图形的相似专题训练

合集下载

图形的相似练习题

图形的相似练习题

图形的相似练习题相似性是几何学中一个非常重要的概念,它描述了当两个图形形状相似时的关系。

在本文中,我们将探讨几个图形的相似练习题,并解答这些问题。

练习题1:已知三角形ABC和三角形DEF,且∠A=∠D,∠B=∠E,以及∠C=∠F。

又已知线段AB与线段DE的比例为2:3,线段BC与线段EF的比例为5:7。

证明这两个三角形相似。

解答1:根据已知条件,我们可以得出以下关系:∠A=∠D,∠B=∠E,∠C=∠FAB/DE = 2/3BC/EF = 5/7我们需要证明这两个三角形相似,根据相似性的定义,我们需要证明三个条件:1. 对应角相等(已知条件)2. 对应边的比例相等3. 三角形的形状相似首先,我们可以根据已知条件得出:AB/DE = BC/EF根据等比例的性质,我们知道这意味着三角形ABC和三角形DEF的对应边的比例相等。

其次,我们可以比较相似三角形的其他两对边:AC/DF = AB/DE * BC/EF根据已知条件和等比例的性质,我们可以将上面的等式进一步简化为:AC/DF = (2/3) * (5/7) = 10/21综上所述,我们证明了这两个三角形满足相似性的条件,因此可以得出结论:三角形ABC与三角形DEF相似。

练习题2:已知矩形ABCD的长为8cm,宽为4cm。

在该矩形上作一个相似于矩形ABCD的矩形EFGH,且其长是矩形ABCD的3倍。

求EFGH的宽和周长。

解答2:已知矩形ABCD的长为8cm,宽为4cm。

矩形EFGH是相似于矩形ABCD的,且其长是矩形ABCD的3倍。

我们需要求出矩形EFGH的宽和周长。

根据相似性的定义,我们知道相似的两个矩形的对应边的比例相等。

因此,我们可以得到以下关系:AB/EF = CD/FH = 1/3已知矩形ABCD的长为8cm,宽为4cm,因此我们可以得到:EF = AB * (1/3) = 8 * (1/3) = 8/3 cm所以,矩形EFGH的宽为8/3 cm。

初三相似试题及答案

初三相似试题及答案

初三相似试题及答案
一、选择题
1. 在下列选项中,哪两个图形是相似的?
A. 一个正方形和一个矩形
B. 一个正三角形和一个等腰三角形
C. 一个圆形和一个椭圆形
D. 一个菱形和一个正方形
答案:A
2. 如果两个图形相似,那么它们的对应角:
A. 相等
B. 互补
C. 互为余角
D. 互为补角
答案:A
3. 相似图形的对应边成比例,那么下列说法正确的是:
A. 相似比是边长的比值
B. 相似比是面积的比值
C. 相似比是周长的比值
D. 相似比是体积的比值
答案:A
二、填空题
1. 两个相似图形的相似比是2:3,那么它们的面积比是________。

答案:4:9
2. 如果一个图形的长和宽分别是8cm和6cm,那么与它相似的图形的长和宽分别是12cm和________cm。

答案:9
3. 相似三角形的周长比是3:5,那么它们的面积比是________。

答案:9:25
三、解答题
1. 已知三角形ABC与三角形DEF相似,且三角形ABC的边长分别是
3cm、4cm和5cm,三角形DEF的边长分别是6cm、8cm和10cm。

求三角形ABC与三角形DEF的相似比。

答案:三角形ABC与三角形DEF的相似比是3:6,即1:2。

2. 一个矩形的长是10cm,宽是4cm,与它相似的另一个矩形的长是20cm,求这个矩形的宽。

答案:矩形的宽是8cm。

3. 一个正三角形的边长是6cm,与它相似的另一个正三角形的边长是9cm,求这两个三角形的面积比。

答案:这两个三角形的面积比是36:81。

中考数学总复习《图形的相似》专项提升训练(带有答案)

中考数学总复习《图形的相似》专项提升训练(带有答案)

中考数学总复习《图形的相似》专项提升训练(带有答案)学校:___________班级:___________姓名:___________考号:___________一、单选题1.两个相似三角形的相似比是1:2,则其对应中线之比是( )A .1:1B .1:2C .1:3D .1:42.如图,在ABC 中2AC =,BC=4,D 为BC 边上的一点,且CAD B ∠=∠.若ADC △的面积为2,则ABD △的面积为( )A .4B .5C .6D .73.若35a b =,则下列各式一定成立的是( )A .53a b =B .35a b =C .65a b a +=D .145a b += 4.如图,在ABC 中DE BC ∥,AD=1,BD=2,AC=6,则CE 的长为( )A .2B .3C .4D .55.如图,在等边ABC 中,点D ,E 分别是BC AC ,上的点72AB CD ==,,60ADE ∠=︒则AE 等于( )A .5B .397C .6D .4176.下列命题正确的是( )A .方程210x x --=没有实数根B .两边成比例及一角对应相等的两个三角形相似C .平分弦的直径垂直于弦D .反比函数的图像不会与坐标轴相交7.已知ABC DEF ∽△△,:1:2AB DE =且ABC 的周长为6,则DEF 的周长为( ) A .3 B .6 C .12 D .248.在平面直角坐标系xOy 中,已知点()()()0,0,1,2,0,3O A B .若OA B ''△与OAB 是原点O 为位似中心的位似图形,且点B 的对应点为()0,9B '-,则点A 的对应点A '坐标为( ) A .()3,6 B .()3,6-- C .()3,6- D .()3,6- 9.如图,D 是ABC 边AB 上一点,添加一个条件后,仍不能使ACD ABC △∽△的是( )A .ACDB ∠=∠ B .ADC ACB ∠=∠ C .AD CD AC BC = D .AC AB AD AC = 10.如图,已知ABC DAC △∽△,37B ∠=︒和116∠=︒D ,则BAD ∠的度数为( )A .37︒B .116︒C .153︒D .143︒二、填空题11.如图,在矩形ABCD 中,8AB =和4BC =,连接AC ,EF AC ⊥于点O ,分别与AB 、CD 交于点E 、F ,连接AF 、CE ,则AF CE +的最小值为 .12.如图,在ABC 中,点D 、E 分别为AB 、AC 的中点,点F 为DE 中点,连接BF 并延长交AC 于点G ,则:AG GE = .13.如图AC ,AD 和CE 是正五边形ABCDE 的对角线,AD 与CE 相交于点F .下列结论:(1)CA 平分BCF ∠;(2)2CF EF =;(3)四边形ABCF 是菱形;(4)2AB AD EF =⋅.其中正确的结论是 .(填写所有正确结论的序号)14.如图AC 、BD 交于点O ,连接AB 和CD ,若要使AOB COD ∽,可以添加条件 .(只需写出一个条件即可)15.如图,在ABC 中4AC AB ==和30C ∠=︒,D 为边BC 上一点,且3CD =,E 为AB 上一点,若30ADE ∠=︒,则BE 的长为 .16.在ABC 中,6810AC BC AB D ===,,,是AB 的中点,P 是CD 上的动点,若点P 到ABC 的一边的距离为2,则CP 的长为 .17.如图,M 是Rt ABC △斜边AB 上的中点,将Rt ABC △绕点B 旋转,使得点C 落在射线CM 上的点D 处,点A 落在点E 处,边ED 的延长线交边AC 于点F .如果3BC =.4AC =那么BE 的长为 ;CF 的长为 .18.如图,在ABC 中,D 是AC 的中点,点F 在BD 上,连接AF 并延长交BC 于点E ,若:3:1BF FD =,8BC =则CE 的长为 .三、解答题19.已知O 为ABCD 两对角线的交点,直线l 过顶点D ,且绕点D 顺时针旋转,过点A ,C 分别作直线l 的垂线,垂足为点E ,F .(1)如图1,若直线l 过点B ,求证:OE OF =;(2)如图2,若EFO FCA ∠=∠,2FC AE =求CFO ∠的度数;(3)如图3,若ABCD 为菱形4AE =,6AO =和8EO =直接写出CF 的长. 20.如图,在ABC 中2BAC C ∠=∠,利用尺规作图法在BC 上求作一点D ,使得ABDCBA .(不写作法,保留作图痕迹)21.如图,在Rt ABC △中90ACB ∠=︒,D 是AB 的中点,连接CD ,过点A 作AE CD ⊥于点E ,过点E 作EF CB ∥交BD 于点F .(1)求证:ACE BAC ∽△△;(2)若5AC =,5AB =求CE 及EF 的长.22.如图,在直角梯形OABC 中BC AO ∥,=90AOC ︒∠点A 、B 的坐标分别为()5,0、()2,6点D 为AB 上一点,且2BD AD =.双曲线()0k y x x=>经过点D ,交BC 于点E .求点E 的坐标.23.如图,点P 是菱形ABCD 的对角线BD 上一点,连结CP 并延长,交AD 于E ,交BA 的延长线点F .求证:APE FPA △∽△.24.如图1,菱形AGBD 边长为3,延长DB 至点C ,使得5BC =.连接AB ,AB AD =点E ,F 分别在线段AD 和AB 上,且满足DE AF =,连接BE ,DF 交于点O ,过点B 作BM BE ⊥,交DF 延长线于点M ,连接CM .图1 图2(1)求OB 与BM 之间的数量关系;(2)当DMB DCM △∽△时,求DO 的长度;(3)如图2,过点M 作MN CD ⊥交CD 于N ,求MN MC的最大值. 1.B2.C3.A4.C5.B6.D7.C8.B9.C10.C11.1012.2:113.①①①14.A C ∠=∠(答案不唯一)15.9416.103或52或3512 17. 59418.16519.(2)60CFO ∠=︒(3)CF 的长为7 21.(2)1CE = 655EF =. 22.4,63⎛⎫ ⎪⎝⎭/11,63⎛⎫ ⎪⎝⎭ 24.(1)3BM OB =(2)1OD =(3)1014101911316206517MN CN ++=。

2022中考数学考点专题训练——专题十:图形的相似(含答案)

2022中考数学考点专题训练——专题十:图形的相似(含答案)

备战2022最新中考数学考点专题训练——专题十:图形的相似1.如图,点D为△ABC外一点,AD与BC边的交点为E,AE=3,DE=5,BE=4,要使△BDE∽△ACE,且点B,D的对应点为A,C,那么线段CE的长应等于.2.如图,AB∥CD∥EF,AF与BE相交于点G,且AG=2,GD=1,DF=5,那么的值等于.3.如图,△ABC中,AB=5,BC=3,CA=4,D为AB的中点,过点D的直线与BC交于点E,若直线DE截△ABC所得的三角形与△ABC相似,则DE=.4.如图,在平面直角坐标系中有两点A(4,0),B(0,2),如果点C在x轴上(C与A不重合)当点C的坐标为时,使得△BOC∽△AOB.5.如图,在△ABC中,AB=9,AC=6,BC=12,点M在AB边上,且AM=3,过点M作直线MN与AC边交于点N,使截得的三角形与原三角形相似,则MN=.6.如图,C为线段AB上的一点,△ACM、△CBN都是等边三角形,若AC=3,BC=2,则△MCD与△BND的面积比为.7.如图,路灯距离地面8米,身高1.6米的小明站在距离灯的底部(点O)20米的A处,则小明的影子AM长为米.8.如图,F是平行四边形ABCD对角线BD上的点,BF:FD=1:3,则BE:EC=.9.将一个面积为1的等边三角形挖去连接三边中点所组成的三角形(如第①图)后,继续挖去连接剩余各个三角形三边中点所成的三角形(如第②图、第③图)…如此进行挖下去,第④个图中,剩余图形的面积为,那么第n(n为正整数)个图中,挖去的所有三角形的面积和为(用含n的代数式表示).10.如图,已知:在梯形ABCD中,AD∥BC,AD=3,BC=5,点E在AB上,且AE:EB=2:3,过点E作EF∥BC交CD于F,则EF 的长是.11.如图,在Rt△ABC中,∠C=90°,点D在边AB上,线段DC 绕点D逆时针旋转,端点C恰巧落在边AC上的点E处.如果=m,=n.那么m与n满足的关系式是:m=(用含n的代数式表示m).12.如图,直线y=x+1与x轴交于点A,与y轴交于点B,△BOC 与△B′O′C′是以点A为位似中心的位似图形,且相似比为1:3,则点B的对应点B′的坐标为.13.如图,△ABC中,∠ACB=90°,AC=8cm,BC=6cm,D为BC的中点,若动点E以1cm/s的速度从A点出发,沿着A→B→A 的方向运动,设E点的运动时间为t秒(0≤t<15),连接DE,当△BDE是直角三角形时,t的值为.14.如图,在△ABC中,AB=9,AC=6,BC=12,点M在AB边上,且AM=3,过点M作直线MN与AC边交于点N,使截得的三角形与原三角形相似,则MN=.15.如图所示,已知点E在AC上,若点D在AB上,则满足条件(只填一个条件),使△ADE与原△ABC相似.16.如图,直线a∥b∥c,直线AC分别交a,b,c于点A,B,C,直线DF分别交a,b,c于点D,E,F.若=,则=.17.已知点P是线段AB的黄金分割点,且AP>BP,AB=4,那么AP=.18.如图,在四边形ABCD中,∠BAC=∠BDC=90°,AB=AC=,CD=1,对角线的交点为M,则DM=.19.已知△ABC为钝角三角形,其最大边AC上有一点P(点P与点A,C不重合),过点P作直线l,使直线l截△ABC所得的三角形与原三角形相似,这样的直线l可作的条数是.20.已知AM是△ABC中BC边上的中线,P是△ABC的重心,过P 作EF(EF∥BC),分别交AB、AC于E、F,则=.21.如图,在▱ABCD中,对角线AC,BD相交于点O,P是BC边中点,AP交BD于点Q.则的值为.22.如图,在凸四边形ABCD中,AB∥CD,点E和F在边AB上,且CE∥AD,DF∥BC,DF与CE相交于点G,若△EFG的面积等于1,△CDG的面积等于2,则四边形ABCD的面积等于.23.《九章算术》中记载了一种测量井深的方法.如图所示,在井口B处立一根垂直于井口的木杆BD,从木杆的顶端D观察井水水岸C,视线DC与井口的直径AB交于点E,如果测得AB=1.6米,BD=1米,BE=0.2米,那么AC为米.24.在平面直角坐标系中,将△AOB以点O为位似中心,为位似比作位似变换,得到△A1OB1,已知A(2,3),则点A1的坐标是.25.如图,正方形ABCD中,点N为AB的中点,连接DN并延长交CB的延长线于点P,连接AC交DN于点M.若PN=3,则DM 的长为.26.已知直角坐标系中,点A(0,3),B(﹣6,0).连结AB,作直线y=1,交AB于点P1,过P1作P1Q1⊥x轴于Q1;连结AQ1,交直线y=1于点P2,P2Q2⊥x轴于Q2;…以此类推.则点Q3的坐标为;△PnQnA的面积为=(用含n的代数式表示).27.如图,在△ABC中,AD平分∠BAC,与BC边的交点为D,且DC=BC,DE∥AC,与AB边的交点为E,若DE=4,则BE的长为.28.如图,在▱ABCD中,延长CD至点E,使DE=DC,连接BE 与AC于点F,则的值是.29.如图,在正方形ABCD中,AC为对角线,E为AB上一点,过点E作EF∥AD,与AC、DC分别交于点G,F,H为CG的中点,连接DE,EH,DH,FH.下列结论:①EG=DF;②∠AEH+∠ADH=180°;③△EHF≌△DHC;④若=,则3S△EDH=13S△DHC,其中结论正确的有.30.在某一时刻,测得一根高为2m的竹竿的影长为1m,同时测得一栋建筑物的影长为12m,那么这栋建筑物的高度为m.31.如图,在直角坐标系中,每个小正方形的边长均为1个单位长度,△ABO的顶点坐标分别为A(﹣2,﹣1),B(﹣2,﹣3),O(0,0),△A1B1O1的顶点坐标分别为A1(1,﹣1),B1(1,﹣5),O1(5,1),△ABO与△A1B1O1是以点P为位似中心的位似图形,则P点的坐标为.32.如图G为△ABC的重心,GE∥AC,若S△ABC=72,则S△GDE =.33.李老师从“淋浴龙头”受到启发,编了一个题目:在数轴上截取从0到3的对应线段AB,实数m对应AB上的点M,如图1;将AB折成正三角形,使点A,B重合于点P,如图2;建立平面直角坐标系,平移此三角形,使它关于y轴对称,且点P的坐标为(0,2),PM与x轴交于点N(n,0),如图3.当m=时,n=.34.如图,△A′B′C′是△ABC以点O为位似中心经过位似变换得到的,若△A′B′C′的面积与△ABC的面积比是4:9,则OB′:OB=.35.如图,△ABC∽△ADE,∠BAC=∠DAE=90°,AB=6,AC=8,F为DE中点,若点D在直线BC上运动,连接CF,则在点D运动过程中,线段CF的最小值是.备战2022最新中考数学考点专题训练——专题十:图形的相似参考答案1.如图,点D为△ABC外一点,AD与BC边的交点为E,AE=3,DE=5,BE=4,要使△BDE∽△ACE,且点B,D的对应点为A,C,那么线段CE的长应等于.【答案】解:∵∠AEC=∠BED,∴当=时,△BDE∽△ACE,即=,∴CE=.故答案为.2.如图,AB∥CD∥EF,AF与BE相交于点G,且AG=2,GD=1,DF=5,那么的值等于.【答案】解:∵AG=2,GD=1,∴AD=3,∵AB∥CD∥EF,∴=,故答案为:.3.如图,△ABC中,AB=5,BC=3,CA=4,D为AB的中点,过点D的直线与BC交于点E,若直线DE截△ABC所得的三角形与△ABC相似,则DE=.【答案】解:∵D为AB的中点,∴BD=AB=,∵∠DBE=∠ABC,∴当∠DBE=∠ACB时,△BDE∽△BAC时,如图1,则=,即=,解得DE=2;当∠BDE=∠ACB时,如图2,DE交AC于F,∵∠DAF=∠CAB,∴△ADF∽△ACB,∴△BDE∽△BCA,∴=,即=,解得DE=,综上所述,若直线DE截△ABC所得的三角形与△ABC相似,则DE =2或.故答案为2或.4.如图,在平面直角坐标系中有两点A(4,0),B(0,2),如果点C在x轴上(C与A不重合)当点C的坐标为时,使得△BOC∽△AOB.【答案】解:∵△BOC∽△AOB,∴=,∴=,∴OC=1,∵点C在x轴上,∴点C的坐标为(1,0)或(﹣1,0);故答案为:(1,0)或(﹣1,0).5.如图,在△ABC中,AB=9,AC=6,BC=12,点M在AB边上,且AM=3,过点M作直线MN与AC边交于点N,使截得的三角形与原三角形相似,则MN=.【答案】解:如图1,当MN∥BC时,则△AMN∽△ABC,故==,则=,解得:MN=4,如图2所示:当∠ANM=∠B时,又∵∠A=∠A,∴△ANM∽△ABC,∴=,即=,解得:MN=6,故答案为:4或6.6.如图,C为线段AB上的一点,△ACM、△CBN都是等边三角形,若AC=3,BC=2,则△MCD与△BND的面积比为.【答案】解:∵△ACM、△CBN都是等边三角形,∴△ACM∽△CBN,∴CM:BN=AC:BC=3:2;∵△ACM、△CBN都是等边三角形,∴∠MCA=∠NDB=∠BND=60°,∴∠MCN=60°=∠BND,∴∠CMD=∠NBD(三角形内角和定理)∴△MCD∽△BND∴△MCD与△BND的面积比为()2=()2=.7.如图,路灯距离地面8米,身高1.6米的小明站在距离灯的底部(点O)20米的A处,则小明的影子AM长为米.【答案】解:根据题意,易得△MBA∽△MCO,根据相似三角形的性质可知=,即=,解得AM=5m.则小明的影长为5米.8.如图,F是平行四边形ABCD对角线BD上的点,BF:FD=1:3,则BE:EC=.【答案】解:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∴△BEF∽DAF,∴BE:AD=BF:FD=1:3,∴BE:BC=1:3,∴BE:EC=1:2.故答案为:1:2.9.将一个面积为1的等边三角形挖去连接三边中点所组成的三角形(如第①图)后,继续挖去连接剩余各个三角形三边中点所成的三角形(如第②图、第③图)…如此进行挖下去,第④个图中,剩余图形的面积为,那么第n(n为正整数)个图中,挖去的所有三角形的面积和为(用含n的代数式表示).【答案】解:观察这几个图,可以看出来,分别在每个图形中,以每个小白三角形为一个基本图形,那么在这个图形中,就会有很多以一个白色三角形为基础的图形.则可以观察出规律,在第N个图形中,会有4n个基本形;也可以看出有3n白色三角形.那么剩余部分的面积就应该是:×大三角形的面积,即×大三角形的面积,那么第④个图中,剩余图形的面积为或,∵三角形的面积是1第n(n为正整数)个图中,挖去的所有三角形的面积和为:1﹣.故答案为:或;1﹣.10.如图,已知:在梯形ABCD中,AD∥BC,AD=3,BC=5,点E在AB上,且AE:EB=2:3,过点E作EF∥BC交CD于F,则EF 的长是.【答案】解:过点A作AN∥CD,分别交EF,BC于点M,N,∵AD∥BC,EF∥BC,∴AD∥EF∥BC,∴四边形AMFD与四边形ANCD是平行四边形,∴CN=MF=AD=3,∴BN=BC﹣CN=5﹣3=2,∵EF∥BC,∴△AEM∽△ABN,∴EN:BM=AE:AB,∵AE:EB=2:3,∴AE:AB=2:5,∴EM=BN=0.8,∴EF=EM+FM=0.8+3=3.8.故答案为:3.8.11.如图,在Rt△ABC中,∠C=90°,点D在边AB上,线段DC 绕点D逆时针旋转,端点C恰巧落在边AC上的点E处.如果=m,=n.那么m与n满足的关系式是:m=(用含n的代数式表示m).【答案】解:作DH⊥AC于H,如图,∵线段DC绕点D逆时针旋转,端点C恰巧落在边AC上的点E处,∴DE=DC,∴EH=CH,∵=n,即AE=nEC,∴AE=2nEH=2nCH,∵∠C=90°,∴DH∥BC,∴=,即m===2n+1.故答案为:2n+1.12.如图,直线y=x+1与x轴交于点A,与y轴交于点B,△BOC 与△B′O′C′是以点A为位似中心的位似图形,且相似比为1:3,则点B的对应点B′的坐标为.【答案】解:∵直线y=x+1与x轴交于点A,与y轴交于点B,令x=0可得y=1;令y=0可得x=﹣2,∴点A和点B的坐标分别为(﹣2,0);(0,1),∵△BOC与△B′O′C′是以点A为位似中心的位似图形,且相似比为1:3,∴==,∴O′B′=3,AO′=6,∴B′的坐标为(﹣8,﹣3)或(4,3).故答案为:(﹣8,﹣3)或(4,3).13.如图,△ABC中,∠ACB=90°,AC=8cm,BC=6cm,D为BC的中点,若动点E以1cm/s的速度从A点出发,沿着A→B→A 的方向运动,设E点的运动时间为t秒(0≤t<15),连接DE,当△BDE是直角三角形时,t的值为.【答案】解:当DE⊥AB于点E,设t秒时,E点没有到达B点前,∠BED=90°,∵∠B=∠B,∠ACB=∠BED=90°,∴△BED∽△BCA,∴=,∵∠ACB=90°,AC=8cm,BC=6cm,D为BC的中点,∴AB=10cm,BD=3cm,∴=,解得:t=8.2,设t秒时,当E点到达B点后,∠BED=90°,∵∠B=∠B,∠ACB=∠BED=90°,∴△BED∽△BCA,∴=,∵∠ACB=90°,AC=8cm,BC=6cm,D为BC的中点,∴AB=10cm,BD=3cm,∴=,解得:t=11.8,当DE⊥CB于DE,设t秒时,∠BDE=90°,∵DE∥AC,∴△BED∽△BAC,∴==,∵∠ACB=90°,AC=8cm,BC=6cm,D为BC的中点,∴AB=10cm,BD=3cm,∴=解得:t=5,综上所述:t的值为5s或8.2s或11.8s.故答案为:5s或8.2s或11.8s.14.如图,在△ABC中,AB=9,AC=6,BC=12,点M在AB边上,且AM=3,过点M作直线MN与AC边交于点N,使截得的三角形与原三角形相似,则MN=.【答案】解:如图1,当MN∥BC时,则△AMN∽△ABC,故==,则=,解得:MN=4,如图2所示:当∠ANM=∠B时,又∵∠A=∠A,∴△ANM∽△ABC,∴=,即=,解得:MN=6,故答案为:4或6.15.如图所示,已知点E在AC上,若点D在AB上,则满足条件(只填一个条件),使△ADE与原△ABC相似.【答案】解:已知点E在AC上,若点D在AB上,则满足条件∠B =∠AED(只填一个条件),使△ADE与原△ABC相似,故答案为:∠B=∠AED.16.如图,直线a∥b∥c,直线AC分别交a,b,c于点A,B,C,直线DF分别交a,b,c于点D,E,F.若=,则=.【答案】解:∵=,∴=,∵直线a∥b∥c,∴==,故答案是:.17.已知点P是线段AB的黄金分割点,且AP>BP,AB=4,那么AP=.【答案】解:由于P为线段AB=4的黄金分割点,且AP是较长线段;则AP=AB=×4=2﹣2.故答案为2﹣2.18.如图,在四边形ABCD中,∠BAC=∠BDC=90°,AB=AC=,CD=1,对角线的交点为M,则DM=.【答案】解:在△ABC中,∵∠BAC=90°,且AB=AC=,∴BC===,在△BCD中,∵∠BDC=90°,CD=1,∴BD===3,又∵∠BAC=∠BDC=90°,∠AMB=∠DMC,∴△AMB∽△DMC,∴==,即==,解得:DM=,故答案为:.19.已知△ABC为钝角三角形,其最大边AC上有一点P(点P与点A,C不重合),过点P作直线l,使直线l截△ABC所得的三角形与原三角形相似,这样的直线l可作的条数是.【答案】解:如图1:过点P作PE∥AB的平行线,或者作PD∥BC的平行线,都可使截得的三角形与原三角形相似;过点P可作直线交边AC于点F,使得∠PFC=∠A,可得△CFP∽△CAB,∴有3条;如图2:只有2条.∴这样的直线l可作的条数是3条或2条.故答案为:3或2.20.已知AM是△ABC中BC边上的中线,P是△ABC的重心,过P 作EF(EF∥BC),分别交AB、AC于E、F,则=.【答案】解:如图分别过B、C两点作BG、CK平行于AM交直线EF于G、K,则有=,=,两式相加,又平行四边形BCKG中,PM=(BG+CK),而由P为重心得AP =2PM,故.故答案为:1.21.如图,在▱ABCD中,对角线AC,BD相交于点O,P是BC 边中点,AP交BD于点Q.则的值为.【答案】解:连接OP,∵四边形ABCD是平行四边形,∴AO=OC,BO=OD,∵PC=PB,∴OP∥AB,OP=AB,∴==,∴=,故答案为.22.如图,在凸四边形ABCD中,AB∥CD,点E和F在边AB上,且CE∥AD,DF∥BC,DF与CE相交于点G,若△EFG的面积等于1,△CDG的面积等于2,则四边形ABCD的面积等于.【答案】解:∵AB∥CD,∴△EFG∽△CDG,∴S△EFG:S△CDG=()2=()2,又∵△EFG的面积等于1,△CDG的面积等于2,∴()2=()2=,∴==,∴==﹣1,∵DF∥BC,∴△EFG∽△EBC,∴S△EFG:S△EBC=()2=3﹣2,∴S△EBC=3+2,∴S四边形GFBC=3+2﹣1=2+2,同理S四边形GDAE=2+2,∴S四边形ABCD=1+2+2+2+2+2=7+4.故答案为:7+4.23.《九章算术》中记载了一种测量井深的方法.如图所示,在井口B处立一根垂直于井口的木杆BD,从木杆的顶端D观察井水水岸C,视线DC与井口的直径AB交于点E,如果测得AB=1.6米,BD=1米,BE=0.2米,那么AC为米.【答案】解:∵BD⊥AB,AC⊥AB,∴BD∥AC,∴△ACE∽△BDE,∴,∴=,∴AC=7(米),故答案为:7.24.在平面直角坐标系中,将△AOB以点O为位似中心,为位似比作位似变换,得到△A1OB1,已知A(2,3),则点A1的坐标是.【答案】解:∵将△AOB以点O为位似中心,为位似比作位似变换,得到△A1OB1,A(2,3),∴点A1的坐标是:(×2,×3),即A1(,2).故答案为:(,2).25.如图,正方形ABCD中,点N为AB的中点,连接DN并延长交CB的延长线于点P,连接AC交DN于点M.若PN=3,则DM 的长为.【答案】解:∵四边形ABCD为正方形,N为中点,∴AD=PB,AN=BN,∠DAN=∠PBN=90°,在△PBN和△DNA中∴△PBN≌△DNA(SAS),∴DN=PN=3,即DM+MN=3,∵AB∥CD,∴△AMN∽△CMD,∴==,∴DM=2,故答案为:2.26.已知直角坐标系中,点A(0,3),B(﹣6,0).连结AB,作直线y=1,交AB于点P1,过P1作P1Q1⊥x轴于Q1;连结AQ1,交直线y=1于点P2,P2Q2⊥x轴于Q2;…以此类推.则点Q3的坐标为;△PnQnA的面积为=(用含n的代数式表示).【答案】解:①∵点A(0,3),B(﹣6,0),作直线y=1,交AB 于点P1,∴OA=3,OB=6,P1Q1=P2Q2=P3Q3=1,∵P1Q1⊥x轴于Q1,P2Q2⊥x轴于Q2,…,∴P1Q1∥P2Q2∥P3Q3∥…∥PnQn∥y轴,∴△BP1Q1∽△ABO,△P2Q1Q2∽△AQ1O,△P3Q2Q3∽△AQ2O,…,∴,,,…,∴BQ1=2,Q1Q2=,Q2Q3=,…,∴Q1(﹣4,0),Q2(﹣,0),Q3(﹣,0),…,P1(﹣4,1),P2(﹣,1),P3(﹣,0),…,即Q1(﹣,0),Q2(﹣,0),Q3(﹣,0),…,P1(﹣,1),P2(﹣,1),P3(﹣,0),…,∴Qn﹣1(﹣,0),Qn(﹣,0),Pn﹣1(﹣,1)Pn (﹣,1),故点Q3的坐标为:Q3(﹣,0),故答案为:Q3(﹣,0);②∵△AP1Q1的面积=△ABQ1的面积﹣△BP1Q1的面积=•BQ1•OA﹣•BQ1•P1Q1=BQ1,△AP2Q2的面积=△AQ1Q2的面积﹣△Q1P Q2的面积=•Q1Q2•OA﹣•Q1Q2•P2Q2=Q1Q2,…,∴△PnQnA的面积=Qn﹣1Qn=﹣﹣(﹣)=.故答案为:.27.如图,在△ABC中,AD平分∠BAC,与BC边的交点为D,且DC=BC,DE∥AC,与AB边的交点为E,若DE=4,则BE的长为.【答案】解:∵AD平分∠BAC,∴∠BAD=∠CAD,∵DE∥AC,∴∠CAD=∠EDA,∴∠EAD=∠EDA,∴EA=ED=4,∵DE∥AC,∴=,而DC=BC,∴BE=2AE=8.故答案为8.28.如图,在▱ABCD中,延长CD至点E,使DE=DC,连接BE 与AC于点F,则的值是.【答案】解:在▱ABCD中,AB∥CD,AB=CD,∵DE=DC,∴AB=CD=DE=CE,∵AB∥CD,∴△ABF∽△CEF,∴==.故答案为:.29.如图,在正方形ABCD中,AC为对角线,E为AB上一点,过点E作EF∥AD,与AC、DC分别交于点G,F,H为CG的中点,连接DE,EH,DH,FH.下列结论:①EG=DF;②∠AEH+∠ADH=180°;③△EHF≌△DHC;④若=,则3S△EDH=13S△DHC,其中结论正确的有.【答案】解:①∵四边形ABCD为正方形,EF∥AD,∴EF=AD=CD,∠ACD=45°,∠GFC=90°,∴△CFG为等腰直角三角形,∴GF=FC,∵EG=EF﹣GF,DF=CD﹣FC,∴EG=DF,故①正确;②∵△CFG为等腰直角三角形,H为CG的中点,∴FH=CH,∠GFH=∠GFC=45°=∠HCD,在△EHF和△DHC中,,∴△EHF≌△DHC(SAS),∴∠HEF=∠HDC,∴∠AEH+∠ADH=∠AEF+∠HEF+∠ADF﹣∠HDC=∠AEF+∠ADF=180°,故②正确;③∵△CFG为等腰直角三角形,H为CG的中点,∴FH=CH,∠GFH=∠GFC=45°=∠HCD,在△EHF和△DHC中,,∴△EHF≌△DHC(SAS),故③正确;④∵=,∴AE=2BE,∵△CFG为等腰直角三角形,H为CG的中点,∴FH=GH,∠FHG=90°,∵∠EGH=∠FHG+∠HFG=90°+∠HFG=∠HFD,在△EGH和△DFH中,,∴△EGH≌△DFH(SAS),∴∠EHG=∠DHF,EH=DH,∠DHE=∠EHG+∠DHG=∠DHF+∠DHG=∠FHG=90°,∴△EHD为等腰直角三角形,过H点作HM垂直于CD于M点,如图所示:设HM=x,则DM=5x,DH=x,CD=6x,则S△DHC=×HM×CD=3x2,S△EDH=×DH2=13x2,∴3S△EDH=13S△DHC,故④正确;故答案为:①②③④.30.在某一时刻,测得一根高为2m的竹竿的影长为1m,同时测得一栋建筑物的影长为12m,那么这栋建筑物的高度为m.【答案】解:设这栋建筑物的高度为xm,由题意得,=,解得x=24,即这栋建筑物的高度为24m.故答案为:24.31.如图,在直角坐标系中,每个小正方形的边长均为1个单位长度,△ABO的顶点坐标分别为A(﹣2,﹣1),B(﹣2,﹣3),O(0,0),△A1B1O1的顶点坐标分别为A1(1,﹣1),B1(1,﹣5),O1(5,1),△ABO与△A1B1O1是以点P为位似中心的位似图形,则P点的坐标为.【答案】解:如图,P点坐标为(﹣5,﹣1).故答案为(﹣5,﹣1).32.如图G为△ABC的重心,GE∥AC,若S△ABC=72,则S△GDE =.【答案】解:∵G为△ABC的重心,∴AD为△ABC的中线,DG:AG=1:2,∴S△ADC=S△ABC=×72=36,∵GE∥AC,∴△DEG∽△DCA,∴=()2=()2=,∴S△DEG=×36=4.故答案为4.33.李老师从“淋浴龙头”受到启发,编了一个题目:在数轴上截取从0到3的对应线段AB,实数m对应AB上的点M,如图1;将AB折成正三角形,使点A,B重合于点P,如图2;建立平面直角坐标系,平移此三角形,使它关于y轴对称,且点P的坐标为(0,2),PM与x轴交于点N(n,0),如图3.当m=时,n=.【答案】解:∵AB=3,△PDE是等边三角形,∴PD=PE=DE=1,以DE的垂直平分线为y轴建立直角坐标系,∵△PDE关于y轴对称,∴PF⊥DE,DF=EF,DE∥x轴,∴PF=,∴△PFM∽△PON,∴=,∵m=,∴FM=﹣,∴=,解得:ON=4﹣2,即n=4﹣2.故答案为:4﹣2.34.如图,△A′B′C′是△ABC以点O为位似中心经过位似变换得到的,若△A′B′C′的面积与△ABC的面积比是4:9,则OB′:OB=.【答案】解:由位似变换的性质可知,△A′B′C′∽△ABC.∵△A'B'C'与△ABC的面积的比4:9,∴△A'B'C'与△ABC的相似比为2:3,∵A′B′∥AB==,故答案为2:3;35.如图,△ABC∽△ADE,∠BAC=∠DAE=90°,AB=6,AC=8,F为DE中点,若点D在直线BC上运动,连接CF,则在点D运动过程中,线段CF的最小值是.【答案】解:如图,连接CE,∵△ABC∽△ADE,∴∠ACD=∠AEG,又∵∠AGE=∠DGC,∴△AGE∽△DGC,∴=,又∵∠AGD=∠EGC,∴△AGD∽△EGC,∴∠ADG=∠ECG,又∵Rt△ADE中,∠ADG+∠AEG=90°,∴∠ECG+∠ACD=90°,即∠DCE=90°,∵F是DE的中点,∴CF=DE,∵△ABC∽△ADE,∴当AD⊥BC时,AD最短,此时DE最短,当AD⊥BC时,AD==4.8,∵=,即=,∴DE=8,∴CF=×8=4.故答案为:4.。

第25章图形的相似 解答题专题训练 2021-2022学年冀教版九年级数学上册 (含答案)

第25章图形的相似  解答题专题训练  2021-2022学年冀教版九年级数学上册 (含答案)

2021-2022学年冀教版九年级数学上册《第25章图形的相似》解答题专题训练(附答案)1.如图,△ABC中,DE∥BC,G是AE上一点,连接BG交DE于F,作GH∥AB交DE 于点H.(1)如图1,与△GHE相似的三角形是(直接写出答案);(2)如图1,若AD=3BD,BF=FG,求的值;(3)如图2,连接CH并延长交AB于P点,交BG于Q,连接PF,则一定有PF∥CE,请说明理由.2.如图,平行四边形ABCD,AE⊥BC交点E,连接DE,F为DE上一点,且∠AFE=∠B =60°.(1)求证:△ADF∽△DEC;(2)若AE=3,AD=4,求EF的长.3.如图,已知在Rt△ABC中,∠ACB=90°,AC>BC,CD是Rt△ABC的高,E是AC的中点,ED的延长线与CB的延长线相交于点F.(1)求证:DF是BF和CF的比例中项;(2)在AB上取一点G,如果AE•AC=AG•AD,求证:EG•CF=ED•DF.4.如图,正方形ABCD中,M为BC上一点,F是AM的中点,EF⊥AM,垂足为F,交AD的延长线于点E,交DC于点N.(1)求证:△ABM∽△EF A;(2)若AB=12,BM=5,求DE的长.5.已知四边形ABCD中,E,F分别是AB,AD边上的点,DE与CF交于点G.(1)如图①,若四边形ABCD是矩形,且DE⊥CF.求证:=;(2)如图②,若四边形ABCD是平行四边形.试探究:当∠B与∠EGC满足什么关系时,使得=成立?并证明你的结论.6.在矩形ABCD中,DC=2,CF⊥BD分别交BD、AD于点E、F,连接BF.(1)求证:△DEC∽△FDC;(2)当F为AD的中点时,求BC的长度.7.已知:如图,在四边形ABCD中,AB∥CD,对角线AC、BD交于点E,点F在边AB 上,连接CF交线段BE于点G,CG2=GE•GD.(1)求证:∠ACF=∠ABD;(2)连接EF,求证:EF•CG=EG•CB.8.已知:▱ABCD,点G在边DC上,直线AG交对角线BD于点F、交DC延长线于点E.(1)如图(1),求证:△ABG∽△EDA;(2)如图(2),若∠GCE=2∠ADB,AF:FE=1:2,写图中所有与AD相等的线段.9.已知,如图在Rt△ABC中,∠B=90°,AB=6cm,BC=8cm,点P由点A出发沿AB 方向向终点点B匀速移动,速度为1cm/s,点Q由点B出发沿BC方向向终点点C匀速移动,速度为2cm/s.如果动点P,Q同时从A,B出发,当P或Q到达终点时运动停止.几秒后,以Q,B,P为顶点的三角形与△ABC相似?10.如图,△ABC中,BC=30,高AD=18,作矩形PQRS,使得P、S分别落在AB、AC 边上,Q、R落在BC边上.(1)求证:△APS∽△ABC;(2)如矩形PQRS是正方形,求它的边长;(3)如AP:PB=1:2,求矩形PQRS的面积.11.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于D,E是AC的中点,DE的延长线与BC的延长线交于点F.(1)求证:;(2)若,求的值.12.如图所示,AD、BC为两路灯,身高相同的小明、小亮站在两路灯杆之间,两人相距6.5m,小明站在P处,小亮站在Q处,小明在路灯BC下的影长为2m,已知小明身高1.8m,路灯BC高9m.小明在路灯BC下的影子顶部恰好位于路灯DA的正下方,小亮在路灯AD下的影子顶部恰好位于路灯BC的正下方.①计算小亮在路灯AD下的影长;②计算AD的高.13.如图正方形ABCD的顶点E,F是AD和CD上的动点,与AC交于P、Q两点,AB=1.(1)当AB=AQ=CP时,①求∠EBF的度数;②求以BQ为边长的正方形面积;(2)当E,F在AD,CD上运动时,始终保持∠EBF=45°,连接EF,则△BEF面积的最小值为(直接写出答案).14.如图,已知平行四边形ABCD,过点A作BC的垂线,垂足为点E,且满足AE=EC,过点C作AB的垂线,垂足为点F,交AE于点G,连接BG.(1)如图1,若BG=2,AB=6,求AC的长度;(2)如图2,取BE的中点M,在EC上取一点N,使EN=BE,连接AN,过点M作AN的垂线,交AC于点H,求证:BG=2CH.15.定义:有两个相邻内角互余的四边形称为邻余四边形,这两个角的夹边称为邻余线.(1)如图1,在△ABC中,AB=AC,AD是△ABC的角平分线,E,F分别是BD,AD 上的点.求证:四边形ABEF是邻余四边形.(2)如图2,在(1)的条件下,取EF中点M,连接DM并延长交AB于点Q,延长EF 交AC于点N.若N为AC的中点,DE=2BE,QB=3,求邻余线AB的长.16.如图,平台AB上有一棵直立的大树CD,平台的边缘B处有一棵直立的小树BE,平台边缘B外有一个向下的斜坡BG.小明想利用数学课上学习的知识测量大树CD的高度.一天,他发现大树的影子一部分落在平台CB上,一部分落在斜坡上,而且大树的顶端D 与小树顶端E的影子恰好重合,且都落在斜坡上的F处,经测量,CB长5米,BF长2米,小树BE高1.8米,斜坡BG与平台AB所成的∠ABG=150°.请你帮小明求出大树CD的高度(结果保留一位小数).17.已知,如图,矩形ABCD中,AD=2,AB=3,点E,F分别在边AB,BC上,且BF =FC,连接DE,EF,并以DE,EF为边作▱DEFG.(1)求▱DEFG对角线DF的长;(2)求▱DEFG周长的最小值;(3)当▱DEFG为矩形时,连接BG,交EF,CD于点P,Q,求BP:QG的值.18.如图,正方形ABCD的边长为1.对角线AC、BD相交于点O,P是BC延长线上的一点,AP交BD于点E,交CD于点H,OP交CD于点F,且EF与AC平行.(1)求证:EF⊥BD.(2)求证:四边形ACPD为平行四边形.(3)求OF的长度.19.如图,在正方形ABCD中,边长为4,∠MDN=90°,将∠MDN绕点D旋转,其中DM边分别与射线BA、直线AC交于E、Q两点,DN边与射线BC交于点F;连接EF,且EF与直线AC交于点P.(1)如图1,点E在线段AB上时,①求证:AE=CF;②求证:DP垂直平分EF;(2)当AE=1时,求PQ的长.20.如图,在△ABC中.AB=AC,AD⊥BC于D,作DE⊥AC于E,F是AB中点,连EF 交AD于点G.(1)求证:AD2=AB•AE;(2)若AB=3,AE=2,求的值.参考答案1.(1)解:如图1中,∵GH∥AD,∴△GHE∽△ADE,∵DE∥BC,∴△ADE∽△ABC,∴△GHE∽△ADE∽△ABC,故答案为△ADE,△ABC.(2)解:∵GH∥BD,∴∠FGH∠DBF,∵BF=FG,∠DFB=∠GFH,∴△BFD≌△GFH(ASA),∴BD=GH,∵GH∥AD,∴===,∴=.(3)证明:如图2中,∵GH∥BD,∴=,∵GH∥P A,∴=,∵DH∥BC,∴=,∴=,∴=,∴=,∴PF∥AG,即PF∥AC.2.(1)证明:∵四边形ABCD为平行四边形,∠AFE=∠B=60°,∴∠AFD=∠C=120°,AD∥BC,∴∠ADF=∠DEC,∴△ADF∽△DEC.(2)解:∵AE=3,∠B=60°,∴BE=,CE=4﹣.在Rt△ADE中,AE=3,AD=4,∴DE==5.∵△ADF∽△DEC,∴=,即=,∴DF=,∴EF=DE﹣DF=.3.证明:(1)∵∠ACB=90°,CD⊥AB,∴∠BCD=∠A,∠ADC=90°.∵E是AC的中点,∴DE=AE=CE,∴∠ADE=∠A,∴∠BCD=∠ADE.又∠ADE=∠FDB,∴∠FCD=∠FDB.∵∠CFD=∠DFB,∴△CFD∽△DFB,∴DF2=BF•CF.(2)∵AE•AC=AG•AD,∴=.∵∠A=∠A,∴△AEG∽△ADC,∴EG∥BC,∴△EGD∽△FBD,∴=.由(1)知:△CFD∽△DFB,∴=,∴=,∴EG•CF=ED•DF.4.(1)证明:∵四边形ABCD是正方形,∴AB=AD,∠B=90°,AD∥BC,又∵EF⊥AM,∴∠AFE=90°,∴∠B=∠AFE,∴△ABM∽△EF A;(2)∵∠B=90°,AB=12,BM=5,∴AM==13,AD=12,∵F是AM的中点,∴AF=AM=6.5,∵△ABM∽△EF A,∴,即,∴AE=16.9,∴DE=AE﹣AD=4.9.5.(1)证明:如图(1),∵四边形ABCD是矩形,∴∠A=∠FDC=90°,∵CF⊥DE,∴∠DGF=90°,∴∠ADE+∠CFD=90°,∠ADE+∠AED=90°,∴∠CFD=∠AED,∵∠A=∠CDF,∴△AED∽△DFC,∴;(2)当∠B+∠EGC=180°时,=成立.证明:∵四边形ABCD是平行四边形,∴∠B=∠ADC,AD∥BC,∴∠B+∠A=180°,∵∠B+∠EGC=180°,∴∠A=∠EGC=∠FGD,∴△DFG∽△DEA,∴,∵∠B=∠ADC,∠B+∠EGC=180°,∠EGC+∠DGC=180°,∴∠CGD=∠CDF,∵∠GCD=∠DCF,∴△CGD∽△CDF,∴=,∴,∴=即当∠B+∠EGC=180°时,=成立.6.(1)证明:∵四边形ABCD是矩形,∴∠FDC=90°,∴∠FDE+∠CDE=90°,∵CF⊥BD,∴∠FDE+∠DFE=90°,∴∠CDE=∠DFE,又∴∠DEC=∠CDF=90°,∴△DEC∽△FDC;(2)解:∵四边形ABCD是矩形,∴DF∥BC,∴==,∵△DEC∽△FDC,∴CE•CF=CD2=12,∴CF=3,∴DF==,∴BC=AD=2.7.证明:(1)∵CG2=GE•GD,∴.又∵∠CGD=∠EGC,∴△GCD∽△GEC.∴∠GDC=∠GCE.∵AB∥CD,∴∠ABD=∠BDC.∴∠ACF=∠ABD.(2)∵∠ABD=∠ACF,∠BGF=∠CGE,∴△BGF∽△CGE.∴.又∵∠FGE=∠BGC,∴△FGE∽△BGC.∴.∴FE•CG=EG•CB.8.(1)证明:∵四边形ABCD是平行四边形,∴∠ABG=∠EDA,AB∥DE,∴∠BAG=∠DEA,∴△ABG∽△EDA(2)解:∵四边形ABCD是平行四边形,∴AD=BC,∴∠ADB=∠DBC,∵∠GCE=2∠ADB=2∠DBC,∵∠GCE=∠DBC+∠BDC,∴∠DBC=∠BDC,∴BC=CD,∴四边形ABCD是菱形,∴AB=BC=CD=AD,∵AD∥BC,∴△ADF∽△BFE,∴=,∴AD=BE,∴BC=CE,∴与AD相等的线段有AB、BC、CD、CE.9.解:设t秒后,以Q,B,P为顶点的三角形与△ABC相似;则PB=(6﹣t)cm,BQ=2tcm,∵∠B=90°,∴分两种情况:①当时,即,解得:t=2.4;②当时,即,解得:t=;综上所述:2.4秒或秒时,以Q,B,P为顶点的三角形与△ABC相似.10.(1)证明:∵四边形PQRS是矩形,∴PS∥QR,即PS∥BC,∴△APS∽△ABC;(2)解:∵四边形PQRS是正方形,∴PS=PQ=SR,PS∥QR,∵AD是△ABC得高,即AD⊥BC,∴AM⊥PS,即AM是△APS的高,∵△APS∽△ABC,∴,设PS=x,∵BC=30,高AD=18,∴AM=18﹣x,∴,解得:x=,∴它的边长为:;(3)解:∵四边形PSRQ是矩形,∴PQ⊥QR,∵AD是△ABC的高,∴AD⊥BC,∴PQ∥AD,∴△PBQ∽△ABD,∴PQ:AD=BP:BA,∵AP:PB=1:2,∴PQ=AD=×18=12,∵△APS∽△ABC,∴PS:BC=AP:AB=1:3,∴PS=BC=10,∴矩形PQRS的面积为:PS•PQ=10×12=120.11.(1)证明:∵CD⊥AB,∴∠ADC=90°,∵E是AC的中点,∴DE=EC,∴∠EDC=∠ECD,∵∠ACB=90°,∠BDC=90°∴∠ECD+∠DCB=90°,∠DCB+∠B=90°,∴∠ECD=∠B,∴∠FDC=∠B,∵∠F=∠F,∴△FBD∽△FDC,∴=.(2)解:∵,∴,∴,∵△FBD∽△FDC,∴,∴=.12.解:①∵EP⊥AB,CB⊥AB,∴∠EP A=∠CBA=90°∵∠EAP=∠CAB,∴△EAP∽△CAB∴∴∴AB=10BQ=10﹣2﹣6.5=1.5;②∵FQ⊥AB,DA⊥AB,∴∠FQB=∠DAB=90°∵∠FBQ=∠DBA,∴△BFQ∽△BDA∴=∴∴DA=12.13.解:(1)①在正方形ABCD中,∠ABC=90°,BC=AB=AQ,∠BAC=45°,∴∠AQB==67.5°,同理∠CPB=67.5°,∴∠EBF=180°﹣∠AQB﹣∠CPB=45°,②∵AB=BC=AQ=CP=1,∠ABC=90°,∴AC=,∴PQ=AQ+CP﹣AC=2﹣,又∵∠BAP=∠PBQ=45°,∠AQB=∠BQP,∴△ABQ∽△BPQ,∴=,即BQ2=AQ•PQ=2﹣,故以BQ为边的正方形面积为2﹣;(2)如图,延长DC至点G,使CG=AE,连接BG,在△ABE与△CBG中,,∴△ABE≌△CBG(SAS),∴BE=BG,∠ABE=∠CBG,∴∠GBF=∠CBG+∠CBF=∠ABE+∠CBF=90°﹣∠EBF=45°=∠EBF,在△BEF与△BGF中,,∴△BEF≌△BGF(SAS),∴EF=GF,在Rt△EDF中,EF2=DE2+DF2≥2DE•DF,当且仅当DE=DF时等号成立,此时EF2最小值=2DE•DF,不妨设此时DE=DF=a,则AE=CF=1﹣a,EF=GF=CF+CG=CF+AE=2(1﹣a),由EF2=DE2+DF2得:a+a2+[2(1﹣a)]2,即a2﹣4a+2=0,解得a=2﹣或a=2+(舍去),∴EF2最小值=2a2,∴EF最小值=a∴△BEF面积的最小值=△BCF面积的最小值=BC•GF=EF最小值=﹣1,故答案为:﹣1.14.解:(1)∵AE⊥BC,AE=EC,∵AB⊥CF,∴∠ABE+∠BAE=∠ABE+∠BCF=90°,∴∠BAE=∠BCF,在△AEB和△CEG中,∴△AEB≌△CEG(ASA),∴BE=GE,∴△BEG是等腰直角三角形,∴BE=BG=2,在Rt△AEB中,∵AB=6,∴AE==4,∴AC=AE=8;(2)解法一:证明:取GE的中点K,连接KM,KC,∴GK=KE,∵点M和点E为BN的三等分点,∴ME=EN=BM,∴KM为△BEG的中位线,∴KM∥BG,KM=BG,由(1)知△AEB≌△CEG,∴BE=GE,∴KE=EN,∴∠KME=∠GBE=∠ACE=45°,在△AEN和△CEK中,∴△AEN≌△CEK(SAS),∴∠EAN=∠ECK,∵AN⊥HM,∴∠EAN=∠HME,∴∠MCK=∠HNE,在△MKC和△CHN中,∴△MKC≌△CHN(ASA),∴KM=CH,∴BG=2CH.解法二:过H作HK⊥BC于K,则△CHK是等腰直角三角形,∴CK=HK,设AE=EC=a,EM=EN=b,HK=KC=x,∵AN⊥NH,∴∠EAN+∠ANE=∠ANE+∠KMH=90°,∴∠EAN=∠HMN,∴△AEN∽△MKH,∴=,∴=,∴x=b,∴BE=2EM=2HK,BG=2CH.15.(1)证明:∵AB=AC,AD是△ABC的角平分线,∴AD⊥BC,∴∠ADB=90°,∴∠DAB+∠DBA=90°,∴∠FBA与∠EBA互余,∴四边形ABEF是邻余四边形;(2)解:∵AB=AC,AD是△ABC的角平分线,∴BD=CD,∵DE=2BE,∴BD=CD=3BE,∴CE=CD+DE=5BE,∵∠EDF=90°,点M是EF的中点,∴DM=ME,∴∠MDE=∠MED,∵AB=AC,∴∠B=∠C,∴△DBQ∽△ECN,∴==,∵QB=3,∴NC=5,∵AN=CN,∴AC=2CN=10,∴AB=AC=10.16.解:延长CB交EF于点H,过点F作FM⊥EB的延长线于点M∵∠ABG=150°,BE⊥CB∴∠MBF=150°﹣90°=60°∴∠MFB=30°∵BF的长为2米,∴BM=1米,MF=米∵BE⊥CB,MF⊥BE∴BH∥MF∴△EBH∽△EMF∴=又∵EB=1.8米∴=∴BH=∵BE∥CD∴△HBE∽△HCD∴=∵CB=5∴=∴CD=15.8米∴大树CD的高度为15.8米.17.解:(1)如图1所示:连接DF,∵四边形ABCD是矩形,∠C=90°,AD=BC,AB=DC,∵BF=FC,AD=2;∴FC=1,∵AB=3;∴DC=3,在Rt△DCF中,由勾股定理得,∴DF===;故▱DEFG对角线DF的长.(2)如图2所示:作点F关直线AB的对称点M,连接DM交AB于点N,连接NF,ME,点E在AB上是一个动点,①当点E不与点N重合时点M、E、D可构成一个三角形,∴ME+DE>MD,②当点E与点N重合时点M、E(N)、D在同一条直线上,∴ME+DE=MD由①和②DE+EF的值最小时就是点E与点N重合时,∵MB=BF,∴MB=1,∴MC=3,又∵DC=3,∴△MCD是等腰直角三角形,∴MD===3,∴NF+DN=MD=3,∴l▱DEFG=2(NF+DF)=6;(3)设AE=x,则BE=3﹣x,∵▱DEFG为矩形,∴∠DEF=90°,∵∠AED+∠BEF=90°,∠BEF+∠BFE=90°,∴∠AED=∠BFE,又∵∠A=∠EBF=90°,∴△DAE∽△EBF(AA)∴,∴,解得:x=1,或x=2①当AE=1,BE=2时,过点B作BH⊥EF,如图3(甲)所示:∵▱DEFG为矩形,∴∠A=∠ABF=90°,又∵BF=1,AD=2,∴在△ADE和△BEF中有,,∴△ADE≌△BEF中(SAS),∴DE=EF,∴矩形DEFG是正方形;在Rt△EBF中,由勾股定理得:EF===,∴BH==,又∵△BEF∽△FHB,∴,HF=,在△BPH和△GPF中有:,∴△BPH∽△GPF(AA),∴∴PF=,又∵EP+PF=EF,∴EP=﹣=,又∵AB∥BC,EF∥DG,∴∠EBP=∠DQG,∠EPB=∠DGQ,∴△EBP∽△DQG(AA),∴.②当AE=2,BE=1时,过点G作GH⊥DC,如图3(乙)所示:∵▱DEFG为矩形,∴∠A=∠EBF=90°,∵AD=AE=2,BE=BF=1,∴在Rt△ADE和Rt△EFB中,由勾股定理得:∴ED===2,EF===,∴∠ADE=45°,又∵四边形DEFG是矩形,∴EF=DG,∠EDG=90°,∴DG=,∠HDG=45°,∴△DHG是等腰直角三角形,∴DH=HG=1,在△HGQ和△BCQ中有,∴△HGQ∽△BCQ(AA),∴,∵HC=HQ+CQ=2,∴HQ=,又∵DQ=DH+HQ,∴DQ=1+=,∵AB∥DC,EF∥DG,∴∠EBP=∠DQG,∠EPB=∠DGQ,∴△EBP∽△DQG(AA),∴=,综合所述,BP:QG的值为或.18.(1)证明:∵四边形ABCD是正方形,∴AC⊥BD,∵EF∥AC,∴EF⊥BD;(2)证明:∵EF∥AC,∴=,=,∵四边形ABCD是正方形,∴AD∥CP,OA=OC,∴=,即=,∴AO∥DP,∵AD∥CP,∴四边形ACPD为平行四边形;(3)解:由勾股定理得:AC=BD==,∵四边形ACPD为平行四边形,∴CP=AD=BC,∴=,∵AD∥BP,∴==,∴DE=BD=,OE=OD﹣DE=﹣=,∵DO=BD=,∵∠DEF=∠DOC=90°﹣∠EDF=45°,∴∠DFE=45°,∴EF=DE=,在Rt△OEF中,由勾股定理得:OF===.19.(1)①证明:∵四边形ABCD是正方形,∴DA=DC,∠ADC=∠DAE=∠DCF=90°,∴∠ADC=∠MDN=90°,∴∠ADE=∠CDF,∴△ADE≌△CDF(ASA),∴AE=CF.②∵△ADE≌△CDF(ASA),∴DE=DF,∵∠MDN=90°,∴∠DEF=45°,∵∠DAC=45°,∴∠DAQ=∠PEQ,∵∠AQD=∠EQP,∴△AQD∽△EQP,∴=,∴=,∵∠AQE=∠PQD,∴△AQE∽△DQP,∴∠QDP=∠QAE=45°,∴∠DPE=90°,∴DP⊥EF,∵DE=DF,∴PE=PF,∴DP垂直平分线段EF.(2)解:①当点E在线段AB上时,作QH⊥AD于H,QG⊥AB于G.在Rt△ADE中,DE==,∵∠QAH=∠QAG=45°,∴HQ=QG=AH=AG,设QH=x,∵×4×x+×1×x=×1×4,∵x=,∴AQ=,DQ==,EQ=,∵△AQD∽△EQP,∴AQ•PQ=DQ•EQ,∴PQ==.②当点E在BA的延长线上时,作QH⊥AD于H,QG⊥AB于G.在Rt△ADE中,DE==,∵∠QAH=∠QAG=45°,∴HQ=QG=AH=AG,设QH=x,∵×4×x﹣×1×x=×1×4,∵x=,∴AQ=,DQ==,EQ=,∵△AQD∽△EQP,∴AQ•PQ=DQ•EQ,∴PQ==.综上所述,PQ的长为或.20.(1)证明:∵AD⊥BC于D,作DE⊥AC于E,∴∠ADC=∠AED=90°,∵∠DAE=∠DAC,∴△DAE∽△CAD,∴=,∴AD2=AC•AE,∵AC=AB,∴AD2=AB•AE.解法二:可以直接证明△DAE∽△BAD,得出结论.(2)解:如图,连接DF.∵AB=3,∠ADB=90°,BF=AF,∴DF=AB=,∵AB=AC,AD⊥BC,∴BD=DC,∴DF∥AC,∴===,∴=.。

专题01 相似形重难点专练

专题01 相似形重难点专练
22.一张比例尺为 200:1 的设计图纸上,有一个零件的底面积是 400 cm2 ,则这个零
件的实际底面积是________ mm2 .
23.如果把两条邻边中较短边与较长边的比值为 5 -1 的矩形称作黄金矩形.那么,现 2
将长度为 20 cm 的铁丝折成一个黄金矩形,这个黄金矩形较短的边长是_____ cm .
y
29.已知 a = b = c ,且 a+b+c≠0,则 2a + 3b - 2c =_____.
235
a+b+c
30.已知 x = y ,则 x + y =_____.
34
y
31.如图,D 为 V ABC 的边 AB 上一点,如果∠ACD=∠ABC 时,那么图中____是 AD
和 AB 的比例中项.
专题 01 相似形重难点专练
第 I 卷(选择题)
一、单选题 1.△DEF 和△ABC 是位似图形,点 O 是位似中心,点 D,E,F 分别是 OA,OB,OC 的中点,若△DEF 的面积是 2,则△ABC 的面积是( )
A.2
B.4
C.6
2.如图,有两个形状相同的星星图案,则 x 的值为 ( )
D.8
A 、矩形都相似,错误,应为矩形的对应边不一定成比例;
B 、有两条边对应成比例的两个直角三角形相似,若直角三角形两直角边的比值等于一个直 角三角形的直角边与另一个直角三角形的斜边的比,则两三角形不相似,故此选项错误;
C 、一个角为 40° 的两个等腰三角形一定相似,对应角不一定相等,故此选项错误; D 、有一个锐角相等的两直角三角形相似,正确. 故选 D .
B.两个菱形
C.两个直角三角形 D.两个等腰三角

2022年九年级中考数学考点专题训练——专题五十八:图形的相似(含答案)

2022年九年级中考数学考点专题训练——专题五十八:图形的相似(含答案)

备战2022最新中考数学考点专题训练——专题五十八:图形的相似1.如图,D、E分别是△ABC的边AB、BC上的点,且DE∥AC,AE、CD相交于点O,若S△DOE:S△COA=1:25,则S△BDE与S△CDE 的比是()A.1:3 B.1:4 C.1:5 D.1:25 2.如图,点M在BC上,点N在AM上,CM=CN,AM BM,AN CM下列结论正确的是()A.△ABM∽△ACB B.△ANC∽△AMBC.△ANC∽△ACM D.△CMN∽△BCA3.如图,D是△ABC一边BC上一点,连接AD,使△ABC∽△DBA 的条件是()A.AC:BC=AD:BD B.AC:BC=AB:ADC.AB2=CD•BC D.AB2=BD•BC4.如图所示,在正方形ABCD中,E是BC的中点,F是CD上一点,且CF=CD,连接AE,AF,EF.给出下列结论:①∠BAE=30°,②△ABE∽△AEF,③AE⊥EF,④△ADF∽△ECF.其中正确的个数为()A.1B.2C.3D.45.如图,位似图形由三角板与其在灯光照射下的中心投影组成,已知灯到三角板的距离与灯到墙的距离的比为2∶5,且三角板的一边长为8 cm,则投影三角形的对应边长为()A.20 cmB.10 cmC.8 cmD.3.2cm6. 如图,在直角梯形ABCD中,AD∥BC,∠B=90°,AB=8,AD =3,BC=4,点P为AB边上一动点.若△PAD与△PBC是相似三角形,则满足条件的点P 的个数是()A .1B .2C .3D .47. 如图,在平面直角坐标系中,已知点A(-3,6),B(-9,-3),以原点O 为位似中心,相似比为13,把△ABO 缩小,则点A 的对应点A ′的坐标是()A .(-1,2)B .(-9,18)C .(-9,18)或(9,-18)D .(-1,2)或(1,-2)8.如图811-,已知等腰ABC ∆中,顶角︒=∠36A ,BD 为ABC ∠的平分线,则ACAD 的值等于()A 、21B 、215-C 、1D 、215+ 9.如图,在ABC ∆中,BC DE //,且分ABC ∆为面积相等的两部分,则BCDE :的值为():1B、2:1C、3:1D、1:2A、210.如果三角形的每条边都扩大为原来的5倍,那么三角形的每个角()A、都扩大为原来的5倍B、都扩大为原来的10倍C、都扩大为原来的25倍D、与原来相等11.有一个多边形的边长分别是4cm、5cm、6cm、4cm、5cm,和它相似的一个多边形最长边为8cm,那么这个多边形的周长是( )A.12cm B.18cm C. 32cm D. 48cm 12.如图,BE、CD相交于点O,且∠l=∠2,图中有几组相似三角形( )A.2组B.3组C. 5组D. 6组13.小红家的阳台上放置了一个晾衣架如图1,图2是晾衣架的侧面示意图,立杆AB,CD相交于点O,B,D两点立于地面,经测量OE OF cm==,现将晾衣架完全稳OA OC cm==,34136AB CD cm==,51固张开,扣链E成一条线段,且32EF cm=.垂挂在衣架上的连衣裙总长度小于________cm时,连衣裙才不会拖到地面上.14.如图,在等边三角形ABC 中,D 为BC 边上一点,E 为AC 边上一点,且6AB =,2BD =,当CE =________时,ABD DCE ∽△△.15.顶角为36°的等腰三角形称为黄金三角形,如图,在△ABC 中,AB =AC =1,∠A =36°,BD 是三角形ABC 的角平分线,那么AD =.16. 在矩形ABCD 中,AB =6,BC =8.点P 在矩形ABCD 的内部,点E 在边BC 上,满足△PBE ∽△DBC.若△APD 是等腰三角形,则PE 的长为________.17. 如图,在△ABC 中,点D ,E ,F 分别在AB ,AC ,BC 上,DE ∥BC ,EF ∥AB.若AB =8,BD =3,BF =4,则FC 的长为________.18.如图,P 为正方形ABCD 内一点,将ABP ∆绕点B 顺时针方向旋转能与'CBP ∆重合,若3=PB ,则__________'=PP .19.如图,在等边△ABC 中,P 为BC 上一点,D 为AC 上一点,且∠APD=60°,BP=1,CD=32,则△ABC 的边长是。

图形的相似专题训练(一)

图形的相似专题训练(一)

1 我们 把形状 相 同的两 个网形 称为 .
2 在 l: 0 0 0的福 建省 的地 图上 ,量 得福 . 5 00 州 到 厦 门 的距离 约 为 6 m,那 么 福 州 到 0c 厦 门 的实际距 离约 为 .
B 一个 角为 3 o . 0 的两个 等腰 三角形 相似
C 全等 三角形 都是 相似 三角形 .
AE

_

丽E_I D 一 丁

对 角等 应成 仞 三 应 相 边 比 , 对 J 两
56画图题 答案略 ,
1 m 7 c 3 m 8 c 2 m 6c
2 - /=, 肚o 1 A B3 ~/=' ̄ 7 ' 7 o
望 : _
4 AI 6

莨 . m 2 tts 9 — —=
3 图纸 上 画 出一 个零 件 长是 3 m, 比例尺 . 2m 是1: 0 这个零件实 际的长 是— 2,
二 、 择题 选
D 不相 似 的三角 形可 能是全 等三 角形 .
9 在 同一 时刻 的 阳光 下 ,小 明 的影 子 比小 强 .


的影 子长 , 么在 同一路灯 下( 那
后来到西安, 都参观了新建的“ 大唐芙蓉园’ 园 孩 占 地面积约为 80 0 m . 0 0 0 若按比例尺 1 2 0 :00 缩,后, J 其面积大约相当于f 、 ) .
C 9
A 一 个篮球 场 面积 .
B 一张 乒乓球 台 台面 的面积 .
C 《 两 日报 》 .陕 的一 个版 面 的面积
) .

C 所 有 含有3 。 的直 角 三角形 都相 似 . 0角 D 所有 等腰 直角 三角形 都相似 .
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

图形的相似
一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一个是符合题目要求的)
1.已知:线段a=5cm,b=2cm,则a
b
=()
A.1
4
B.4 C.
5
2
D.
2
5
2.把mn=pq(mn≠0)写成比例式,写错的是()
A.m q
p n
=B.
p n
m q
=C.
q n
m p
=D.
m p
n q
=
3.某班某同学要测量学校升旗的旗杆高度,在同一时刻,量得某一同学的身高是1.5m,影长是1m,旗杆的影长是8m,则旗村的高度是()
A.12m B.11m C.10m D.9m
4.下列说法正确的是()
A.矩形都是相似图形;B.菱形都是相似图形
C.各边对应成比例的多边形是相似多边形;D.等边三角形都是相似三角形5.两个等腰直角三角形斜边的比是1:2,那么它们对应的面积比是()
A.1B.1:2 B.1:4 D.1:1
6.如图1,由下列条件不能判定△ABC与△ADE相似的是()
A.AE AC
AD AB
=B.∠B=∠ADE C.
AE DE
AC BC
=D.∠C=∠AED
(1)(2) (3)
7.要做甲、乙两个形状相同(相似)的三角形框架,•已知三角形框架甲的三边分别为50cm,60cm,80cm,三角形框架乙的一边长为20cm,那么符合条件的三角形框架乙共有()种
A.1 B.2 C.3 D.4
8.如图2,△ABC中,∠BAC=90°,AD⊥BC于D,若AB=2,BC=3,则CD的长是()
A.8
3
B.
2
3
C.
4
3
D.
5
3
9.若
3a b
a b b c a c
==
+++
=k,则k的值为()
A .12
B .1
C .-1
D .12
或-1 10.如图3,若∠1=∠2=∠3,则图中相似的三角形有( )
A .1对
B .2对
C .3对
D .4对
二、填空题(本大题共8小题,每小题3分,共24分)
11.若235a b c ==(abc ≠0),则a b c a b c
++-+=_________. 12.把长度为20cm 的线段进行黄金分割,则较短线段的长是________cm .
13.△ABC 的三条边之比为2:5:6,与其相似的另一个△A •′B •′C •′最大边长为15cm ,则另两边长的和为_______.
14.两个相似三角形的一对对应边长分别为20cm ,25cm ,它们的周长差为63cm ,则这两个三角形的周长分别是________.
15.如图4,点D 是Rt △ABC 的斜边AB 上一点,DE ⊥BC 于E ,DF ⊥AC 于F ,若AF=•15,BE=10,则四边形DECF 的面积是__________.
(4) (5) (6)
16.如图5,BD 平分∠ABC ,且AB=4,BC=6,则当BD=_______时,△ABD ∽△DBC .
17.已知a 、b 、c 为△ABC 的三条边,且a :b :c=2:3:4,则△ABC •各边上的高之比为______.
18.在梯形ABCD 中,AB ∥CD ,AB=60,CD=15,E 、F 分别为AD 、BC 上一点,且EF ∥AB ,•若梯形DEFC ∽梯形EABF ,那么EF=_________.
三、解答题(本大题共46分,19~23题每题6分,24题、25题每题8分.解答题应写出文字说明、证明过程或演算步骤)
19.如图6,△ABC 中,AG DE AH BC
=,且DE=12,BC=15,GH=4,求AH .
20.为了估算河的宽度,我们可以在河对岸的岸边选定一个目标作为点A ,再在河的这一边选点B 和点C ,使AB ⊥BC ,然后再选点E ,使EC ⊥BC ,确定BC 与AE 的交点为D ,
•如图,测得BD=120米,DC=60米,EC=50米,你能求出两岸之间AB的大致距离吗?
21.如图,在ABCD中,AE:EB=2:3.
(1)求△AEF和△CDF的周长比;(2)若S△AEF=8cm2,求S△CDF.。

相关文档
最新文档