材料力学第六章弯曲时的变形
材料力学(理工科课件)第六章 弯曲变形)

§6-1 基本概念及工程实例 (Basic concepts and example problems)
一、工程实例(Example problem)
(Deflection of Beams)
但在另外一些情况下,有时却要求构件具有较大的弹性变 形,以满足特定的工作需要.
例如,车辆上的板弹簧,要求有足够大的变形,以缓解车辆受
M 0 w 0
x
O
M 0 w 0
M
(Deflection of Beams)
w (1 w )
2 3 2
M ( x) EI
2 w 与 1 相比十分微小而可以忽略不计,故上式可近似为
w"
M ( x) EI
(6.5)
此式称为 梁的挠曲线近似微分方程(differential equation of the deflection curve) 近似原因 : (1) 略去了剪力的影响; (2) 略去了 w2项; (3) tan w w( x )
x Cx D
4
(Deflection of Beams)
边界条件x=0 和 x=l时, w 0
梁的转角方程和挠曲线方程 A 分别为 q 2 3 3 (6lx 4 x l ) 24 EI qx 2 3 3 w (2lx x l ) 24 EI 最大转角和最大挠度分别为 在 x=0 和 x=l 处转角的绝对值相等且都是最大值,
A a l D B
b
(Deflection of Beams)
解: 梁的两个支反力为
FRA F FRB F b l a l
x
l x
F FRA
A 1 a D b 2
第6节(弯曲变形)

Mechanics of Materials
中南大学土木建筑学院力学系
Department of Mechanics of School of Civil Engineering and Architecture of Central South University
第六章 弯曲变形 第一节 概述
Fx Fl
转角方程
EI(x)1Fx2FlxC
2 挠度方程
E Iv(x)1F x31F lx2C xD 62
EI
d2v dx2
Fx Fl
EI(x)1Fx2FlxC
2
E Iv(x)1F x31F lx2C xD 62
⑶ 确定积分常数
EI(0)1F02Fl0C0
2 E Iv(0 )1F 0 31F l0 2 C 0D 0
EI(x)b2F l x2C1
E I(x)b 2 F l x2F 2(xa)2C 2
挠度方程
EIv(x)b6F l x3C1xD1 E Iw (x ) b 6 F lx 3F 6(x a )3 C 2xD 2
⑶ 确定积分常数
v(0)E 1 I(b 6 F l03C 10D 1)0
v (l) E 1 I[ b 6 F ll3 F 6(l a )3 C 2 l D 2 ] 0
max
(0)
Fl2 3EI
(x) 0
x (3 3)l 3
(33)l F l3
F l3
vm a xv(
) 0 .0 6 4 2
3 93E I
E I
例:简支梁AB如图所示(图中a > b),承受集中载荷F作 用,梁的弯曲刚度为EI。求此梁的挠曲轴方程和转角方程, 并确定挠度的最大值。
材料力学第六章 弯曲变形

4
2
C
B
)
=
A
( A)q C
l q
( B )q
(b)
B
( wC )q
l
θ B ( θ B )q ( θ B ) M e
+
Me
(c)
Mel ql 24 EI 6 EI
3
A
B
( B ) M e
( A ) MC ( wC ) M
e
e
l
例题3
AB梁的EI为已知,求梁中间C截面挠度.
F1l 2 F2 la 0.4 400 200 B ( ) 16 EI 3 EI 210 1880 16 3 +0.423 10-4 (rad)
F1l a F2a F2a l wC 5.19 106 m 16 EI 3 EI 3 EI wmax w (3)校核刚度: l l
x A
dx
F
x
C' dω
B
d tg dx
二、挠曲线的微分方程
1.纯弯曲时曲率与弯矩的关系
M EI
1
横力弯曲时, M 和 都是x的函数.略去剪力对梁的位移的影 响, 则
1 M ( x) ( x) EI
2.由数学得到平面曲线的曲率
F
1 | w | 3 2 2 ( x) (1 w )
q
A x B
w w F wq
+
w wF wq
例1 已知:EI, F,q .求C点挠度 F q
A
C a a
B
Fa 3 ( wC )F 6 EI
材料力学刘鸿文第六版最新课件第六章 弯曲变形

内容回顾
6.1:基本概念 挠度;转角;挠曲线;挠度和转角的关系;挠度 和转角的符号定义。
6.2:挠曲线的微分方程
d2w M dx2 EI
6.3:积分法求弯曲变形
w" M(x) EI
EIw M ( x )dx C1 (转角方程) EIw M ( x )dxdx C1 x C 2 (挠度方程)
确定积分常数C1和C2
确定积分常数C1和C2
(1)在简支梁中, 左右两铰支座处的
挠度 w A 和 wB 都等于0。
A
wA 0
(2)在悬臂梁中,固定端处的挠度 w A
和转角 A 都应等于0。
(3)在弯曲变形对称点,转角为0。
A
wA 0
A 0
B
wB 0
B
42
(4)若B支座改为弹簧支撑,则: (5)若B支座改为
又:
1M
EI
B
d2w M
ds
A
此式称为
dx2 EI
梁的挠曲线近似微分方15程
横力弯曲梁:
w" M(x) EI
近似原因 : (1) 略去了剪力的影响; (2) 略去了 w2项;
(3) tan w w ( x )
16
§6-3 用积分法求弯曲变形
一、微分方程的积分 w M ( x) EI
x a时,wC 左 wC 右
x L, w FBy
B
k
B kx
h F EA
A
C
a
bB
L
x 0, wA 0
x a时,C左 C右
x a时,wC左 wC右
x
L, wB
lBD
FByh EA
例题1 图示一抗弯刚度为 EI 的悬臂梁, 在自由端受一集中力 F
材料力学第6章弯曲变形

M1 EIw1
Fb x1 l
2 x1
" EIw2
Fb M2 x2 F ( x2 a ) l
2 x2 2
EIw1
Fb C1 l 2
x2 a Fb F C2 (i) EIw2 l 2 2
工学院
§6.2 挠曲线的微分方程
纯弯曲情况下,弯矩与曲率 间的关系(5.1):
M EI
1
--(a)
横力弯曲时,梁截面上有弯矩也有剪力,对于跨 度远大于截面高度的梁,剪力对弯曲变形的影响可以 省略,(a)式便可以作为横力弯曲变形的基本方程。其 中,M和1/ρ都是x的函数。
工学院
§6.2 挠曲线的微分方程
(o) (p)
CB段 (a x2 l )
Fb 2 3l 2 2 2 l b 3 x ( x a ) 2 2 6l b Fb 2 l 2 2 3 EIw2 l b x x ( x a ) 2 2 6l b 2 EIw2
车床主轴的变形过大会影响 齿轮的啮合和轴承的配合, 造成磨损不匀,产生噪音, 降低寿命以及影响加工精度。
工学院
§6.1 工程中的弯曲变形问题
吊车梁的变形过大,会 使梁上小车行走困难, 出现爬坡现象,还会引 起较严重的振动。
变形超过允许数值,即 使在弹性范围内,也被 认为是一种失效现象。
工学院
§6.1 工程中的弯曲变形问题
l
2
b
2
3
工学院
§6.3 用积分法求弯曲变形—实例3
7). 讨论
上面得到最大挠度表达式为: 3 1 Fb 2 2 wmax l b 9 3 EIl
弯曲变形——精选推荐

第六章弯曲变形判断弯曲变形1、“平面弯曲梁的挠曲线必定是一条与外力作用面重合或平行的平面曲线”2、“由于挠曲线的曲率与弯矩成正比,因此横截面的挠度与转角也与横截面的弯矩成正比”3、“只要满足线弹性条件,就可以应用挠曲线的近似微分方程”4、“两梁的抗弯刚度相同、弯矩方程相同,则两梁的挠曲线形状相同”5、“梁的挠曲线方程随弯矩方程的分段而分段,只要梁不具有中间铰,梁的挠曲线仍然是一条光滑、连续的曲线。
”6、“最大挠度处的截面转角一定为0”7、“最大弯矩处的挠度也一定是最大”8、“梁的最大挠度不一定是发生在梁的最大弯矩处。
”9、“只要材料服从虎克定律,则构件弯曲时其弯矩、转角、挠度都可以用叠加方法来求”10、“两根几何尺寸、支撑条件完全相同的静定梁,只要所受的载荷相同,则两梁所对应的截面的挠度和转角相同,而与梁的材料是否相同无关”11、“一铸铁简支梁在均布载荷的作用下,当其横截面相同且分别按图示两种情况放置时,梁同一截面的应力和变形均相同”选择弯曲变形1、圆截面的悬臂梁在自由端受集中力的作用,当梁的直径减少一半而其他条件不变时,最大正应力是原来的倍;最大挠度是原来的倍。
若梁的长度增大一倍,其他条件不变,最大弯曲正应力是原来的倍,最大挠度是原来的倍。
A:2; B:16 C:8 D:4;2、y’’=M(x)/EI在条件下成立。
A:小变形; B:材料服从虎克定律;C:挠曲线在xoy面内; D:同时满足A、B、C;3、等直梁在弯曲变形时,挠曲线最大曲率发生在处。
A:挠度最大; B:转角最大 C:剪力最大; D:弯矩最大;4、在简支梁中,对于减少弯曲变形效果最明显。
A:减小集中力P; B:减小梁的跨度;C:采用优质钢; D:提高截面的惯性矩5、板条弯成1/4圆,设梁始终处于线弹性范围内:①σ=My/I Z,②y’’=M(x)/EI Z哪一个会得到正确的计算结果?A:①正确、②正确;B:①正确、②错误; C:①错误、②正确; D:①错误、②错误;6、应用叠加原理求横截面的挠度、转角时,需要满足的条件是。
材料力学6弯曲变形

=
M 0 L2 9 3EI Z
<[f ]
刚度满足要求。 刚度满足要求。
例二、长度为 的梁 的梁AC, 为常数, 例二、长度为L的梁 ,其EI为常数,在自由端承受集 为常数 中力P(如图),试求自由端C的挠度和转角 ),试求自由端 的挠度和转角。 中力 (如图),试求自由端 的挠度和转角。 外力分析: 解: 1)外力分析:
解: 1)外力分析: )外力分析: M0 M0 RA = (↓), R B = (↑ ) L L 2)内力分析:(M方程 方程) )内力分析: 方程
3)挠曲线方程和转角方程: )挠曲线方程和转角方程:
M0 M(x) = − x (0 ≤ x ≤ L ) L
M0 2 d2V M0 EIzθ= − x +C x EIz 2 = − 2L dx L M0 3 EI z V = − x + Cx + D 6L
思考题: 思考题:求VB
试用叠加法求C截面的挠度和转角 例5、试用叠加法求C截面的挠度和转角 (I2=2I1)。
EI 2 A a C a EI1
A
C a
m0= Pa A a P
解:(1)BC段变形,AC段刚化 :(1)BC段变形,AC段刚化 段变形 ( VC(1) = 0 θ C1) = 0 B (2)AC段变形 BC段刚化 段变形, (2)AC段变形,BC段刚化 P 3 2 Pa Pa VCP = ( ↑) θ CP = ( ) 3EI 2 2EI 2 B Pa 2 ( ) Pa 3 θ Cm0 = VCm0 = ( ↑) EI 2 2 EI 2 P 5Pa 3 VC( 2 ) = VCP + VCm0 = ( ↑) 6 EI 2 3Pa 2 B ( θ C2 ) = θ CP + θ Cm0 = ( ) 2 EI 2 (3)总变形 (3)总变形
工程力学c材料力学部分第六章 弯曲变形

A l/2
C l
B
解:此梁上的荷载可视为 正对称和反对称荷载的叠加, 正对称和反对称荷载的叠加, 如图所示。 如图所示。 正对称荷载作用下:
q/2
5(q / 2)l 4 5ql 4 wC1 = − =− 384 EI 768 EI
B
(q / 2)l 3 ql 3 θ A1 = −θ B1 = =− 24 EI 48EI
w P A a D
a
A C a H a B
EI
Pl 3 wB = − 3 EI
P
B
l
Pl 2 θB = − 2 EI
P A a 2a 2a C B
P/2
P/2 B
P/2
=
A
+
P/2
力分解为关于中截面的对称和反对称力( )之和的形式。 解:将P力分解为关于中截面的对称和反对称力(P/2)之和的形式。 力分解为关于中截面的对称和反对称力 显然,在反对称力( / )作用下, 显然,在反对称力(P/2)作用下,wc=0 对称力作用的简支梁, 对称力作用的简支梁,可以等效为悬臂梁受到两个力的作用 的问题。 的问题。
wA=0 θA=0
B
②、变形连续条件 变形连续条件: 连续条件
P A C θC左 wC左= wC右, =θ C右 B
的悬臂梁, 例1:图示一弯曲刚度为 的悬臂梁,在自由端受一集中力 作 :图示一弯曲刚度为EI的悬臂梁 在自由端受一集中力F 试求梁的挠曲线方程,并求最大挠度及最大转角。 用,试求梁的挠曲线方程,并求最大挠度及最大转角。 解:① 建立坐标系并写出弯矩方程 ①
在小变形情况下, 曲线弯曲平缓, 在小变形情况下,挠曲线弯曲平缓,
∴ w′ ≪ 1
2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
qx w (2lx 2 x 3 l 3 ) 24 EI
在 x=0 和 x=l 处转角的绝对值相等且都是最大值,
max
ql A B 24 EI
x l 2
3
在梁跨中点 处有最大挠度值 wmax w
5ql 384 EI
4
例题3:图示一抗弯刚度为EI的简支梁, 在D点处受一集中 力F的作用.试求此梁的挠曲线方程和转角方程,并求其最大 挠度和最大转角. F
x 0,
将边界条件代入(3)
(4)
w 0
(4)两式中,可得:
C1 0
2 3
C2 0
梁的转角方程和挠曲线方程分别为
Fx 2 EIw Flx 2
Flx Fx EIw 2 6
y A
F
B x
wmax
l
max
max 和 wmax都发生在自由端截面处
Fl 2 Fl 2 Fl 2 ( ) max | x l EI 2 EI 2 EI Pl 3 wmax w | x l ( ) 3 EI
将 x = 0 和 x = l 分别代入转角方程左右两支座处截面的转角
Pab( l b ) A 1 | x 0 6lEI Pab( l a ) B 2 | x l 6lEI
当 a > b 时, 右支座处截面的转角绝对值为最大
max
Pab( l a ) B 6lEI
(1)
l
(2) 挠曲线的近似微分方程为
EIw '' M ( x ) Fl Fx (2)
对挠曲线近似微分方程进行积分
Fx 2 EIw ' Flx C1 (3) 2 2 3 Flx Fx EIw C 1x C 2 2 6
(4)
Fx 2 EIw Flx C1 (3) 2 2 3 EIw Flx Fx C 1x C 2 2 6 边界条件为 : x 0, w 0
B
x
C C'
转角
w挠度
挠曲线
B
5、挠度和转角符号的规定 挠度:向上为正,向下为负.
转角:自x 转至切线方向,逆时针转为正,顺时针转为负.
w
A
C C'
B
x
w挠度
挠曲线
转角
B
§6–2 挠曲线的微分方程
一、推导公式
1、纯弯曲时曲率与弯矩的关系
M EI
横力弯曲时, M 和 都是x的函数.略去剪力对梁的位移的影响, 则:
1、积分一次得转角方程
EIw M ( x )d x C1
2、再积分一次, 得挠度方程
EIw M ( x )dxdx C1 x C 2
二、积分常数的确定
1、边界条件
2、连续条件
在简支梁中, 左右两铰支座处的 挠度 w A 和 w B 都等于0.
A B
wA 0
在悬臂梁中,固定端处的挠度 和转角 A 都应等于零.
w
M
M
w 0 M 0
M 0 w 0
M M
w
因此,
w 与 M 的正负号相同
O
M 0 w 0
x x
O
w 0 M 0
w (1 w )
2
2
3
2
M ( x) EI
v' 与 1 相比十分微小而可以忽略不计,故上式可近似为
M ( x) w" EI
例题2:图示一抗弯刚度为 EI 的简支梁,在全梁上受集度为q 的
均布荷载作用.试求此梁的挠曲线方程和转角方程,并确定其
max 和 wmax
q A B
l
q
解: 由对称性可知,梁的 两个支反力为
A x
B
ql RA RB 2
RA
l
RB
此梁的弯矩方程及挠曲线微分方程分别为
ql q 2 M ( x) x x 2 2 ql q 2 EIw x x 2 2
m
q A C l B
解:将梁上荷载分为两项简单 的荷载,如图所示
m
A
q C B
w C w Cq w Cm
5ql ml ( 384 EI 16 EI
4 2
(a)
l
)
(b) A
q
θ A θ Aq θ Am
ml ql ( )( 24 EI 3 EI θ B θ Bq θ Bm
( F1 , F2 , , Fn ) 1 ( F1 ) 2 ( F2 ) n ( Fn )
w( F1 , F2 , , Fn ) w1 ( F1 ) w2 ( F2 ) wn ( Fn )
2、结构形式叠加(逐段刚化法)
F q
ql 2 q 3 EIw x x C 4 6
ql 3 q 4 EIw x x Cx D 12 24
q
wmax B
边界条件为 :
x l ,时 w 0
A
梁的转角方程和挠曲线方程分 别为:
A
x
B
l
q (6lx 2 4 x 3 l 3 ) 24 EI
qa 3 3 EI
2
w PC
Fa 3 6 EI
C a a
qA
wqC
F
A
5qa 4 24 EI
=
B
(3)叠加
A PA qA
q A B
a (3 F 4qa ) 12 EI
5qa 4 Fa 3 wC ( ) 24 EI 6 EI
2
+
例题5:一抗弯刚度为 EI 的简支梁受荷载如图 所示.试按叠加原 理求梁跨中点的挠度 wC 和支座处横截面的转角 A , B 。
A
C a a
B
1、 按叠加原理求A点转角和C点挠 度. 解:(1)载荷分解如图
F
A
=
B
(2)由梁的简单载荷变形表, 查简单载荷引起的变形.
q
A B
PA
Fa 4 EI
qa 3 3 EI
2
w PC
Fa 3 6 EI
+
qA
wqC
5qa 4 24 EI
F q
A
B
PA
Fa 4 EI
3 ml ( ql 24 EI 6 EI 3
Aq
C l
B
Bq
wCq
) m
(c) A B
Bm
)
Am
C l
wCm
例题6:试利用叠加法,求图 所示抗弯刚度为EI的简支
A
q C B
梁跨中点的挠度 wC 和两端
截面的转角 A , B .
A C
l/2 l
q/2
解:可视为正对称荷载与反
简支梁的最大挠度应在
w' 0 处
先研究第一段梁,令 w1 0 得
Fb 2 2 (l b 3 x 2) 0 1 w 1' 6lEI
l 2 b2 a (a 2b ) x1 3 3
当 a > b时, x1 < a 最大挠度确实在第一段梁中
2 Fb Pbl 2 2 3 w | ( l b ) 0.0642 w max x x1 EI 9 3lEI
2 2
转角方程
挠度方程
b x F ( x a) C 2x D 2 EIw 2 F l 6 6
3
3
D点的连续条件: 在x=a处
w2 w1 w1 w2
F
RA
A
1
D
2
RB
B
边界条件: 在 x = 0 处, w1 0 在 x = l 处, w2 0 代入方程可解得:
a
b
l
D1 D 2 0
Fb 2 2 (l b ) C1 C 2 6l
1
(0 x a )
Fb 2 2 2 ( 1 w1 l b 3x ) 6lEI Fbx 2 2 [ l b x 2] w1 6lEI
2
(a x l )
Fb l 1 2 2 2 2 [ ( x a ) x ( l b )] 2 w 2' 2lEI b 3 Fb l 3 3 2 2 [ ( ( x a ) w2 x l b ) x] 6lEI b
b EIw 1 M 1 F x l
b x2 EIw F C1 l 2 b x EIw1 F C1 x D1 l 6
3
转角方程
挠度方程
2 (axl )
挠曲线方程
b EIw 2 M 2 F x F ( x a ) l
b x F ( x a) C2 EIw 2' F l 2 2
第六章
§6–1 §6–2 §6–3 §6–4 §6–5 §6–6
弯曲变形
基本概念及工程实例 挠曲线的微分方程 用积分法求弯曲变形 用叠加法求弯曲变形 静不定梁的解法 提高弯曲刚度的措施
§6–1 基本概念及工程实例
一. 工程实例
(Deflection of Beams)
A
B
但在另外一些情况下,有时却要求构件具有较大的弹性变
就分别等于每一荷载单独作用下该截面的挠度和转角的叠加. 当
每一项荷载所引起的挠度为同一方向(如均沿v 轴方向), 其转角 是在同一平面内(如均在 xy 平面内)时,则叠加就是代数和. 这就 是叠加原理.