数形结合例题选集

合集下载

数形结合的几个经典题

数形结合的几个经典题

数形结合1.如图1,大长方形的面积从整体看为S=m(a+b+c),同时这个大长方形的面积也可以从局部表示成:S=S1+S2+S3=ma+mb+mc;于是有m(a+b+c)=ma+mb+mc。

2.如图2,大长方形的面积从整体可以表示成(a+b)(m+n),同时这个大长方形的面积也可以从局部表示成S=S1+S2+S3+S4=ma+mb+na+nb;于是有(a+b)(m+n)=ma+mb+na+nb.。

3.如图3,阴影部分的面积可以看成是大正方形的面积减去小正方形的面积,即a2-b2;若把小长方形S4旋转到小长方形S3的位置,则此时的阴影部分的面积又可以看成S1+S2+ S3=(a+b)(a-b)。

于是有(a+b)(a-b)=a2-b2。

4.如图4:将边长为b的小正方形放到边长为a的正方形的一角,空白部分的面积从整体计算为a2-b2;而如果从局部考虑,其面积可以看作为两个梯形S1+S2之和,其面积为()()()()))((22babababababa-+=-++-+。

于是有(a+b)(a-b)=a2-b2。

5.如图5,大正方形的面积从整体可以表示为(a+b)2,从局部可以表示为也可以表示为S=S1+ S2+ S3+S4,同时S=a2+ab+ab+b2=a2+2ab+b2,于是有(a+b)2=a2+2ab+b2。

6.如图6,从整体看,这个图形的面积为(a+b)(a+2b),从局部我们可以看出,它分为6部分,这6部分的面积之和为a2+3ab+2b2,所以(a+b)(a+2b)= a2+3ab+2b2。

数形结合例题例1 在边长为a的正方形中挖去一个边长为b的小正方形(a>b)(如图1),把余下的部分拼成一个长方形(如图2),根据两个图形中阴影部分的面积相等,可以验证()A.(a+b)2=a2+2ab+b2B.(a-b)2=a2-2ab+b2C.a2-b2=(a+b)(a-b)D.(a+2b)(a-b)=a2+ab-2b2析解:图1的阴影部分面积等于边长为a的正方形面积与边长为b的正方形的面积差,表示为a2-b2.图2中阴影部分是长方形,其中长为a+b,宽为a-b,其面积为(a+b)(a-b).根据两个图形中阴影部分的面积相等,有a2-b2=(a+b)(a-b).故选C.例2 如图3是四张全等的长方形纸片拼成的图形,请利用图中空白部分面积的不同表示方法,写出一个关于a、b的恒等式________.析解:空白部分的面积可看成是一个正方形,它的边长为a-b,所以面积为(a-b)2;空白部分面积又可看成大正方形面积与四个长方形面积的差,大正方形的面积为(a+b)2,aba -baba -b甲乙每个长方形的面积为ab ,所以空白部分面积为(a +b )2-4ab .因此有恒等式(a +b )2-4ab =(a -b )2成立.故填(a +b )2-4ab =(a -b )2.例3 图4是由一个边长为a 的正方形与两个长、宽分别为a 、b 的小长方形拼接而成的长方形ABCD ,则整个图形可表达出一些等式,请你写出其中任意三个等式______、______、_______.析解:读懂题意,观察图中数据关系是关键,其次利用面积写出代数式,.根据图形的组合特点,由面积间的相等关系,写出符合要求的等式,如:a 2+2ab =a (a +2b );a (a +b )+ab =a (a +2b ); a (a +2b )-a (a +b )=ab ;a (a +2b )-ab =a (a +b );a (a +2b )-a 2=2ab ;a (a +2b )-2ab =a 2.数形结合解题1.将图甲中阴影部分的小长方形变换到图乙位置,根据两个图形的面积关系可以得到一个关于a 、b 的恒等式为( )A()222b 2ab a b a +-=- B.()2222b ab a b a ++=+C()()22b a b -a b a -=+D.()ab a b a a -=-22.图①是一个边长为()m n +的正方形,小颖将图①中的阴影部分拼成图②的形状,由图①和图②能验证的式子是( )A .22()()4m n m n mn +--= B .222()()2m n m n mn +-+= C .222()2m n mn m n -+=+ D .22()()m n m n m n +-=-3.如图,边长为(m +3)的正方形纸片剪出一个边长为m 的正方形之后余部分又剪拼成一个矩形(不重叠无缝隙),若拼成的矩形一边长为3,则另一边长是( )A .2m +3B .2m +6C .m +3D .m +64.七年级学生小明剪出了多张如图⑴中的正方形和长方形的卡片,利用这些卡片他拼成了如图⑵中的大正方形,由此验证了我们学过的公式:2222)(b ab a b a ++=+.现在请你选取图⑴中的卡片(各种卡片的张数不限),并利用它们在图⑶中拼出一个长方形,由此来验证等式:2232)2)((b ab a b a b a ++=++.(请按照图⑴中卡片的形状来画图5.数形结合是一种重要的数学方法,,你能利用这种方法把算式(2a+b)(a+2b)=2a 2+5ab+2b 2的合理性解释清楚吗aa bb⑴(2)(3)。

(完整版)数形结合练习

(完整版)数形结合练习

1 / 2数形结合练习一.选择题:1.向高为 H 的水瓶中灌水,注满为止,假如灌水量 v 与水深 h 的函数关系以以以下图,那么水瓶的形状是2.已知定义在R 上的偶函数 f(x)在( 0, +∞)上是增函数且 f( 1)=0 则知足3f (log 1 x) >0 的 x 的取值范围是8(A ){ 1} ∪(2, +∞ ) ( B )(0,1)(C )(0, 1)∪ (2, +∞) (D ) (2, +∞ )2223.方程 lgx=sinx 的根的个数是(A )1 个 (B )2 个 (C )3 个 (D )无数个4.函数 y =a|x|和 y= x+a 的图像恰巧有两个公共点,则实数 a 的取值范围为(A )(1, +∞ ) ( B )(-1, 1) (C )(-∞ , -1) (D )(-∞ , - 1)∪(1, +∞) 5.已知 0<a<1,方程 a |x| | log a x | 的实数根的个数是(A )1 个 (B )2 个 (C )3 个 (D )以上都有可能 .若不等式2-log a < 0在 (0, 1 内恒建立 ,则 a 的取值范围是6x x )2(A )[ 1, 1)( B ) (0, 1)(C ) ( 1, 1) (D )(0, 1)1616167.代数式 x 2 y 2 x 2( y 1)2( x 1) 2 y 2(x 1) 2( y 1)2 的最小值为(A )2 (B )2 2( C )4 (D )4 2.函数 = sin2x+acos2x 图像的一条对称轴为 x =-,那么 a 等于8 y8(A ) 2( B )- 2( C )1 (D )- 19.直线 y=a (a ∈R )与曲线 y = cot(ωt),(ω> 0)的相邻两交点之间的距离是(A )k(B )2( C ) (D )以上都不对二.填空题:1.已知有向线段 PQ 的起点 P 和终点 Q 分别为(- 1,1)和( 2, 2),若直线 l :x+my+m=0 与 PQ 的延伸线订交,则 m 的取值范围是 . 2.若直线 l :y =kx+1 与曲线 c :x =y 2 1 只有一个公共点,则实数 k 的取值1范围是.3.函数 y=23x 的值域是1x4.若 a ∈ (0,1) ,则T= sin(1+a) , T =sin(1- a), T =cos(1+a) 的大小关系1232为.5.方程 |x- |2x+1||=1 的不一样样样实根的个数为.6.函数 u=2x 15 2x 的最大值是.三.解答题:.已知+十 3的最大值 .), 求 2a b14a+9b=10(a,b∈6 R2.假如对于x 的方程sinx+acosx= 2 恒有解,务实数 a 的取值范围3.已知函数 f(x)=ax2-c 知足一 4≤f(1)≤- 1,- 1≤f(2)≤5,求 f(3)的范围.4.已知 a ≥0, b≥0, a+b=1,求证:a1b 1≤2.225.若 A={ x| -2≤x≤a} , B={ y| y=2x+3,x∈A}, C={ z| z=x2, x∈ A} ,若 C B,求 a 的值.6.已知抛物线 C:y=- x2+mx-1,点 A(3,0), B(0, 3), 求抛物线 C 与线段AB 有两个不一样样样交点时 m 的范围.22 / 2。

数形结合找规律试题集锦

数形结合找规律试题集锦

4=1+3 9=3+616=6+10图7 … 数形结合找规律试题集锦1 如图所示,每个正方形点阵均被一直线分成两个三角形点阵,根据图中提供的信息,用含n 的等式表示第n 个正方形点阵中的规律____________________。

2古希腊著名的毕达哥拉斯学派把1、3、6、10 … 这样的数称为“三角形数”,而把1、4、9、16 … 这样的数称为“正方形数”.从图7中可以发现,任何一个大于1 的“正方形数”都可以看作两个相邻“三角形数”之和.下列等式中,符 合这一规律的是( )A .13 = 3+10B .25 = 9+16C .36 = 15+21D .49 = 18+313 如图,是由12个边长相等的正三角形镶嵌而成的平面图形,则图中的平行四边形共有_______个.4 (08河北)有一个四等分转盘,在它的上、右、下、左的位置分别挂着“众”、“志”、“成”、“城”四个字牌,如图5-1.若将位于上下位置的两个字牌对调,同时将位于左右位置的两个字牌对调,再将转盘顺时针旋转90 ,则完成一次变换.图5-2,图5-3分别表示第1次变换和第2次变换.按上述规则完成第9次变换后,“众”字位于转盘的位置是( )A .上B .下C .左D .右第(4)题图5-1图5-2图5-3 …5 如图①是一块瓷砖的图案,用这种瓷砖来铺设地面,如果铺成一个2×2的正方形图案(如图②),其中完整的圆共有5个,如果铺成一个3×3的正方形图案(如图③),其中完整的圆共有13个,如果铺成一个4×4的正方形图案(如图④),其中完整的圆共有25个,若这样铺成一个10×10的正方形图案,则其中完整的圆共有个.6把长方形的纸条对折一次可得1条折痕,对折两次可得3条折痕,那么对折6次可得条折痕。

对折n次可得条折痕。

7如图第二个三角形是由第一个三角形连接三边的中点而得到的,猜想第四个图形中有个三角形,………,第n个图形共有个三角形(1 )( 2 )( 3 )这n个图形共有个三角形。

六年级数形结合的典型例题

六年级数形结合的典型例题

六年级数形结合的典型例题
小明和小红在操场上走路,小明每走一步,小红就走两步,他们同时从操场的同一个起点出发,小明走了10步,小红走了20步,他们此时在同一个位置上,问他们此时距离起点的距离分别是多少?
解题思路:
这是一个有关步数的问题。

由于小红每走一步,小明就走了两步,所以他们步数之间的比例是2:1,所以假设小明走了x 步,小红走了2x步,利用两点间的距离公式,可以得出小明距离起点的距离为10x,小红距离起点的距离为20x。

因为他们此时在同一个位置上,所以10x=20x,从中可以解出 x=5,因此小明距离起点的距离为50步,小红距离起点的距离为100步。

答案:小明距离起点的距离为50步,小红距离起点的距离为100步。

数形结合的题目

数形结合的题目

数形结合的题目1. 已知一个圆的面积为 $\pi$,求它的周长。

解:圆的面积为$\pi r^2$,所以$r=1$。

周长为$2\pi r=2\pi$。

2. 在一个边长为 $1$ 的正方形中,一只苍蝇从一个角爬到另一个角,求苍蝇爬行的最短距离。

解:由于正方形的两条对角线相等,所以苍蝇从一个角到另一个角的最短距离为对角线的长度,即 $\sqrt{2}$。

3. 已知一个等边三角形的周长为 $6$,求其面积。

解:设该三角形的边长为 $a$,则 $a\times 3=6$,即 $a=2$。

由于该三角形是等边三角形,所以它的高等于边长的一半,即$\frac{\sqrt{3}}{2}\times 2=\sqrt{3}$。

所以该三角形的面积为$\frac{1}{2}\times 2\times\sqrt{3}=\sqrt{3}$。

4. 在一个正方形中,一条对角线被分成两段,比为 $3:4$。

求正方形的边长。

解:设正方形的边长为 $a$,则对角线的长度为 $\sqrt{2}a$。

由于对角线被分成的两段比为 $3:4$,所以两段分别为$\frac{3}{7}\sqrt{2}a$ 和 $\frac{4}{7}\sqrt{2}a$。

根据勾股定理,我们得到$(\frac{3}{7}\sqrt{2}a)^2+(\frac{4}{7}\sqrt{2}a)^2=(\sqrt{2}a)^2$,化简得 $a=7$。

5. 已知半径相等的两个圆相切,其中一个圆的面积为$16\pi$,求另一个圆的面积。

解:由于两个圆相切,所以它们的切点处连线的长度等于两个圆的半径之和,即 $r+r=2r$。

设另一个圆的面积为 $S$,则$S=\pi(2r)^2-\pi r^2=3\pi r^2$。

设第一个圆的面积为 $16\pi$,则 $\pi r^2 = 16\pi$,即 $r=4$。

所以另一个圆的面积为 $3\pir^2=3\times 16\pi=48\pi$。

数形结合找规律试题集锦.doc

数形结合找规律试题集锦.doc

判断题1.销售统计表毛利成本分析不正确的可能是由于“销售出库单”在存货系统已审核,但在销售系统中发货单还未生成“销售发票”,从而造成销售与成本不匹配。

答案:False2.销售管理中发货开票勾对表统计出客户的收款情况,作为客户信用的评估依据。

答案:False3.发货开票勾对表可以统计发货、开票、收款情况等,其中收款情况来自应收系统的核销数据。

答案:True4.发货统计表只能统计发货的数量,但不能统计发货已结算(开票)部分的数量。

答案:False5.销售统计表能够提供销售金额、折扣、成本、毛利等数据,其存货成本数据来自存货系统。

答案:True6.退货明细表与销售综合统计表均有是否退货过滤项,劳务收入统计表和发货统计表具有按按劳务过滤的功能。

答案:False7.存货核算中填制出库调整单,在收发存汇总表金额已被调整,但此单据未回写到销售统计分析表中去。

可能的原因是由于销售出库调整单上的部门、客户等信息不全。

答案:True8.销售统计表中以前各月都可以显示本期成本,但是本与月不能显示成本金额,可能是存货中单据没有记账,全月平均的仓库未进行期末处理。

答案:True9.发货统计表中可以查询到去年已发货未开票的发货单。

答案:True10.销售账表,对于其中的数字型栏目,系统默认按照一定的数字格式显示,但可以修改。

答案:True11.销售综合统计表可以按货物、客户、部门三种方式进行货龄分析,分析。

答案:False12.查询发货单开票情况的做法还可通过发货单列表,设置出结算数量来查询相关数据。

答案:True13.销售成本只有到存货核算系统月末结账后才能取得准确的数据。

答案:True14.发货统计表可以统计存货的发货、开票、结存业务数据信息,其开票数据来自与发货单相关联的销售发票、销售调拨单、零售日报及其红字单据。

答案:True15.销售统计表能够提供销售金额、折扣、成本、毛利信息,其成本来源于《存货核算》的存货明细账。

数形结合初中数学题

数形结合初中数学题

数形结合初中数学题
数形结合是初中数学中一个重要的概念,是指将数与形结合起来进行思考和推理。

以下是一些数形结合的初中数学题:
1. 一个圆的半径是2,它的面积是多少?
2. 一根长度为6cm的棒,它的周长是多少?
3. 一张桌子上有n个苹果,它们的重量之和是20千克,每个苹果的重量是多少?
4. 一个矩形的长和宽相等,高是4cm,它的面积是多少?
5. 一个三角形的三个底之和等于12,求这个三角形的高的值。

6. 一根长度为10cm的棒,它的重心在它的5cm直径的截面的中心,那么这个棒的质量是多少?
7. 一个正方形的边长是5cm,它的周长是多少?
8. 一个圆的半径是3cm,它在平面上的位置是A,它在立体空间的坐标是多少?
这些题目通过将数形结合,提供了更多的思考方法和解决问题的思路。

学生可以通过理解这些题目,掌握数形结合的概念和技巧,提高自己的数学思维能力。

小学数学数形结合练习题

小学数学数形结合练习题

小学数学数形结合练习题题目一:数形结合的认知训练1. 看图填空:(a) 在图中,将所有的三角形标记一下。

(b) 将你周围的物体,如书桌、椅子等尽可能多地找出正方形、长方形和圆形,并分别写下它们的名称。

2. 计算下列各图形的周长和面积:(a) 根据提供的边长,计算正方形的周长和面积。

(b) 根据提供的长和宽,计算长方形的周长和面积。

(c) 根据提供的半径,计算圆形的周长和面积。

(d) 尝试设计一个你认为面积最大的正方形,画出它的示意图,并计算周长和面积。

3. 图形转换:(a) 请将以下图形按照标号进行旋转,并写出每个旋转后的图形名称。

图1:正方形图2:长方形图3:三角形图4:圆形(b) 请将以下图形按照标号进行翻转,并写出每个翻转后的图形名称。

图1:正方形图2:长方形图3:三角形图4:圆形4. 找规律:(a) 请观察以下数字序列,找出其规律,并写出下一个数字:1, 4, 9, 16, ...(b) 请观察以下形状序列,找出其规律,并画出下一个形状:△, □, ○, ▽, ...5. 图形拼凑:(a) 使用提供的拼图块,组合成一个正方形。

(b) 使用提供的拼图块,组合成一个长方形。

(c) 使用提供的拼图块,组合成一个圆形。

6. 图形推理:给出以下图形的排列顺序,请写出图形编号,并解释其排列规律。

图1:▽图2:□ 图3:○ 图4:△题目二:数形结合的实际应用1. 实际问题运用:(a) 小明家花园的形状是长方形,长为8米,宽为5米,他要在花园的四周围上一圈砖。

砖的规格是2米长、1米宽,请问他需要多少块砖?如果砖的价格是每块20元,他需要多少钱?(b) 小红的家有一个圆形的花坛,直径是3米。

她想在花坛周围种植一圈花草,每株花草之间的间距是20厘米。

她需要多少株花草?题目三:数形结合的解决问题能力训练1. 智力题:(a) 小明手上有12枚硬币,其中有一个是假币,假币的重量比真币轻。

小明有一个天平,最多能使用3次天平,能否找出假币?如果能,请写出解决方法;如果不能,请解释原因。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数形结合一、在一些命题证明中的应用举例: 1、证明勾股定理:2222c b a b a 0.5ab 4=+=-+⨯)()(解析:上图中,四个小三角形(阴影部分)的面积加上中间小正方形的面积等于大正方形的面积,化简后得到勾股定理222c b a =+。

2、证明乘法公式(平方差与完全平方):))((b a b a b a 22-+=- 2ab b a b a 222++=+)(解析:在上图中,利用正方形和小正方形面积的转化,能更进一步理解平方差公式与完全平方公式的运算过程以及公式的本质问题。

3、证明基本不等式:解析:如上图所示,直角三角形斜边上的中线等于斜边的一半,长度为2ba +,根据直角三角形的相似关系,可以得到直角三角形斜边上的高的长度为ab ,显然在直角三角形中,斜边上的中线的长度会大于等于高,利用这样简洁明了的几何图解,对基本不等式的理解也就更加简单了。

4、证明正(余)弦定理:解析:(1)如上图所示,csinB bsinC bsinC a 21h a 21S ABC =⇒⋅=⋅=∆的面积; 即sinCc sinB b sinA a sinC c sinB b ===,同理可得; 根据圆的性质(等弧对等角)2R sinAa 2R a sinD sinA D A ===∠=∠,即,; 综上,得正弦定理:2R sinC csinB b sinA a ===。

(2)根据勾股定理22222222cosB c a b cosB c c CE AC BE AB )()(,即⋅--=⋅--=-;整理可得余弦定理:2acb c a cosB 222-+=;同理得出cosA 、cosC 的余弦定理。

5、证明结论),(,20x sinx x x tan π∈>>解析:如上图所示,根据y=tanx 、y=x 、y=sinx 在),(20x π∈上的图像可看出tanx>x>sinx ,),(20x π∈。

当然,实际考试作图不可能如此精确,那么转化到右图的单位圆中,当),(20x π∈时,角的终边始终在第一象限内,根据三角函数线可知,蓝线表示正弦线,红线表示正切线,再根据弧长公式x 1x R =⋅==θl ,即图中黑色弧线的长度表示x ,显而易见。

红线长度>弧线长度>蓝线长度,即tanx>x>sinx ,),(20x π∈。

6、证明两角差的余弦公式:解析:如上图所示,根据三角比的定义及单位圆的定义可知单位圆上的点的坐标表示。

左图中,222sin sin cos cos AB )()(βαβα-+-=,将B 点旋转至(1,0)处(右图所示)。

此时,222][sin ]1[cos AB )()(βαβα-+--=,因为线段AB 的长度没有发生变化,即22sin sin cos cos )()(βαβα-+-22][sin ]1[cos )()(βαβα-+--=,化简:βαβαβαsin sin cos cos cos +=-)(。

当然也可以用向量的方法证明,利用向量数量积定义,证明更加简洁。

如左图,11sin cos sin cos OBOA OB OA cos ⋅⋅=⋅=-),(),()(ββααβα βαβαsin sin cos cos +=。

二、在考试中的具体应用:1、与函数的综合运用,主要体现在求零点、交点、解的个数及参数范围等方面: 例1 (14奉贤)已知定义在R 上的函数y=f (x )对任意x 都满足f (x+2)=-f(x ),当,若函数)(时,3x x f 1x 1-=<≤x log x f x g a -=)()(只有四个零点,则a 的取值范围是答案:),(),(533151⋃ 解析:根据已知条件,f (x )的周期为4,先画f (x )一个周期图像,当1≤x<3时,222x -x f x -f 2x 2x f )()(),()()(-==-=-,由此画出[-1,3)的图像,此为一个周期,图像如下,x log x f x g a -=)()(只有四个零点即f (x )与y=x log a 只有四个交点,需分类讨论: (1)当0<a<1时,有两个界值,如下图所示:此时5个交点,代入点(-5,-1),解得a=51此时3个交点,代入点(3,-1),解得a=31(2)当a>1时,也有两个界值,如下图所示:此时3个交点,代入(-3,1),解得a=3。

评注:数形结合体型,一定要结合图像分析,并且一些用于定位的特殊点要善于把握;另一方面,必须熟悉初等函数的所有性质及函数图像的变换。

例2 (14闵行)⎪⎩⎪⎨⎧>+-<<=4x 3708x x 324x 0x log x f 22,,)(,若a 、b 、c 、d 互不相同,且f (a )=f (b )=f (c )=f (d ),则abcd 的取值范围是 答案:(32,35)解析:根据题意,如下图所示,ab=1,abcd=cd=2c 12c 12c -=-)(,4<c<5,所以答案是(32,35)。

评注:这类题出现很多,典型的数形结合题型,要让学生熟悉各类函数图像及相关性质,尤其是对称性和周期性;在草稿纸上作图时,虽说是草图,但有必要做出一些特殊点进行定位;写区间时,务必考虑区间的开闭情况。

变式 已知函数f (x )=||x-1|-1|,若关于x 的方程f (x )=t (t ∈R )恰有四个互不相等的实数根432143214321x x x x x x x x x x x x ⋅++<<<),则(、、、的取值范围是答案:(3,4)解析:根据题意,如下图所示,)(,3343432121x 4x x x x x x x 0x x -⋅=⋅=⋅++=+=),(,21x x 4x 3233∈-。

例3 (14杨浦)定义一种新运算:⎩⎨⎧<≥=⊗b a a ba b b a ,,。

已知函数f (x )=(1+x log x42⊗),若函数g (x )=f (x )-k 恰有两个零点,则k 的取值范围是( )A.(1,2];B.(1,2);C.(0,2);D.(0,1) 答案:B解析:⎪⎩⎪⎨⎧≤<>+=⎪⎪⎩⎪⎪⎨⎧+<+≥+=⊗+=4x 0x log 4x x41x41x log x log x 41x log x 41x log x 41x f 22222,,,,)()(,如下图所示:令g (x )=f (x )-k=0,问题转化为函数y=f (x )与函数y=k 有两个交点,则k ∈(1,2)。

评注:本题考查分段函数表达式求法,函数零点问题转化成两函数交点问题,数形结合很容易求解,可以作适当的延伸,比如,有一个零点,求k 的取值范围等。

例4 (14宝山)关于函数f (x )=1x x -,给出下列四个命题:①当x>0时,y=f (x )单调递减且无最值; ②方程f (x )=kx+b (k ≠0)一定有解;③如果方程f (x )=k 有解,则解的个数一定是偶数; ④y=f (x )是偶函数且有最小值。

则其中真命题是 答案:②、④解析:含绝对值、分类讨论。

先画x>1和0<x<1的部分,然后根据偶函数的性质(关于y 轴对称)画出左半部分,函数图像如下图所示:①明显错误;③k=0时,解的个数为1;②、④正确。

评注:含绝对值的数形结合题型,根据绝对值内的情况,进行分类讨论,画出函数图像,再结合函数性质,一般是对称性或奇偶性,然后根据函数图像对各项进行分析筛选。

例5 (14奉贤)定义在),(∞+0上的函数f (x )满足: ①当),3[1x ∈时,⎩⎨⎧<<-≤≤-=3x 2x 32x 11x x f ,,)(; ②f (3x )=3f (x )。

设关于x 的函数F (x )=f (x )-1的零点从小到大依次记为54321x x x x x 、、、、、 ……,则=++++54321x x x x x 答案:50解析:结合已知条件,分析函数性质,画出函数图像,如下图所示,4321x x x x +++=+5x 2+4+8+10+26=50评注:数学结合最直观,或根据函数的对称性,找到对称关系,图像就画出来了,答案也就呼之欲出,这就是数形结合在直观呈现方面的快捷。

2、与三角函数的综合运用:例1 (14十三校联考)已知f (x )=asin2x+bcos2x (a 、b 为常数),若对于任意内的解为,在区间)(),则方程()(都有][00x f 125f x f R x ππ=≥∈ 答案:x=32x 6ππ=或 解析:根据“若对于任意)()(都有125f x f R x π≥∈”可知,当x=125π时,函数图像取最低点,再结合函数解析式可知函数周期为π,因为函数的最值横坐标与相邻零点之间相差41个周期,即4π,所以在区间[0,π]内的解(即在区间[0,π]内的零点)为x=32x 6x 4125ππππ==±或,即。

评注:本题看似复杂,因为有字母a 、b ,但只要理解了“三角函数的最值横坐标与相邻零点急间相差41个周期”这样的图像性质,结合图像原理,就迎刃而解了。

例2 (14闸北)设a>0且a ≠1,已知函数f (x )=)(0x 2x sin22a x >-+π至少有5个零点,则a 的取值范围为 答案:(0,1)⋃(1,2)解析:就是求函数),(在与函数∞+∈-==0x a 2y x sin22y x π上的交点个数,分两种情况:(1)当0<a<1时,在),(∞+∈0x 两个函数图像有无数个交点,如下图所示:所以0<a<1时,满足至少有5个交点(2)当a>1时,如下图所示,在),(∞+∈0x 要至少5个交点,x a 2y -=函数在x=1处要大于0即2-a>0,a<2,满足至少有5个交点。

评注:这是一道典型的数形结合的题型,将零点问题转化成函数交点个数问题,注意理解题意、审清题意及数与形之间的转化。

例3 (14虹口)函数f (x )=2sin x π与函数31x x g -=)(的图像所有交点的横坐标之和为 答案:17解析:画出函数f (x )=2sin x π与函数31x x g -=)(的图像,如下图所示:这俩图像都是关于点(1,0)对称,所以它们的交点也是关于点(1,0)对称,即一对对称交点的横坐标之和为2,总共有8对关于点(1,0)对称的点,再加上(1,0)点本身,即所有交点的横坐标之和为17。

评注:本题首先要熟悉函数的图像变换,精确画出函数图像,然后再研究交点的特性,在这道题中,交点关于点(1,0)对称的,在这个前提下,求横坐标之和就转化成简单的中点问题。

相关文档
最新文档