以来我国城镇居民的恩格尔系数与时间的变化关系问题
备用实例:
3.
4.根据初中所学函数的概念,判断各个实例中的两个变量间的关系是否是函数关系.
二、新课教学
(一)函数的有关概念
1.函数的概念:
设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B 的一个函数(function).
记作:y=f(x),x∈A.
其中,x叫做自变量,x的取值范围A叫做函数的定义域(domain);与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域(range).注意:
○1“y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”;
○2函数符号“y=f(x)”中的f(x)表示与x对应的函数值,一个数,而不是f乘x.2.构成函数的三要素:
定义域、对应关系和值域
3.区间的概念
(1)区间的分类:开区间、闭区间、半开半闭区间;
(2)无穷区间;
(3)区间的数轴表示.
4.一次函数、二次函数、反比例函数的定义域和值域讨论
(由学生完成,师生共同分析讲评)
(二)典型例题
1.求函数定义域
课本P 20例1
解:(略)
说明:
○
1 函数的定义域通常由问题的实际背景确定,如果课前三个实例; ○
2 如果只给出解析式y=f(x),而没有指明它的定义域,则函数的定义域即是指能使这个式子有意义的实数的集合;
○
3 函数的定义域、值域要写成集合或区间的形式. 巩固练习:课本P 22第1题
2.判断两个函数是否为同一函数
课本P 21例2
解:(略)
说明:
○
1 构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数)
○
2 两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。
巩固练习:
○
1 课本P 22第2题 ○
2 判断下列函数f (x )与g (x )是否表示同一个函数,说明理由? (1)f ( x ) = (x -1) 0;g ( x ) = 1
(2)f ( x ) = x ; g ( x ) =
(3)f ( x ) = x 2;f ( x ) = (x + 1) 2
(4)f ( x ) = | x | ;g ( x ) =
(三)课堂练习
求下列函数的定义域
(1)
(2)x 111
)x (f +=
(3)
(4)
(5)
(6)13x x 1)x (f -++-=
三、归纳小结,强化思想
从具体实例引入了函数的的概念,用集合与对应的语言描述了函数的定义及其相关概念,介绍了求函数定义域和判断同一函数的典型题目,引入了区间的概念来表示集合。
四、作业布置
课本P 28 习题1.2(A 组) 第1—7题 (B 组)第1题
2019-2020年高中数学《函数及其表示》教案5 新人教A版必修1
教学目的:(1)明确函数的三种表示方法;
(2)在实际情境中,会根据不同的需要选择恰当的方法表示函数;
(3)通过具体实例,了解简单的分段函数,并能简单应用;
(4)纠正认为“y=f(x)”就是函数的解析式的片面错误认识.教学重点:函数的三种表示方法,分段函数的概念.
教学难点:根据不同的需要选择恰当的方法表示函数,什么才算“恰当”?分段函数的表示及其图象.
教学过程:
五、引入课题
5.复习:函数的概念;
6.常用的函数表示法及各自的优点:
(1)解析法;
(2)图象法;
(3)列表法.
六、新课教学
(一)典型例题
例1.某种笔记本的单价是5元,买x (x∈{1,2,3,4,5})个笔记本需要y元.试用三种表示法表示函数y=f(x) .
分析:注意本例的设问,此处“y=f(x)”有三种含义,它可以是解析表达式,可以是图象,也可以是对应值表.
解:(略)
注意:
○1函数图象既可以是连续的曲线,也可以是直线、折线、离散的点等等,注意判断一个图形是否是函数图象的依据;
○2解析法:必须注明函数的定义域;
○3图象法:是否连线;
○4列表法:选取的自变量要有代表性,应能反映定义域的特征.
巩固练习:
课本P27练习第1题
例2.下表是某校高一(1)班三位同学在高一学年度几次数学测试的成绩及班级及班级平均分表:
第一次第二次第三次第四次第五次第六次王伟98 87 91 92 88 95
张城90 76 88 75 86 80
赵磊68 65 73 72 75 82
班平均分88.2 78.3 85.4 80.3 75.7 82.6 请你对这三们同学在高一学年度的数学学习情况做一个分析.
分析:本例应引导学生分析题目要求,做学情分析,具体要分析什么?怎么分析?借助什么工具?
解:(略)
注意:
○
1 本例为了研究学生的学习情况,将离散的点用虚线连接,这样更便于研究成绩的变化特点;
○
2 本例能否用解析法?为什么? 巩固练习:
课本P 27练习第2题
例3.画出函数y = | x | .
解:(略)
巩固练习:课本P 27练习第3题
拓展练习:
任意画一个函数y=f(x)的图象,然后作出y=|f(x)| 和 y=f (|x|) 的图象,并尝试简要说明三者(图象)之间的关系.
课本P 27练习第3题
例4.某市郊空调公共汽车的票价按下列规则制定:
(1) 乘坐汽车5公里以内,票价2元;
(2) 5公里以上,每增加5公里,票价增加1元(不足5公里按5公里计算). 已知两个相邻的公共汽车站间相距约为1公里,如果沿途(包括起点站和终点站)设20个汽车站,请根据题意,写出票价与里程之间的函数解析式,并画出函数的图象.
分析:本例是一个实际问题,有具体的实际意义.根据实际情况公共汽车到站才能停车,所以行车里程只能取整数值.
解:设票价为y 元,里程为x 公里,同根据题意,
如果某空调汽车运行路线中设20个汽车站(包括起点站和终点站),那么汽车行驶的里
程约为19公里,所以自变量x 的取值范围是{x ∈N *| x ≤19}.
由空调汽车票价制定的规定,可得到以下函数解析式:
⎪⎪⎩⎪⎪⎨⎧=5432y 19
151********≤<≤<≤<≤<x x x x () 根据这个函数解析式,可画出函数图象,如下图所示:
注意:
○1本例具有实际背景,所以解题时应考虑其实际意义;
○2本题可否用列表法表示函数,如果可以,应怎样列表?
实践与拓展:
请你设计一张乘车价目表,让售票员和乘客非常容易地知道任意两站之间的票价.(可以实地考查一下某公交车线路)
说明:象上面两例中的函数,称为分段函数.
注意:分段函数的解析式不能写成几个不同的方程,而就写函数值几种不同的表达式并用一个左大括号括起来,并分别注明各部分的自变量的取值情况.
七、归纳小结,强化思想
理解函数的三种表示方法,在具体的实际问题中能够选用恰当的表示法来表示函数,注意分段函数的表示方法及其图象的画法.
八、作业布置
课本P28习题1.2(A组)第8—12题(B组)第2、3题。