中考考纲初中数学常考知识点

合集下载

中考数学复习知识点归纳总结7篇

中考数学复习知识点归纳总结7篇

中考数学复习知识点归纳总结7篇篇1一、数与代数(一)数的认识1. 自然数的认识:自然数是指用以计量事物的件数或表示事物次序的数。

即用数码0,1,2,3,4……所表示的数。

中考中可能会涉及自然数的连续性及自然数的个数等问题。

复习时需要注意对自然数概念的理解及运用。

2. 整数的认识:整数包括正整数、零和负整数。

在中考复习中,需要掌握整数的性质、运算规则以及与分数的区别等知识点。

(二)代数式与方程1. 代数式的认识:代数式是由数字、字母和数学符号组成的一种数学表达式。

在中考复习中,需要掌握代数式的简化、代入计算等知识点。

同时还需要加强对代数式在实际问题中应用的能力培养。

如与面积计算、路程问题等结合出题的情况很常见。

例如“给出多边形的一条边长为a米,与其相邻的两边之差的代数式是:______________”。

因此类题目较为灵活,需要考生具备一定的数学思维和解题技巧。

(三)数的运算与性质篇2一、数与代数(一)数的认识1. 自然数的认识:自然数是指用以计量事物的件数或表示事物次序的数。

即用数码0,1,2,3,4……所表示的数。

2. 整数的认识:整数是自然数中的一部分,包括正整数和负整数。

它们在日常生活中的应用非常广泛。

3. 小数、分数与百分数的认识:熟练掌握小数、分数与百分数的概念及其相互转化,对于数学计算和应用题的解答至关重要。

(二)代数知识1. 代数式的认识与运算:掌握代数式的概念、性质及运算规则,能够熟练进行代数式的化简、求值等。

2. 方程与不等式的应用:掌握一元一次方程、不等式及其解法,能够灵活运用方程与不等式解决实际问题。

二、几何知识(一)平面几何1. 图形的认识:熟练掌握各种基本图形的性质、分类及相互之间的关系。

2. 图形的测量:掌握各种图形的周长、面积等测量方法,能够熟练计算图形的面积和周长。

3. 图形的变换:了解图形的平移、旋转、翻折等变换方式,掌握其性质和应用。

(二)立体几何1. 长方体与正方体的认识:掌握长方体与正方体的性质、体积和表面积的计算方法。

初中数学几何知识点提纲_中考数学几何复习提纲

初中数学几何知识点提纲_中考数学几何复习提纲

初中数学几何知识点提纲_中考数学几何复习提纲1.基本概念-点、线、面的定义与性质-角的定义与性质-直线、射线、线段的性质2.角的分类-钝角、直角、锐角的定义与判断-平角与周角的定义与判断-对顶角、同位角的概念与性质3.图形的分类-三角形的分类与性质-四边形的分类与性质-多边形的分类与性质4.三角形的性质-三角形内角和定理-三角形外角和定理-同旁内角相等定理5.三角形的相似性-相似三角形的定义与判断-相似三角形的性质与判定方法-相似三角形中的比例关系6.三角形的面积-三角形面积计算公式-直角三角形的特殊性质-任意三角形的面积计算方法7.四边形的性质-平行四边形的性质与判定方法-矩形、正方形、菱形、长方形的性质与判定方法-梯形、平行四边形、矩形面积的计算方法8.圆的性质-圆的定义与性质-圆的直径、半径、弧长的计算方法-圆的面积的计算方法9.垂直与平行-垂直与平行线的判定方法-垂线的性质与判定方法-平行线的性质与判定方法10.空间几何-空间几何图形的投影与视图-空间几何图形的旋转、平移、镜面对称性质-空间几何图形的切割与拼接1.平面几何-点、线、面的定义与性质-基本图形(三角形、四边形、多边形)的分类与性质-三角形的内角和定理、外角和定理、中位线定理、高的性质与应用2.类似与全等-相似三角形的定义与性质-相似三角形的判定方法-相似三角形中的比例关系与应用3.角的平分线与垂直平分线-角的平分线的性质与判定方法-垂直平分线的性质与判定方法-相关题目的解题技巧与方法4.平行线与四边形-平行线的性质与判定方法-平行线与四边形内角和的关系-各种四边形的性质与判定方法5.圆-圆的定义与性质-弧长、弦长、扇形面积的计算方法-圆锥与球的性质与计算方法6.空间几何-空间几何图形的投影与视图-空间几何图形的旋转、平移、镜面对称性质。

初中数学核心知识点(中考数学99个考点汇编)

初中数学核心知识点(中考数学99个考点汇编)

初中数学常见的99个中考考点以及考试要求一、数与运算(10个考点)考点1:数的整除性以及有关概念(本考点含整数和整除、分解素因数)考核要求:(1)知道数的整除性、奇数和偶数、质数和合数、倍数和因数、公倍数和公因数等的意义;(2)知道能被2或3、5、9整除的正整数的特征;(3)会分解素因数;(4)会求两个正整数的最小公倍数和最大公因数.具体问题讨论涉及的正整数一般不大于100.样题汇编:(正在建设中,期望大家能够有意识地建设自己的考试命题数据库)考点2:分数的有关概念、基本性质和运算考核要求:(1)掌握分数与小数的互化,初步体会转化思想;(2)掌握异分母分数的加减运算以及分数的乘除运算.考点3:比、比例和百分比的有关概念及比例的性质考核要求:(1)理解比、比例、百分比的有关概念;(2)比例的基本性质.对合分比定理、等比定理不作教学要求.考点4:有关比、比例、百分比的简单问题考核要求:(1)考查比、比例的实际应用,结合实际掌握求合格率、出勤率、及格率、盈利率、利率的方法;(2)会解决有关比、比例、百分比的简单问题,了解百分比在经济、生活中的一些基本常识及简单应用.考点5:有理数以及相反数、倒数、绝对值等有关概念,有理数在数轴上的表示考核要求:(1)理解相反数、倒数、绝对值等概念;(2)会用数轴上的点表示有理数.注意:(1)去掉绝对值符号后的正负号的确定,(2)0没有倒数.考点6:xx、xx、n次方根的概念考核要求:(1)理解平方根、立方根、n次方根的概念;(2)理解开方与方根的意义,注意平方根和算术平方根的联系和区别.考点7:实数的概念考核要求:理解实数的有关概念.注意:判断无理数不看形式,要看实质.考点8:数轴上的点与实数的一一对应考核要求:掌握实数与数轴上的点的一一对应关系.解题关键是判断实数的大小.考点9:实数的运算考核要求:(1)掌握实数的加、减、乘、除、乘方、开方等运算的法则、性质(交换律、结合律、分配律、互逆性、数0和数1的特征)、运算顺序,明确有关运算性质的推广和运用;(2)会用计算器进行实数的运算.注意:(1)利用运算定律,力求简便计算和巧算,(2)运算要稳中求快,准确无误.考点10:科学记数法考核要求:(1)理解科学记数法的意义;(2)会用科学记数法表示较大的数.第二部分方程与代数(27个考点)考点11:代数式的有关概念考核要求:(1)掌握代数式的概念,会判别代数式与方程、不等式的区别;(2)知道代数式的分类及各组成部分的概念,如整式、单项式、多项式;(3)知道代数式的书写格式.注意单项式与多项式次数的区别.考点12:列代数式和求代数式的值考核要求:(1)会用代数式表示常见的数量,会用代数式表示含有字母的简单应用题的结果;(2)通过列代数式,掌握文字语言与数学式子表述之间的转换;(3)在求代数式的值的过程中,进行有理数的运算.考点13:整式的加、减、乘、除及乘方的运算法则考核要求:(1)掌握整式的加、减、乘、除及乘方的运算法则;(2)会用同底数幂的运算性质进行单项式的乘、除、乘方及简单混合运算;(3)会求多项式乘以或除以单项式的积或商;(4)会求两个或三个多项式的积.注意:要灵活理解同类项的概念.考点14:乘法公式(平方差、两数和、差的平方公式)及其简单运用考核要求:(1)掌握平方差、两数和(差)的平方公式;(2)会用乘法公式简化多项式的乘法运算;(3)能够运用整体思想将一些比较复杂的多项式运算转化为乘法公式的形式.考点15:因式分解的意义考核要求:(1)知道因式分解的意义和它与整式乘法的区别;(2)会鉴别一个式子的变形过程是因式分解还是整式乘法.考点16:因式分解的基本方法(提取公因式法、分组分解法、公式法、二次项系数为1的十字相乘法)考核要求:掌握提取公因式法、分组分解法和二次项系数为1时的十字相乘法等因式分解的基本方法.考点17:分式的有关概念及其基本性质考核要求:(1)会求分式有无意义或分式为0的条件;(2)理解分式的有关概念及其基本性质;(3)能熟练地进行通分、约分.考点18:分式的加、减、乘、除运算法则考核要求:(1)掌握分式的运算法则;(2)能熟练进行分式的运算、分式的化简.考点19:正整数指数幂、零指数幂、负整数指数幂、分数指数幂的概念考核要求:(1)理解正整数指数、零指数、负整数指数的幂的概念;(2)知道分数指数幂的意义;(3)能够运用零指数的条件进行式子取值范围的讨论.考点20:整数指数幂,分数指数幂的运算考核要求:(1)掌握幂的运算法则;(2)会用整数指数幂及负整数指数幂进行运算;(3)掌握负整数指数式与分式的互化;(4)知道分数指数式与根式的互化。

无锡数学中考考纲

无锡数学中考考纲

13、一次函数 函 (1)一次函数的意义 (2)一次函数的表达式 (3)一次函数的图像和性质 (4)正比例函数 (5)根据一次函数的图像求二元一次 方 程组的近似解 (6)用一次函数解决实际问题 14、反比例函数
√ √ √ √ √ √
式 8、因式分解
(1)因式分解的意义 与 (2)提取公因式法 (3)公式法(直接用公式不超过两 分 次) 9、分式 (1)分式的概念 式 (2)分数的基本性质 (3)约分与通分 (4)分式的加、减、乘、除运算 √ √ √
考试 要求目标 a1 a2 a3 √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √
考试内容 单元 知 识 条 目
13、图形的相似 (1)比例的基本性质 (2)线段的比、成比例线段 (3)黄金分割 (4)图形相似的概念 (5)相似图形的性质 (6)相似三角形的概念 (7)两个三角形相似的条件 (8)图形的位似 (9)利用位似将一个图形放大或缩小 (10)利用图形的相似解决一些实际问 题 (11)锐角三角函数的意义 (12)特殊角三角函数值 (13)用锐角三角函数解决简单的实际 问题
考试内容 单元 知 识 条 目
考试 要求目标 a1 a2 √ √ √ √ a3
有 理 数

3、数的开方 平方根、算术平方根、立方根的概 4、实数 (1)无理数、实数的概念,实数与数 √ 轴 上的点一一对应 (2)用有理数估计无理数的大致范围 √ (3)近似数与有效数字 √
10、方程与方程组 (1)用观察、画图等手段 估计方程的解 (2)一元一次方程的解法 方 (3)简单的二元一次方程的解法 (4)可化为一元一次方程的分式方程 解法(方程中的分式方程不超 程 的 过 两个) (5)简单数字系数的一元二次方程的 与 解法(公式法、配方法、因式分解法) (6)列方程(组)解应用题

初中数学知识点中考必背公式

初中数学知识点中考必背公式

初中数学知识点中考必背公式一、代数部分:1.二次方程的求根公式:对于一元二次方程ax^2+bx+c=0其中a≠0,Δ=b^2-4ac≥0,则求根公式为:x1=[-b+√(b^2-4ac)]/2ax2=[-b-√(b^2-4ac)]/2a2.二次函数的顶点坐标:对于二次函数y=ax^2+bx+c(a≠0),其顶点坐标为:横坐标x=-b/2a,纵坐标y=-Δ/4a3.因式分解公式:(a+b)^2=a^2+2ab+b^2(a-b)^2=a^2-2ab+b^2(a+b)(a-b)=a^2-b^24.平方差公式:a^2-b^2=(a+b)(a-b)5.和差化积公式:sin(A±B)=sinAcosB±cosAsinBcos(A±B)=cosAcosB∓sinAsinBtan(A±B)=(tanA±tanB)/(1∓tanAtanB)6.一些特殊角的正弦、余弦、正切值:sin30°=1/2,cos30°=√3/2,tan30°=1/√3 sin45°=cos45°=1/√2,tan45°=1sin60°=√3/2,cos60°=1/2,tan60°=√37.等差数列前n项和公式:Sn=n(a1+an)/28.等差数列通项公式:an=a1+(n-1)d9.等比数列前n项和公式:Sn=a1(1-q^n)/(1-q)10.等比数列通项公式:an=a1*q^(n-1)11.绝对值的性质:-a,=,aab,=,a,*,ba/b,=,a,/,b二、几何部分:1.直角三角形的勾股定理:直角三角形的两个直角边的平方和等于斜边的平方,即a^2+b^2=c^22.等边三角形的边长关系:等边三角形的三条边相等3.等腰三角形的性质:等腰三角形的两底角相等,两腰相等4.两条平行线与两条截线的关系:两条平行线与另外两条非平行线(截线)形成的内角、外角相等5.锐角三角函数的定义:sinA=对边/斜边cosA=邻边/斜边tanA=对边/邻边6.三角形内角和公式:三角形的内角和等于180°,即A+B+C=180°7.角平分线定理:角平分线将一个角分为两个大小相等的角8.两角的和差公式:sin(A±B)=sinAcosB±cosAsinBcos(A±B)=cosAcosB∓sinAsinBtan(A±B)=(tanA±tanB)/(1∓tanAtanB)9.三角形面积公式:对于任意三角形ABC,其面积S可以由三边长度a、b、c计算:S=√[s(s-a)(s-b)(s-c)]其中,s=(a+b+c)/2为半周长10.弦切弧定理:圆内一弦的两个弦心角相等,一弦上的切线与此弦所对的弧上任一弦心角相等11.正三角形的面积公式:对于边长为a的正三角形,其面积S=(√3*a^2)/4三、概率统计部分:1.事件的概率公式:对于随机试验的事件A,事件A发生的概率为P(A)=事件A发生的次数/试验次数2.互斥事件的概率公式:对于互斥事件A和B,两事件发生的概率之和为P(A∪B)=P(A)+P(B)3.相互独立事件的概率公式:对于相互独立事件A和B,两事件同时发生的概率为P(A∩B)=P(A)*P(B)4.条件概率公式:对于事件A和事件B,已知事件B发生的情况下事件A发生的概率为P(A,B)=P(A∩B)/P(B)这里列举的只是初中数学常见到的一部分公式,而实际中考中会用到的公式还有很多,建议同学们在备考过程中广泛积累、熟练掌握各类公式,提高解题能力。

初中数学核心知识点(中考数学99个考点汇编)

初中数学核心知识点(中考数学99个考点汇编)

初中数学常见的99个中考考点以及考试要求一、数与运算(10个考点)考点1:数的整除性以及有关概念(本考点含整数和整除、分解素因数)考核要求:(1)知道数的整除性、奇数和偶数、质数和合数、倍数和因数、公倍数和公因数等的意义;(2)知道能被2或3、5、9整除的正整数的特征;(3)会分解素因数;(4)会求两个正整数的最小公倍数和最大公因数.具体问题讨论涉及的正整数一般不大于100.样题汇编:(正在建设中,期望大家能够有意识地建设自己的考试命题数据库)考点2:分数的有关概念、基本性质和运算考核要求:(1)掌握分数与小数的互化,初步体会转化思想;(2)掌握异分母分数的加减运算以及分数的乘除运算.考点3:比、比例和百分比的有关概念及比例的性质考核要求:(1)理解比、比例、百分比的有关概念;(2)比例的基本性质.对合分比定理、等比定理不作教学要求.考点4:有关比、比例、百分比的简单问题考核要求:(1) 考查比、比例的实际应用,结合实际掌握求合格率、出勤率、及格率、盈利率、利率的方法;(2)会解决有关比、比例、百分比的简单问题,了解百分比在经济、生活中的一些基本常识及简单应用.考点5:有理数以及相反数、倒数、绝对值等有关概念,有理数在数轴上的表示考核要求:(1)理解相反数、倒数、绝对值等概念;(2)会用数轴上的点表示有理数.注意:(1)去掉绝对值符号后的正负号的确定,(2)0没有倒数.考点6:平方根、立方根、n次方根的概念考核要求:(1) 理解平方根、立方根、n次方根的概念;(2)理解开方与方根的意义,注意平方根和算术平方根的联系和区别.考点7:实数的概念考核要求:理解实数的有关概念.注意:判断无理数不看形式,要看实质.考点8:数轴上的点与实数的一一对应考核要求:掌握实数与数轴上的点的一一对应关系.解题关键是判断实数的大小.考点9:实数的运算考核要求:(1)掌握实数的加、减、乘、除、乘方、开方等运算的法则、性质(交换律、结合律、分配律、互逆性、数0和数1的特征)、运算顺序,明确有关运算性质的推广和运用;(2)会用计算器进行实数的运算.注意:(1)利用运算定律,力求简便计算和巧算,(2)运算要稳中求快,准确无误.考点10:科学记数法考核要求:(1)理解科学记数法的意义;(2)会用科学记数法表示较大的数.第二部分方程与代数(27个考点)考点11:代数式的有关概念考核要求:(1)掌握代数式的概念,会判别代数式与方程、不等式的区别;(2)知道代数式的分类及各组成部分的概念,如整式、单项式、多项式;(3)知道代数式的书写格式.注意单项式与多项式次数的区别.考点12:列代数式和求代数式的值考核要求:(1)会用代数式表示常见的数量,会用代数式表示含有字母的简单应用题的结果;(2)通过列代数式,掌握文字语言与数学式子表述之间的转换;(3)在求代数式的值的过程中,进行有理数的运算.考点13:整式的加、减、乘、除及乘方的运算法则考核要求:(1)掌握整式的加、减、乘、除及乘方的运算法则;(2)会用同底数幂的运算性质进行单项式的乘、除、乘方及简单混合运算;(3)会求多项式乘以或除以单项式的积或商;(4)会求两个或三个多项式的积.注意:要灵活理解同类项的概念.考点14:乘法公式(平方差、两数和、差的平方公式)及其简单运用考核要求:(1)掌握平方差、两数和(差)的平方公式;(2)会用乘法公式简化多项式的乘法运算;(3)能够运用整体思想将一些比较复杂的多项式运算转化为乘法公式的形式.考点15:因式分解的意义考核要求:(1)知道因式分解的意义和它与整式乘法的区别;(2)会鉴别一个式子的变形过程是因式分解还是整式乘法.考点16:因式分解的基本方法(提取公因式法、分组分解法、公式法、二次项系数为1的十字相乘法)考核要求:掌握提取公因式法、分组分解法和二次项系数为1时的十字相乘法等因式分解的基本方法.考点17:分式的有关概念及其基本性质考核要求:(1)会求分式有无意义或分式为0的条件;(2)理解分式的有关概念及其基本性质;(3)能熟练地进行通分、约分.考点18:分式的加、减、乘、除运算法则考核要求:(1)掌握分式的运算法则;(2)能熟练进行分式的运算、分式的化简.考点19:正整数指数幂、零指数幂、负整数指数幂、分数指数幂的概念考核要求:(1)理解正整数指数、零指数、负整数指数的幂的概念;(2)知道分数指数幂的意义;(3)能够运用零指数的条件进行式子取值范围的讨论.考点20:整数指数幂,分数指数幂的运算考核要求:(1)掌握幂的运算法则;(2)会用整数指数幂及负整数指数幂进行运算;(3)掌握负整数指数式与分式的互化;(4)知道分数指数式与根式的互化。

初中数学中考最全知识点

初中数学中考最全知识点

初中数学中考最全知识点1.数的基本概念和性质:(1)整数、有理数、无理数、实数的概念;(2)数的比较、加法、减法、乘法、除法的性质;(3)绝对值的概念和性质;(4)分数、小数的概念和性质;(5)比例、百分数的概念和性质。

2.代数表达式及其运算:(1)代数式、代数式的值、项、系数、次数的概念;(2)代数式的加减、乘法运算;(3)分配律、合并同类项、提公因式的运算。

3.方程与不等式:(1)方程的概念;(2)一元一次方程的解及解的判定;(3)一元一次方程的应用;(4)简单的分式方程的解;(5)一元一次不等式的解及解的判定。

4.正数、负数、零的乘法和除法:(1)正数、负数、零进行乘法和除法运算的规则;(2)结合律、交换律、分配律的运用。

5.平面图形与空间图形:(1)平面图形的分类及其性质;(2)平面图形的周长、面积等计算方法;(3)空间图形的分类及其性质;(4)空间图形的表面积、体积等计算方法。

6.函数与图像:(1)函数的概念;(2)函数的自变量、因变量、定义域、值域、对称性等性质;(3)函数及其图象的性质;(4)辨别函数图象的类型。

7.数据的收集、整理与分析:(1)调查数据的整理、归纳、分析与运用;(2)频数、频率、平均数等统计概念;(3)直方图、折线图、饼状图等形式的展示。

8.统计与概率:(1)比对数据的概率大小;(2)事件的概念与意义;(3)简单事件的概率计算;(4)样本空间的概念与计算。

9.平方根与勾股定理:(1)平方根的概念与性质;(2)平方根的计算;(3)勾股定理的概念与应用。

10.比例与相似:(1)比例的概念及其性质;(2)比例与比例例子之间的关系;(3)相似的概念和性质;(4)相似三角形的判定及其应用。

11.变量与关系:(1)变量的概念与意义;(2)变量的变化规律与表达方式;(3)变量关系的表示方法。

12.应用题:(1)应用题的解题方法和思路;(2)根据实际问题列方程、不等式、比例或者函数等。

初中中考数学必考知识点

初中中考数学必考知识点

初中中考数学必考知识点
一、整数与有理数
1. 整数的概念及性质
2. 整数的加减乘除运算法则
3. 整数的混合运算
4. 有理数的概念及性质
5. 有理数的加减乘除运算法则
6. 有理数的比较大小
7. 有理数的混合运算
二、代数与方程
1. 代数式的概念及运算法则
2. 一元一次方程的概念及解法
3. 一元一次方程组的概念及解法
4. 二元一次方程组的概念及解法
5. 带有绝对值符号的方程及不等式
三、几何与图形
1. 角的概念及种类
2. 一次构图问题
3. 二次构图问题
4. 三角形的性质及分类
5. 直角三角形与勾股定理
6. 平面镶嵌问题
四、数据与统计
1. 平均数、中位数和众数的概念及计算方法
2. 折线图的绘制与解读
3. 条形统计图、饼图和表格的制作与分析
五、函数与图像
1. 函数的概念及表示方法
2. 一次函数与二次函数的性质
3. 函数图象的绘制及分析
六、概率与统计
1. 概率的基本概念及计算方法
2. 抽样调查与统计的基本方法
3. 事件的概念及概率的运算规则
七、空间与变换
1. 空间图形的展开与剖视图的绘制
2. 刚体变换的概念及性质
以上是初中中考数学中的必考知识点,掌握了这些知识,就能对数学考试有一个较为全面的准备。

希望同学们能够认真学习,掌握这些知识,并在考试中取得优异的成绩!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

5、乘法公式(反过来就是因式分解的公式):①(a+b)(a-b)=a2-b2.②(a±b)2=a2±2ab+b2.
③ a2+b2=(a+b)2-2ab,④(a-b)2=(a+b)2-4ab.
⑤ a3+b3=(a+b)(a2-ab+b2)
⑥ a3-b3=(a-b)(a2+ab+b2)
6、幂的运算性质:①am×an=am+n.②am÷an=am-n.③(am)n=amn.④(ab)n=anbn.⑤a-n=
18.直线与抛物线的交点
(1) y 轴与抛物线 y = ax2 + bx + c 得交点为(0, c ). (2)抛物线与 x 轴的交点 二次函数 y = ax2 + bx + c 的图像与 x 轴的两个交点的横坐标 x1 、 x2 ,是对应一元二次方程 ax2 + bx + c = 0 的两个实数根.抛物线与 x 轴的交点情况可以由对应的一元二次方程的根的判别式判定:
③大量的重复实验时频率可视为事件发生概率的估计值; 13、锐角三角函数:
①设∠A是Rt△ABC的任一锐角,
则∠A的正弦:sinA=
,∠A的余弦:cosA=
,∠A的正切:tanA=

并且sin2A+cos2A=1. 0<sinA<1,0<cosA<1,tanA>0.∠A越大,∠A的正弦和正切值越大,余弦值反而越小. ②余角公式:sin(90º-A)=cosA,cos(90º-A)=sinA. ③特殊角的三角函数值:
1
10、反比例函数y= (k≠0)的图象叫做双曲线.当k>0时,双曲线在一、三象限(在每一象限内,从左向
右降);当k<0时,双曲线在二、四象限(在每一象限内,从左向右上升).因此,它的增减性与一次函数 相反. 11、统计初步:(1)概念:①所要考察的对象的全体叫做总体,其中每一个考察对象叫做个体.从总体 中抽取的一部份个体叫做总体的一个样本,样本中个体的数目叫做样本容量.②在一组数据中,出现次 数最多的数(有时不止一个),叫做这组数据的众数.③将一组数据按大小顺序排列,把处在最中间的一 个数(或两个数的平均数)叫做这组数据的中位数. (2)公式:设有 n 个数 x1,x2,…,xn,那么:
(1)频率= 频数 ,各小组的频数之和等于总数,各小组的频率之和等于 1,频率分布直方图中各个小长方
总数
形的面积为相应各组频率。 (2)概率
①如果用 P 表示一个事件 A 发生的概率,则 0≤P(A)≤1;
P(必然事件)=1;P(不可能事件)=0;
②在具体情境中了解概率的意义,运用列举法(包括列表、画树状图)计算简单事件发生的概率。
程组只有一组解时 l 与 G 只有一个交点;③方程组无解时 l 与 G 没有交点.
(5)抛物线与 x 轴两交点之间的距离:若抛物线 y = ax2 + bx + c 与 x 轴两交点为 A(x1,0),B(x2,0),
则 AB = x1 − x2
19、多边形内角和公式:n边形的内角和等于(n-2)180º(n≥3,n是正整数),外角和等于360º 20、平行线分线段成比例定理:
②平行于 y 轴(或重合)的直线记作 x = h .特别地, y 轴记作直线 x = 0 .
几种特殊的二次函数的图像特征如下:
函数解析式
开口方向
对称轴
顶点坐标
y = ax2 y = ax2 + k
y = a(x − h)2 y = a(x − h)2 + k
y = ax2 + bx + c
当a 0时
则有: AD = AE , AD = AE = DE , DB = EC DB EC AB AC BC AB AC
A
D
E
E
Байду номын сангаас
D
A
B
B C
C
21、直角三角形中的射影定理:如图:Rt△ABC 中,∠ACB=90o,CD⊥AB 于 D,则有: C
(1) CD2 = AD BD (2) AC2 = AD AB (3) BC2 = BD AB
①平均数为: x = x1 + x2 + ......+ xn ; n
②极差:
用一组数据的最大值减去最小值所得的差来反映这组数据的变化范围,用这种方法得到的差称为极差,即:
极差=最大值-最小值;
③方差:
( ) ( ) ( ) 数据 x1、 x2 ……,
xn
的方差为 s 2
,则
s2
=
1 n
澺 蕫 錵x1
-
x
2+
x2 - x 2 + .....+
xn - x 2
标准差:方差的算术平方根.
( ) ( ) ( ) 数据 x1、x2 ……, xn 的标准差 s ,则 s =
1 n
澺 蕫 錵x1
-
x
2+
x2 - x 2 + ..... +
xn - x 2
一组数据的方差越大,这组数据的波动越大,越不稳定。 12、频率与概率:
sin30º=cos60º= ,sin45º=cos45º= ,sin60º=cos30º= , tan30º= ,tan45º=1,tan60º= .
2
铅垂高度
④斜坡的坡度:i= 水平宽度 = .设坡角为α,则i=tanα= .
h
α
14、平面直角坐标系中的有关知识:
l
(1)对称性:若直角坐标系内一点 P(a,b),则 P 关于 x 轴对称的点为 P1(a,-b),P 关于 y 轴对称的
点为 P2(-a,b),关于原点对称的点为 P3(-a,-b).
(2)坐标平移:若直角坐标系内一点 P(a,b)向左平移 h 个单位,坐标变为 P(a-h,b),向右平移 h
个单位,坐标变为 P(a+h,b);向上平移 h 个单位,坐标变为 P(a,b+h),向下平移 h 个单位,坐标
变为 P(a,b-h).如:点 A(2,-1)向上平移 2 个单位,再向右平移 5 个单位,则坐标变为 A(7,1).
.如:①(3 )2=45.②
=6.③a<0时, =-a .④ 的平方根=4的平方根=±
2.(平方根、立方根、算术平方根的概念) 8、一元二次方程:对于方程:ax2+bx+c=0:
①求根公式是x= −b b2 − 4ac ,其中△=b2-4ac叫做根的判别式. 2a
当△>0时,方程有两个不相等的实数根; 当△=0时,方程有两个相等的实数根; 当△<0时,方程没有实数根. 注意:当△≥0时,方程有实数根. ②若方程有两个实数根x1和x2,则二次三项式ax2+bx+c可分解为a(x-x1)(x-x2). ③以a和b为根的一元二次方程是x2-(a+b)x+ab=0. 9、一次函数y=kx+b(k≠0)的图象是一条直线(b是直线与y轴的交点的纵坐标即一次函数在y轴上的截 距).当k>0时,y随x的增大而增大(直线从左向右上升);当k<0时,y随x的增大而减小(直线从左向右下 降).特别:当b=0时,y=kx(k≠0)又叫做正比例函数(y与x成正比例),图象必过原点.
3、一个近似数,从左边第一个不是0的数字起,到最末一个数字止,所有的数字,都叫做这个近似数的
有效数字.如:0.05972精确到0.001得0.060,结果有两个有效数字6,0.
4、把一个数写成±a×10n的形式(其中1≤a<10,n是整数),这种记数法叫做科学记数法.如:-40700 =-4.07×105,0.000043=4.3×10-5.
数学
初中数学常用公式定理
1、整数(包括:正整数、0、负整数)和分数(包括:有限小数和无限环循小数)都是有理数.如:-3,-
,0.231,0.737373…, , .无限不环循小数叫做无理数.如:π,- ,0.1010010001…(两
个1之间依次多1个0).有理数和无理数统称为实数.
2、绝对值:a≥0 丨a丨=a;a≤0 丨a丨=-a.如:丨- 丨= ;丨3.14-π丨=π-3.14.
2a
4a
2a 4a
线x=− b . 2a
(2)配方法:运用配方的方法,将抛物线的解析式化为 y = a(x − h)2 + k 的形式,得到顶点为( h , k ),
对称轴是直线 x = h .
(3)运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,对称轴与抛物线的交点是顶点。
若已知抛物线上两点 (x1,
y)、( x2 ,
y)
(及
y
值相同),则对称轴方程可以表示为:
x
=
x1
+ 2
x2
16.抛物线 y = ax2 + bx + c 中, a,b, c 的作用
(1) a 决定开口方向及开口大小,这与 y = ax2 中的 a 完全一样.
3
(2) b 和 a 共同决定抛物线对称轴的位置.由于抛物线 y = ax2 + bx + c 的对称轴是直线
x = − b ,故:① b = 0 时,对称轴为 y 轴;② b 0 (即 a 、b 同号)时,对称轴在 y 轴左侧;③ b 0
2a
a
a
(即 a 、 b 异号)时,对称轴在 y 轴右侧.(左同右异)
(3) c 的大小决定抛物线 y = ax2 + bx + c 与 y 轴交点的位置. 当 x = 0 时, y = c ,∴抛物线 y = ax2 + bx + c 与 y 轴有且只有一个交点(0, c ): ① c = 0 ,抛物线经过原点; ② c 0 ,与 y 轴交于正半轴;③ c 0 ,与 y 轴交于负半轴. 以上三点中,当结论和条件互换时,仍成立.如抛物线的对称轴在 y 轴右侧,则 b 0 . a
相关文档
最新文档