铝及铝合金熔体净化方法研究
铝及铝合金的熔体净化(baidu)

夹杂物的生成途径主要是: • 从炉村中吸收杂质; • 从熔剂和熔炼添加剂中吸收杂质; • 从炉气中反应并吸收杂质; • 从炉料及炉渣中吸收杂质。
•夹杂物的危害
并不是熔体中的所有异物都是有害夹杂。金属中 非金属异质点的形态和大小,对金属性质有重要影 响。细小,弥散均匀分布的夹杂颗粒,在金属凝固 时,可以成为结晶的异质核心,同时也可以阻碍晶 粒的长大,起到细化晶粒的作用。所以高纯铝较一 般的工业纯铝更容易形成粗大晶粒。
• 非金属夹杂的种类很多,按其化学成分可分为氧 化物(FeO,SiO2,Al2O3,TiO2,MgO,ZnO等);氮化 物(AlN,ZrN,TiN等);硫化物(Ni3S2,CeS,Cu2S 等);氯化物(NaCl,KCl,MgCl2等);氟化物 (CaF2,NaF等);硅酸盐(Al2O•SiO2等)。这些 夹杂以不同形态和大小分布在金属熔体中,对金 属性能产生不同影响。
铝及铝合金的熔体净化
• 有色金属及其合金熔体在熔炼过程存在气体、各 种非金属夹杂物等,影响金属的纯洁度,往往会使 产品产生气孔、夹杂、疏松、裂纹等缺陷,影响铸 锭的加工性能及制品强度、塑性、抗蚀性、阳极 氧化性和外观质量。同时,在有色金属中除气体 和非金属夹杂之外,还含有少量的金属杂质,如 铝合金的钠、钙等低熔点金属。钠在含镁量高的 镁-铝系合金中易引起热裂敏感性,合金热轧时易 产生开裂,通常称之谓“钠脆性”,此外还影响 熔体的流动性和铸造性。
Al中Al2O3夹杂物的形态(两维)
Al中Al2O3夹杂物的形态(三维)
AlN
采用先进的测渣方法捕捉到的夹渣
Refractories
采用先进的测渣方法捕捉到的夹渣
• 夹杂物的来源与危害 • 杂质的吸收和积累主要是熔炼过程中,金属熔体
论述铝合金的熔体处理

论述铝合金的熔体处理1 前言铝及铝合金因其优异的性能被广泛应用于航天、航空、交通运输、建筑、包装、电子、印刷、装饰等众多国防和民用领域。
在金属材料中,铝合金的应用范围和用量仅次于铁,约占有色金属用量的1/3,随着铝及铝合金的大范围应用,对其性能要求也越来越高、越来越多样,而铝及铝合金的良好性能与其熔炼铸造是分不开的。
熔铸是铝加工的第一道工序,为后序的轧制、锻造、挤压等生产提供锭坯,铸锭质量的好坏直接与各种铝材的最终质量紧密相关,故要获得良好的构件,必须从熔体处理开始。
铝合金熔体净化处理是生产高质量的铝铸件的基本保证措施之一,也是提高铝合金综合性能的主要手段之一,对疏松、气孔、夹杂等的形成有重要影响,而且直接影响铝铸件的物理性能、机械性能以及使用性能。
2 熔体净化方法所谓净化处理就是就是采用各种措施使铝熔体中不希望存在的气体与固态物质降到所允许的范围以内,以确保材料的性能符合标准或某些特殊要求。
铝合金净化方法按其作用机理可分为吸附净化和非吸附净化两大基本类型。
2.1 吸附净化吸附净化主要是利用精炼剂的表面作用,当精炼剂(如各种气体、液体、固体精炼剂及过滤介质)在铝熔体中与氧化物夹杂或气体相接触时,杂质或气体被精炼剂吸附在其表面上,从而改变杂质的物理性质,随精炼剂一起被除去,以达到除气除杂的目的。
吸附净化的方法主要有:浮游法、熔剂法、过滤法等。
(1)浮游法浮游法也叫气体吹洗法,它是将气体通入到铝熔体内部,形成气泡,熔体中的氢在分压差的作用下扩散进这些气泡中,并随气泡的上浮而被排除,达到除气的目的。
浮游法主要包括惰性气体吹洗、活性气体吹洗混合气体吹洗以及氯盐净化等。
无毒精炼剂主要由硝酸盐等氧化剂和碳组成,在高温下反映生成氮气和二氧化碳都能起到精炼作用,由于其不产生刺激性气味的气体且精炼效果也好从而得到广泛应用。
(2)溶剂法熔剂法是在铝合金熔炼过程中,将熔剂加入到熔体内部,通过一系列物理化学作用,达到除气除杂的目的。
铝的熔炼净化

铝及铝合金的熔炼及净化铝合金的熔炼是一个繁杂的过程,它包括铝合金的熔化、合金化、成分调整和净化处理等工艺。
大体说来要经过以下程序:烘炉---- 使炉体充分干燥,防止使用时释放出水气而导致氢含量增加,特别是新炉更应彻底烘烤。
洗炉---- 如果炉子不是熔化某一合金专用的,从一种合金转到不同牌号的另一种合金时应彻底清洗,以免不同牌号合金的元素相互污染。
特别是熔炼某些高品位的合金制品时,应格外注意。
配料---- 优化配料,节省新料的用量。
这就要求废料严格按品位分类保管,存放处应保持清洁、干燥,切勿把水或其他杂物混入废料中。
来路不明的废料成分复杂,一般需复化后使用。
装炉---- 装料速度要快,减少热量散失。
先装小料、碎料,再装大块料。
易熔的在下,难溶的在上。
为防止炉料的烧损,有时要撒些覆盖剂在炉料上面。
熔化---- 其核心就是如何提高热效率,加快熔化速度,减少铝的烧损。
这已成为一个专门研究课题。
扒渣---- 如果浮渣较多,粘度较大,应加入适量打渣剂,减少渣中铝含量,松散铝渣容易扒出。
搅拌---- 搅拌有两个作用,一是使成分均匀,二是使温度均匀。
分析---- 确定熔体中已有的合金元素含量,取样应有代表性,真实性。
合金化—根据分析结果,不足的按计算量加入合金元素,超量的—如果不太多的话,可加铝冲淡分析---- 再次分析是为了确认合金化后的铝中,各合金元素是否达到要求。
没达到的组分要补足。
精练---- 此时应加入精练剂、打渣剂进行炉内净化处理。
如果静止后直接浇注,此时可加细化剂。
倒炉---- 熔炼好的铝熔体转移到静止炉中保温,熔化炉中喷撒清炉剂,除去炉壁和底部积渣。
炉外精练--- 铝熔体由静止炉出来,经由旋转除气、泡沫陶瓷板过滤等直达铸造台。
在铝熔体进入除气箱前加入AlTiB杆晶粒细化剂。
第一部分添加剂与铝合金的熔炼合金种类的多样性在纯铝中加入一定量不同种类的合金元素,就可以配制成各种不同的铝合金。
大多数金属元素在铝中的溶解度随温度升高而增加。
铝及铝合金的熔体净化及晶粒细化

铝及铝合金的熔体净化和晶粒细化摘要:综述了铝合金熔体净化的技术特点,重点分析了气泡浮游法、过滤法、熔剂法等几种常见的熔体吸附净化方法的工作原理和工艺改进,介绍了新型的旋转脉冲喷吹工艺、超声波净化工艺和电磁净化工艺,并展望了熔体净化工艺研究发展的趋势;综述了晶粒细化剂的发展历史及细化剂的细化机理和各种细化剂的比较,并着重介绍了新一代的Al-Ti-C晶粒细化剂。
关键词:铝合金;熔体净化;细化剂;细化机理1综述近年来铝合金材料大致向两个方向发展:一是发展高强高韧等高性能铝合金新材料,以满足航空航天等军事工业和特殊工业部门的需要;二是发展一系列可以满足各种条件用途的民用铝合金新材料。
与国外相比,我国铝合金研究的整体水平还比较落后,基础理论研究和技术装备水平及其完善程度都与国外的差距很大。
目前,铝合金研究的重点之一是研究和采用各种先进的熔体净化与变质处理方法,去除铝液中的气体和夹杂物,降低杂质含量,提高铝熔体的纯度,细化铝的晶粒从而改善铝合金的性能。
这也是可持续发展战略中废铝回收亟待解决的技术难题。
熔体净化是保证铝合金材料冶金质量的关键技术,引起企业界的广泛关注。
铝合金熔体净化的目的,主要是降低熔体中的含气量和非金属夹杂物含量。
对熔体纯洁度的要求,一般铝合金制品的含气量应小于0.15ml/100gAl,特殊的航空材料要求在0.10ml/100gAl以下;钠含量应在5ppm以下;非金属夹杂物不允许有1~5Lm尺寸的颗粒和聚集物,夹杂物含量越低越好。
可见,对铝合金熔体的纯洁度要求是非常严格的。
要达到上述要求,需采用各种先进的净化处理技术。
铝及其合金组织的微细化,可显著提高铝材的力学性能和加工工艺性能。
晶粒细化处理是使铝及其合金组织微细化,获取优质铝锭,改善铝材质量的重要途径。
铝加工工业的迅速发展促进了各种铝晶粒细化剂的开发与生产。
本文将在初步总结和分析国内外熔体净化和晶粒细化剂生产实践及文献资料的基础上,较全面地讨论各种铝合金熔体净化技术及其发展趋势,讨论各种晶粒细化剂及发展趋势。
浅析提高铝合金熔体纯净度的方法

浅析提高铝合金熔体纯净度的方法铝及铝合金在熔炼过程中,表面极易被氧化生成Al2O3, 同时也极容易吸进气体,特别是氢气。
由于氢和氧化夹杂物的存在,会影响铸棒的纯净度,使铸棒产生气孔、夹渣等缺陷,容易造成后工序成品缺陷,特别是大铸锭铝棒,如果含氢量高或杂质含量高,极易在挤压过程中发生氢脆和膛模现象,对产品质量和生产效率有很大的危害。
因此,在实际生产中,我们需采用合理的净化方法提高铝熔体的纯净度,为后工序提供优质的铝棒。
铝熔体净化方法铝合金熔体的净化方法按其作用原理可分为吸附净化与非吸附净化两个基本类型。
吸附净化是通过铝熔体直接与吸附剂( 如各种气体、液体、固体精炼剂及过滤介质) 相接触, 使吸附剂与熔体中的气体及固体氧化夹杂物发生物理化学、物理或机械的作用, 达到除气除杂的目的。
如吹气法、过滤法、熔剂法等。
非吸附净化是指不依靠向熔体中加吸附剂, 而通过某种物理作用( 如真空、超声波、密度差等) , 改变金属与气体系统或金属与夹杂物系统的平衡状态, 从而使气体或固体夹杂物从铝熔体中分离出来。
如静置处理、真空处理、超声波处理等。
1 吹气法吹气法又称气泡浮游法, 是20世纪70 年代发展起来的铝熔体净化工艺,尤其对除氢有良好的效果。
它是将惰性气体( 如氮气、氩气等) , 通入到铝熔体内部, 形成气泡, 熔体中的氢在分压差的作用下扩散进这些气泡中, 并随气泡的上浮而被排除, 达到除气的目的。
气泡在上浮的过程中还能吸附部分氧化夹杂, 起到除杂的作用。
随着对熔体纯净度要求的提高,除氢技术也在不断的改善和发展,已从原始的单管喷吹到多孔吹头,发展到目前的旋转喷头。
20世纪80年代以来,采用旋转喷头吹气处理方法已成为国外先进的铝液净化技术的主要发展趋势,如美国联合碳化物公司研制的SNIF法,即旋转喷嘴惰性气体浮游法。
该设备设有两个石墨制的气体旋转喷嘴,气体通过喷嘴的转子形成细小分散的小气泡,同时随着转子搅动的熔体使气泡均匀的分散到整个熔体中,增加了气体与液体之间的接触面积,延长了气泡在铝液中的运动距离和停留时间,使气体体积增加,吸附熔体中的气体和氧化夹杂物浮游到熔体表面,从而达到除气、除杂的净化效果。
铝及铝合金的熔体净化及晶粒细化

铝及铝合金的熔体净化和晶粒细化摘要:综述了铝合金熔体净化的技术特点,重点分析了气泡浮游法、过滤法、熔剂法等几种常见的熔体吸附净化方法的工作原理和工艺改进,介绍了新型的旋转脉冲喷吹工艺、超声波净化工艺和电磁净化工艺,并展望了熔体净化工艺研究发展的趋势;综述了晶粒细化剂的发展历史及细化剂的细化机理和各种细化剂的比较,并着重介绍了新一代的Al-Ti-C晶粒细化剂。
关键词:铝合金;熔体净化;细化剂;细化机理1综述近年来铝合金材料大致向两个方向发展:一是发展高强高韧等高性能铝合金新材料,以满足航空航天等军事工业和特殊工业部门的需要;二是发展一系列可以满足各种条件用途的民用铝合金新材料。
与国外相比,我国铝合金研究的整体水平还比较落后,基础理论研究和技术装备水平及其完善程度都与国外的差距很大。
目前,铝合金研究的重点之一是研究和采用各种先进的熔体净化与变质处理方法,去除铝液中的气体和夹杂物,降低杂质含量,提高铝熔体的纯度,细化铝的晶粒从而改善铝合金的性能。
这也是可持续发展战略中废铝回收亟待解决的技术难题。
熔体净化是保证铝合金材料冶金质量的关键技术,引起企业界的广泛关注。
铝合金熔体净化的目的,主要是降低熔体中的含气量和非金属夹杂物含量。
对熔体纯洁度的要求,一般铝合金制品的含气量应小于0.15ml/100gAl,特殊的航空材料要求在0.10ml/100gAl以下;钠含量应在5ppm以下;非金属夹杂物不允许有1~5Lm尺寸的颗粒和聚集物,夹杂物含量越低越好。
可见,对铝合金熔体的纯洁度要求是非常严格的。
要达到上述要求,需采用各种先进的净化处理技术。
铝及其合金组织的微细化,可显著提高铝材的力学性能和加工工艺性能。
晶粒细化处理是使铝及其合金组织微细化,获取优质铝锭,改善铝材质量的重要途径。
铝加工工业的迅速发展促进了各种铝晶粒细化剂的开发与生产。
本文将在初步总结和分析国内外熔体净化和晶粒细化剂生产实践及文献资料的基础上,较全面地讨论各种铝合金熔体净化技术及其发展趋势,讨论各种晶粒细化剂及发展趋势。
铝熔体净化处理方法分析

铝熔体净化处理方法分析第28 卷第l 期200】有色金属设计NONFERROUSMETALSDESIGN忸.28No2刈铝熔体净化处理方法分析顾晓波(洛阳有色金属加工设计研究院,河南洛阳4/1039)摘要:分析了侍统的铝培体净化处理工艺——炉内分批净化处理所存在的不足;介绍了先进的铝熔体处理工艺——动态真空除气法, 泡沫陶瓷过滤法,Alcoa469 除气法,SNIF 和Alpur法,MiNT法,厦其工艺过程,设备特点,处理效果厦发展方向等. 关键词:铝熔体;净化处理;方击中期分类号:TF803.2.5文献标识码:B文章编号:10D4—266o(2ooi)oi 一0014—04铝熔体净化处理是铝及铝合金铸锭生产过程中非常重要的环节.传统铝液净化处理工艺一般都是在保温炉内分批进行操作的, 普遍采用氮——氯混合气体,熔剂进行精炼.这种净化处理工艺,大多由人工操作, 除气率低,精炼不彻底,铝液在从保温炉向铸造机输送过程中,铝液会再次被污染,且工人劳动强度大,劳动环境差,污染严重, 对大容量的炉子.人工操作难以实现.随着航空用高质量铝合金,双零铝箔等高精制品的出现,对锭坯的质量要求越来越高,传统的铝液净化处理工艺已不能适应大规模生产,高质量锭坯的要求.为此,国内外有关人士经过长期摸索,做了大量的工作,开发出了先进的铝熔体净化处理新工艺——炉外铝熔体净化处理新工艺,即铝熔体在从保温炉向铸造机输送过程中,进行精炼,过滤处理, 可以高效去除熔体中的可溶和不溶的杂质 1 铝熔体净化目的1.1铝熔体中存在的杂质1.1.1氢铝及铝合金在熔炼过程中,氢极易溶解于液态铝中,在冶炼温度范围内,温度越高气体溶解度越高,特别是在固态一液态相变时,气体溶解度骤然增高,详见表 1.裹 1 氢在铝中的溶解度nd./10~在熔点温度时高于熔点温度时1.1.2 非金属夹杂铝熔体中存在的非金属夹杂物有:(1)氧化物:AI2,MgO,sjo2,A12等;(2)残余的细化剂Al—Ti—B 中间合金的粗大一 B 粒子;(3)耐火砖碎片,脱落的流槽和工具上的保护涂料.1.2铝熔体净化目的和要求熔体中存在的气体,各种夹杂物熔体中氢溶解度要求mlJl00g 以下,对于一些特殊要求0.15 〜0.2的制品, 应在0.1mlJl00g 以下.2 铝熔体净化机理铝熔体净化处理根据净化机理的不同, 可分为吸附净化和非吸附净化两大类.2.1 吸附净化靠精炼剂产生的吸附作用达到去除气体和氧化物夹杂的目的.2.1.1 惰性气体净化惰性气体是指与铝熔体及溶解的氢不起化学反应,叉不溶解于铝中的气体,通常使用氩气,氮气. 惰性气体刚吹人铝熔体中时,惰性气体气泡中氢的分压PH=0,惰性气体气泡和铝液的界面上有氢的压力差,使金属中的氢不断地扩散进惰性气体气泡中,惰性气体气泡浮出液面后,气泡中的氢随之逸出由于铝液和氧化物夹杂互不湿润,使夹杂与惰性气体气泡之间满足金—杂+金—气> —公式,根据热力学第二定律,铝液中的氧化物夹杂能自动吸附在惰性气体气泡上而被带出液面.由此可以得出结论,惰性气体气泡与铝熔体的接触面积越大,净化效果就越好.2.1.2 活性气体净化对于铝来说,活性气体主要是指氯气. 氯气本身不溶于铝中,但氯气和铝及溶于铝中的氢会发生如下反应: ck+H2—2Hcb 十3caz+2AI--~2AICt3+反应生成物HC1和alch(沸点183oC)均为气态,不溶于铝液,和未参加反应的氯气一起都能起精炼作用.氯气精炼效果虽好,但它对人体有害,污染环境,易腐蚀设备及加热元件,因此,在实际生产中大多用氮一氯混合气体进行精炼,以提高精炼效果,减少其危害作用.2.2 非吸附净化非吸附净化包括真空处理和机械过滤. 真空处理,主要是去除铝熔体中的氢,即在真空状态下,铝熔体的吸气倾向趋于零,而且溶解在铝液中的氢有强烈的析出倾向;机械过滤,是靠微孔过滤去除铝熔体中的不溶3 铝熔体净化处理新工艺铝熔体净化处理方法很多,归纳起来大致可分为三大类:(1)以除气为主的方法有ASV 公司的动态真空除气法;(2)以除不溶性夹杂物为主的凯撒公司的陶瓷管过滤法和柯那尔公司的泡沫陶瓷过滤法;(3)既可除气,又可去夹杂物的有英国铝业公司的FILD 法,美国铝业公司的A1.Coa469法,美国联合碳化物公司的SNIF法, 法国彼西涅公司的Alpur 法,美国联合铝业公司的MINT 法.3.1 除气为主的净化处理方法——动态真空障气洼动态真空除气是相对于静态真空除气而言的.在熔炼温度范围内,铝液表面有致密的Y—AJ203 膜存在,阻碍氢的析出.因此, 必须清除这层氧化膜的阻碍作用才能获得好的除气效果.静态真空除气是在真空处理的同时,在熔体表面撒上一层溶剂以便使氢气通过氧化膜除气,但从使用情况来看,除气效果并不好.1969 年,挪威ASV 公司开始采用动态真空除气工艺来净化铝液.动态真6 有色金属设计第28 卷空除气的工艺过程是先将真空炉抽成10m 的真空,然后打开进料口密封盖, 把从保温炉来的铝熔体借真空抽力喷人真空室内,喷人真空室内的熔体,呈细小弥散的液滴,因而,溶解在铝液中的氢能快速扩散出去,钠被蒸发燃烧掉.动态真空处理的除气速度,取决于氢的扩散速度和扩散面积, 为了提高除气速度,必须增大熔体与真空气氛的接触面积.使用结果表明,经动态真空处理后的铝熔体氢溶船度低于0.12 mL/100g.动态真空除气工艺的优点是:除气效果好,无公害,处理过程造渣少;缺点是:除其它有害杂质的效果差,不能实现连续处理,设备结构复杂,设备价格昂贵,而且设备的密封性难以保证.3.2除不溶性夹杂物为主的净化处理方法饱沫陶瓷过滤法泡沫陶瓷是近年发展起来的新型陶瓷过滤材料.柯那尔公司泡沫陶瓷过滤板是用氧化铝,氧化钙等制成的海绵状多孔板.用该工艺处理铝液的工艺过程是:在保温炉和铸造机之间的流槽上,放人该装置,将该装置加热到一定温度后,开始放流铸造,以实现铝熔体的连续过滤.过滤板的孔隙大小,形状以及板的厚度,对过滤的效果有很大的影响.一般板厚为50Hn孔隙率达85%9D%.这种工艺能过滤微量级的氧化物夹杂. 效果好而且成本低,设备结构简单,使用方便,适用于各种合金.事实证明,使用该装置后,3003 合金印刷板成品率提高了9%; 1145 合金电容器铝箔两次断头间的平均重量提高了45%;6063 台金建筑铝型材挤压速度提高20%.其缺点是该工艺本身不具有除氢功能,过滤板需定期更换,易破损, 常给生产带来麻烦.3.3既可除气,又可去夹杂物的净化处理方法3.3.1Alcoa469 除气法此工艺是美国铝业公司研究成功的铝液在线处理工艺,可实现铝液连续净化.见图 1.出口At+At+C]2固1Alcoa469 蝽体处理装置熔体 2 一氧化铝球 3 气体扩散器 4 一隔板该装置有 2 个处理室(称为两单元),采用氩一氯混台气体精练和氧化铝球过滤在此装置中,熔体先经粗过滤床过滤,再经细过滤床过滤流向铸造机.在 2 个过滤床的底部设有气体扩散器,气体的流向与熔体的流向相反并均匀分布到整个过滤床截面上经Alcoa469 法处理的铝液氢溶解度可控制在0.15mL/100g 以内,见表 2.袁2Alcoa469 装置除氢效果表AA铝{庄流量给气量氢溶解度/(?h '' )/(?h '' )/(?1130 '' g) 3.3.2SNIF 法和Alpur 法这两种方法都是利用快速旋转的石墨气体喷头使精练气体呈微细气泡喷出分散于熔体中,从而达到去除熔体中的氢和部分氧化物夹杂的目的.SNIF 法是美国联合碳化物公司发明的种在线式铝熔体处理装置.该装置是用惰性气体喷人快速旋转的石墨喷嘴,喷嘴是由锭子和转子组成,惰性气体从高速旋转的转第l 期麒晓渡:铝髂#净化处理方{ 盎分析子和锭子之间的缝隙(<5mm) 喷出,惰性气体变成极细的弥散气泡,由于转子高速旋转搅拌金属液,使得弥散气泡均匀分布在整个熔体中,增大了气体与熔体的接触面积,使可溶性氢更有效地进入气泡中,使之与气泡一起上浮排除,从而达到快速,高效地从熔体中清6710140 g 640】600756016—020006—0】l45—6250.30.1057O230156.5015—023009—01240—478 0.301260AJ.pm”法由法国彼西涅公司发明,1981 年1O 月取得专利.该方法与SNW 法除气工艺类似,但喷嘴设计与SNIF 不同,其结构更为简单.在喷头上有两种不同形式的通道,一种是径向排列的8条小通道(I〜 3 一),小通道同转动的中空心轴相通,喷人惰性气体;另一种为锥形排列的8 条大通道(帆一15rm n),通道中心交点与喷头转动轴同心,通道中心线与转动轴成45o 角,喷头上有4 个叶片,在高速转动下搅拌金属液,使气泡细小而分布均匀,它同时能搅动熔体进入喷嘴内使金属液与气充分混合,因此使净化效果提高.据资料介绍,除气效率可达75%.3.3.3M 法MINT 法是美国联合铝业公司研制, 1982 年以后开始在工业上使用.该方法是将熔体从装置上方成切线方向流入反应器内,并以螺旋状向下流动.在反应器底部装有高压气体喷嘴,喷入细小的氩一氯气泡, 气泡上浮,熔体向下流动,在漩涡流动作用下,把细小气泡均匀弥散分布到熔体中,把熔体中的氢除去.熔体从反应器底部流出, 通过上升管流入泡沫陶瓷过滤器,氧化物夹杂则被过滤掉.该装置用氩气加上0.5%一3%的氯气, 除氢效率可达48%一73%,见表4;金相低倍检查除氧化物夹杂的效率可达90%,见表 5..表4MINT 除氢效果表(下转菇*页J有色金属设计第28 卷应用,积累了一些实践经验,装置及规模也参考文献不断地向过滤法由于其本身不具有除气功能,生产上往往不单独使用;Alcm469 法由于要定期更换氧化铝球,使用前要加热过滤床.因此使用起来方便性较差;Mpur 与sN 装置除气效果好,使用方便,深受广大用户的青睐.Alpllr与SMF相比较,设备结构简单,价格便宜,处理箱内衬没有石墨材料,使用寿命长,炉内不用气体保护,清渣方便,生产上常将Mpur 和sN 与泡沫陶瓷过滤相结合,净化效果更好.MINT 结构最简单,没有同熔体接触的运动部件,占地面积小,更换合金品种方便,除渣效率高,更加适用于多合金生产的熔铸机组上使用. 当然,上述净化方法也存在着以下缺点:八、、-(1)由于装置处在保温炉和铸造机之间,拉长了保温炉和铸造机的距离,增加了不必要的面积;而且由于距离的拉长,除气箱一定要加热,增加了能耗. (2)在更换合金品种时,除气箱内的铝液要排放掉,给生产造成了很大的不方便. 而且,除气箱中的原有铝液将作为废品处理,增加了生产成本. 在有效地净化铝熔体的前提下如何解决上述问题,是摆在我们每个铝加工工作者面前的重要课题.国外目前正在研制开发的所谓紧凑型净化处理设备虽然较好地解决了上述问题,但密封及快速撇渣问题仍未解决. 我们相信,经过努力,在不远的将来,一定会使铝熔体净化处理工艺在节约资源,节能,环保及生产上取得突破性进展.。
铝及铝合金熔体净化方法研究

铝及铝合金熔体净化方法研究摘要:论述了国内外铝合金熔体净化工艺和净化剂的研究现状,并简要介绍了我国铝合金净化的行业现状,提出了铝熔体提高净化效果的主要途径及发展方向。
本文同时介绍了铝及铝合金熔炼过程中铝熔体中存在的可溶的和不溶的杂质氢及氧化物夹杂及其所造成的冶金缺陷,论述了铝熔体净化处理的重要性,分析了传统的铝熔体炉内分批净化处理所存在的不足,说明了先进的净化处理工艺产生的背景,从理论上阐明了铝熔体净化的机理,详细地分析了这些先进的净化处理工艺与设备的特点、处理效果及所存在的问题,指出了铝熔体净化处理工艺的发展方向。
关键词:熔体净化铝合金1 引言在航空航天等国防技术领域,大型铝合金构件的应用越来越多,对构件的要求越来越高,除了要保证其化学成分、力学性能和尺寸精度外,还不允许铸件有缩孔、气孔、渗漏、夹渣等缺陷。
铝合金熔体净化处理是生产高质量的铝铸件的基本保证措施之一,也是提高铝合金综合性能的主要手段。
铝合金熔体精炼效果对疏松、气孔、夹杂等的形成有重要影响,且直接影响铝铸件的物理性能、力学性能以及使用性能。
没有高质量的铝合金熔液,即使以后的变质、晶粒细化处理再有效,加工成形控制再先进,采取合理的铸造工艺以及热处理工艺,缺陷一旦从开始就产生,仍然会顽固地存在、难以弥补,高质量的铸件也是很难想象的。
因此,人们非常重视铸造铝合金熔体中的气体和夹杂物,并采取各种铝合金熔体净化措施排除气体和夹杂物[1-3]。
目前,铝合金熔体纯净化和均质细晶化的综合处理,被认为是获得优质铝合金必须解决的共性技术基础问题。
有许多相关的研究如:各种铝熔体除气去渣的净化方法(物理的和化学的),各种电、磁场对熔体的处理方法,研究合金熔体的结构及熔体的热历史对凝固组织的影响,快速凝固粉末冶金铝合金的研究等等。
铝合金熔体净化处理按处理所处的生产环节的不同,可将其分为炉内处理和炉外处理两大类。
铝合金熔体炉内净化技术按照净化作用的机理又可以分为吸附净化处理技术和非吸附净化处理技术。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
铝及铝合金熔体净化方法研究摘要:论述了国内外铝合金熔体净化工艺和净化剂的研究现状,并简要介绍了我国铝合金净化的行业现状,提出了铝熔体提高净化效果的主要途径及发展方向。
本文同时介绍了铝及铝合金熔炼过程中铝熔体中存在的可溶的和不溶的杂质氢及氧化物夹杂及其所造成的冶金缺陷,论述了铝熔体净化处理的重要性,分析了传统的铝熔体炉内分批净化处理所存在的不足,说明了先进的净化处理工艺产生的背景,从理论上阐明了铝熔体净化的机理,详细地分析了这些先进的净化处理工艺与设备的特点、处理效果及所存在的问题,指出了铝熔体净化处理工艺的发展方向。
关键词:熔体净化铝合金1 引言在航空航天等国防技术领域,大型铝合金构件的应用越来越多,对构件的要求越来越高,除了要保证其化学成分、力学性能和尺寸精度外,还不允许铸件有缩孔、气孔、渗漏、夹渣等缺陷。
铝合金熔体净化处理是生产高质量的铝铸件的基本保证措施之一,也是提高铝合金综合性能的主要手段。
铝合金熔体精炼效果对疏松、气孔、夹杂等的形成有重要影响,且直接影响铝铸件的物理性能、力学性能以及使用性能。
没有高质量的铝合金熔液,即使以后的变质、晶粒细化处理再有效,加工成形控制再先进,采取合理的铸造工艺以及热处理工艺,缺陷一旦从开始就产生,仍然会顽固地存在、难以弥补,高质量的铸件也是很难想象的。
因此,人们非常重视铸造铝合金熔体中的气体和夹杂物,并采取各种铝合金熔体净化措施排除气体和夹杂物[1-3]。
目前,铝合金熔体纯净化和均质细晶化的综合处理,被认为是获得优质铝合金必须解决的共性技术基础问题。
有许多相关的研究如:各种铝熔体除气去渣的净化方法(物理的和化学的),各种电、磁场对熔体的处理方法,研究合金熔体的结构及熔体的热历史对凝固组织的影响,快速凝固粉末冶金铝合金的研究等等。
铝合金熔体净化处理按处理所处的生产环节的不同,可将其分为炉内处理和炉外处理两大类。
铝合金熔体炉内净化技术按照净化作用的机理又可以分为吸附净化处理技术和非吸附净化处理技术。
吸附法,主要是依靠精炼剂产生吸附氧化夹杂的作用,同时清除氧化夹杂及其表面依附的氢气,达到净化铝液的目的。
非吸附法,依靠其它物理、化学作用来达到净化铝液的目的。
吸附法的精炼作用只发生在吸附界面上,非吸附法则同时作用于整体铝液。
吸附净化处理技术主要有惰性气体吹洗、活性气体吹洗、混合气体吹洗、氯盐(六氯乙烷)净化、无毒精炼剂净化、熔剂法精炼等;非吸附净化处理技术主要有真空净化处理法(静态真空处理、动态真空处理)、超声波净化处理法、电磁净化处理法(直流电、交流电、旋转磁场、行波磁场)、压力结晶法、稀土元素氢法等[4-5]。
在吸附净化处理技术中,采用氯气精炼,与液态铝生成三氯化铝,与氢气生成氯化氢,兼有物理和化学的净化作用,精炼效果明显,但是对环境及设备都造成严重的损害,而且氯气是破坏大气臭氧层的最根本祸首。
后来改用氮气精炼,甚至用的高纯氮气精炼,不仅成本提高,精炼效果也较差。
虽然人们已经意识到问题的严重性,并在力求改进工艺,多年的努力仍不尽人意,无毒无污染的精炼工艺(如用氮气,氩气等惰性气体精炼)往往还不能达到诸如有严重环境污染的氯气精炼处理所能达到的精炼效果。
近年来,国外普遍采用混合气体精炼,即在高纯氮气或氩气中加入少量的活性气体,在强化铝合金熔体除氢作用的同时,有利于去除铝合金熔体内部的夹杂物并在铝合金熔体表面造成干性渣,可以达到很好的精炼效果,而且可以人为地控制氯气混入量,对环境影响不大。
在非吸附净化处理技术中,稀土元素储氢法(化学固氢法)利用稀土元素特殊的电子结构和物理化学性质,和生成高熔点化合物弥散质点,以固体形式吸收铝合金熔体中的大量的氢,在铝合金熔体净化方面发挥着越来越重要的作用,同时,稀土元素在变质处理方面也得到广泛的应用,因此,稀土化学固氢净化铝合金熔体已经成为新型铝合金熔体精炼剂的一个发展方向。
目前,杨长贺等已开发出稀土惰性气体(氩)联合除气新方法,丁文江等开发出新型多功能稀土熔剂,据称是一种“绿色环保型熔剂”,对合金的除气净化效果显著,并具有一定的变质细化作用,但未见到工业化应用的报道。
尽管铝合金熔体净化有众多的工艺方法,但是仍然满足不了铝行业的生产需要,特别是航空航天等军品铝合金的生产。
国内铝加工企业虽然也采用了几种具有国际先进水平的在线除气设备,但并未掌握技术关键,而且在观念上只重视除气,而且轻视保护,没有掌握“以防为主,以排为辅”的原则。
虽然采用了与国外相同的除气方法和技术,而且在引进和消化的同时加以改进,但是我国的铝合金熔体处理水平仍然与国际先进水平有一定的差距。
目前,铸造铝合金生产过程中精炼净化仍是久久未能彻底解决的基本问题,大量的废品在工厂里面产生,很多高质量的铝合金铸件不能生产。
2 熔体净化方法铝合金净化方法按其作用原理可分为吸附净化和非吸附净化两个基本类型。
吸附净化是指通过铝熔体直接与吸附剂(如各种气体、液体、固体精炼剂及过滤介质) 相接触,使吸附剂与熔体中的气体和固态氧化夹杂物发生物理化学的、物理的或机械的作用,达到除气、除杂的目的。
属于吸附净化的方法有:吹气法、过滤法、熔剂法等等。
非吸附净化是指不依靠向熔体中加吸附剂,而通过某种物理作用(如真空、超声波、密度差等) ,改变金属气体系统或金属夹杂物系统的平衡状态,从而使气体和固体夹杂物从铝熔体中分离出来的方法。
2.1吹气法吹气法又称气泡浮游法,它是将惰性气体(如氮气、氩气等) ,通入到铝熔体内部,形成气泡,熔体中的氢在分压差的作用下扩散进这些气泡中,并随气泡的上浮而被排除,达到除气的目的。
气泡在上浮的过程中还能吸附部分氧化夹杂起到除杂的作用[6-7]吹气法是20世纪70 年代发展起来的铝熔体净化工艺[3-4],主要用于除氢,按其气体导入方式,可分为单管吹气法、多孔喷头吹气法、固定喷吹法、旋转喷吹法。
吹气法的效果一方面取决于惰性气体的性质和纯度,更主要的取决于气泡的大小和气泡在熔体中的分散程度,如果吹入的气泡直径越小,分布越均匀弥散,则气泡比表面积越大、熔体中的氢扩散进气泡的路程越短、气泡上浮越慢、除气率越高,另外,还取决于吹气时间、吹气压力、吹气温度等工艺参数[8-10]。
旋转喷吹法是吹气法中效果最好的方法[6-7],它主要是依靠转头的形状,以及适当高转速的转头对气泡的破碎来控制气泡的大小和分布的,转头是这些方法的技术核心,不同的转头,产生的气泡大小不同,不论那种方法,产生的气泡一般为mm级。
转头转速300~500 r/ min ,吹气压力恒定在2~3 个大气压之间。
旋转喷吹法为存在的缺点主要表现在除气率低,一般在70 %以下;气泡尺寸不够小,达不到μm级,这是由转头形状所决定的,转头转速过高,易引起熔体翻腾,产生吸气现象,也会使熔体中心区域压力降低产生合泡现象。
2.2 过滤法让铝熔体通过中性或活性材料制造的过滤器,以分离悬浮在熔体中的固态夹杂物的净化方法叫过滤法。
过滤材质一般使用玻璃布、刚玉球以及泡沫陶瓷。
过滤法主要是去除熔体中的夹杂物,对除氢效果甚微,所以在实际应用中,过滤法往往与吹气法相结合,例如图1 是两种连续净化装置示意图。
另外还有FILD 法、Alcoal81 法、Alcoa469 法、Alusuisse DUF2S 法等都是集除气除杂为一体的、图1 连续净化装置示意图单级或多级的、连续的铝熔体净化方法[11-13]。
2.3熔剂法熔剂法是在铝合金熔炼过程中,将熔剂加入到熔体内部,通过一系列物理化学作用,达到除气除杂的目的。
熔剂的除杂能力是由熔剂对熔体中氧化夹杂物的吸附作用和溶解作用以及熔剂与熔体之间的化学作用所决定的。
熔剂和夹杂物之间的界面张力愈小,熔剂的吸附性愈好除杂作用愈强。
除了以除气除杂为主要目的的熔剂外,还有一些其他的熔剂,如覆盖剂、清渣剂等。
各种熔剂的重复使用,造成熔炼成本增高,增加了人为引入杂质的几率,故而研制开发集覆盖保护、净化、变质、细化等功能于一体的新型熔剂仍是今后的发展方向之一。
目前,国内外研制和使用的熔剂种类繁多,如美国著名的Pyrotek 公司生产的各种熔剂;国内陈渭臣等研制的JGJ21 型铝合金熔剂[9]和上海交通大学研制的JDLF21 和JDLF22 铝合金熔剂[10]等。
熔剂法和旋转喷吹法相结合形成了铝合金净化新工艺——旋转喷粉法,该法与炼钢中的喷粉冶金类似,它是借助惰性气体作为载体,将熔剂以粉末状喷入熔体来实现铝合金的净化处理,与传统的方法相比,旋转喷粉法的净化效果更佳,如FI 法和He-project 法等。
[14-15]2.4 非吸附净化法非吸附净化法有:静置处理、真空处理、超声波处理等。
静置处理是指将铝熔体在浇注前静置一段时间,由于夹杂物的密度比铝熔体的大,所以夹杂物会自发下沉,从而达到从熔体中分离的目的,小颗粒的夹杂很难用该方法除去。
真空处理是将熔体置于有一定真空度的密闭保温炉内,利用氢在熔体中和气氛中的分压差,使熔体中的氢不断生成气泡,并上浮逸出液面而被除去的方法。
真空处理是降低铝熔体中氢含量最有效的方法,但这种处理需要真空密封设备,价格昂贵,而且造成熔体温度的损失较大,除杂能力也极为有限,因此在工业生产中很少使用。
超声波处理是20 世纪90 年代发展起来的一项新的铝合金熔体净化方法,其原理是利用超声波在熔体中的空化作用,使液相连续性破坏成孔穴,该孔穴使溶解在铝液中的气体聚集在一起,超声波弹性振荡促使气泡的结晶核心形成,并促使气泡聚集到一定尺寸,从而保证气体的析出。
由于超声波发生器的局限性,该方法很难处理大批量的铝熔体,限制了其工业应用。
3 铝及铝合金熔体净化处理3.1 基本原理铝料的表面都有一层厚薄不均的氧化膜,有时还吸附水分,夹杂灰沙,粘有油污,涂有油漆等。
在熔化时,铝料在高温环境中进一步氧化,氧化膜厚度增加,并与气氛中的水分起化学反应,生成氧化铝和氢,使氧化夹杂和气体含量增加。
所以,铝料熔化以后,必须进行净化处理,以清除铝液内部的杂质和气体。
用于净化铝液的物质统称为熔剂。
熔剂在室温多数是固体或气体,也有个别熔剂是液体,如CCl4。
固体熔剂的优点是体积小,容易运输和储存,但都具有较强的吸湿性,必须密封包装。
为了提高固体熔剂的净化效果,可将熔剂压紧成紧密小块用铝箔包裹,放入长柄的钻孔容器内插入熔池底部。
对以NaCl和KCl 的混合盐为基体的熔剂,可先按配比将混合盐熔化后,加入难熔组分,例如Na3AlF6,经搅拌冷却后注入密封铁箱内。
熔剂使用前应存放在室温较高的干燥地点,如熔炉旁,以防受潮。
在熔炉内施加覆盖熔剂,可以减少熔化消耗,阻止铝液从炉膛气氛中吸收气体,但覆盖熔剂的耗用量大(约相当于铝料重量的10%),使生产成本提高,中小型铝加工厂一般不采用。
净化熔剂的使用通常是在铝料熔化以后将按配比混合的粉状熔剂撒在熔池表面,然后用长柄工具搅动铝液促使灰渣上浮。