金属材料的力学性能 (1)
第一章 金属材料的力学性能

度
A、C标尺为100
B标尺为130
机 械 制
造
基
础
§1.2 硬度
第一章 金属材料的力学性能
二、洛氏硬度
标注——用符号HR表示, A标尺HRA B标尺HRB C标尺HRC
如: 42 HRA
机
械
硬度值 A标尺
制
造
基
础
§1.2 硬度
第一章 金属材料的力学性能
三、维氏硬度 测定原理——基本上和布氏硬度相同,只是所用 压头为金刚石正四棱锥体
冲击韧度高
机
•冲击能量高时, --材料的冲击韧度主要取决于材料的塑性,塑性高则
韧度高
械 制
造
基
础
第一章 金属材料的力学性能
第一章 金属材料的力学性能
§1.1 强度和塑性
§1.2 硬度
§1.3 冲击韧度
§1.4 疲劳强度
本章小结
机
械
制
造
基
础
§1.4 疲劳强度
第一章 金属材料的力学性能
疲劳强度
Sl110000%%Sl10lS0 110100%0%
Sl 二者的值越大塑性越好 00
lS0 0
机 械 制
原始原横始截标面距积
试样拉试断样后断的裂标处距截面积
造 基
础
第一章 金属材料的力学性能
第一章 金属材料的力学性能
§1.1 强度和塑性
§1.2 硬度
§1.3 冲击韧度
§1.4 疲劳强度
本章小结
第一章 金属材料的力学性能
由主金要属内材容料:制成的零、部件,在工作过
程中金都属要材承料受的外力力学性(或能称指载标荷和) 测作试用方而法产,
金属的力学性能有哪些

金属的力学性能有哪些金属材料的力学性能包括强度、屈服点、抗拉强度、延伸率、断面收缩率、硬度、冲击韧性等。
金属材料力学性能包括其中包括:弹性和刚度、强度、塑性、硬度、冲击韧度、断裂韧度及疲劳强度等,它们是衡量材料性能极其重要的指标。
1、强度:材料在外力(载荷)作用下,抵抗变形和断裂的能力。
材料单位面积受载荷称应力。
2、屈服点(6s):称屈服强度,指材料在拉抻过程中,材料所受应力达到某一临界值时,载荷不再增加变形却继续增加或产生0.2%L。
时应力值,单位用牛顿/毫米2(N/mm2)表示。
3、抗拉强度(6b)也叫强度极限指材料在拉断前承受最大应力值。
单位用牛顿/毫米2(N/mm2)表示。
如铝锂合金抗拉强度可达689.5MPa 4、延伸率(δ):材料在拉伸断裂后,总伸长与原始标距长度的百分比。
工程上常将δ≥5%的材料称为塑性材料,如常温静载的低碳钢、铝、铜等;而把δ≤5%的材料称为脆性材料,如常温静载下的铸铁、玻璃、陶瓷等。
5、断面收缩率(Ψ)材料在拉伸断裂后、断面最大缩小面积与原断面积百分比。
6、硬度:指材料抵抗其它更硬物压力其表面的能力,常用硬度按其范围测定分布氏硬度(HBS、HBW)和洛氏硬度(HRA、HRB、HRC)。
7、冲击韧性(Ak):材料抵抗冲击载荷的能力,单位为焦耳/厘米2(J/cm2)。
什么是金属材料金属材料是指具有光泽、延展性、容易导电、传热等性质的材料。
一般分为黑色金属和有色金属两种。
黑色金属包括铁、铬、锰等。
其中钢铁是基本的结构材料,称为“工业的骨骼”。
由于科学技术的进步,各种新型化学材料和新型非金属材料的广泛应用,使钢铁的代用品不断增多,对钢铁的需求量相对下降。
但迄今为止,钢铁在工业原材料构成中的主导地位还是难以取代的。
金属材料的力学性能

第一章金属材料的力学性能机械制造中使用的材料品种很多,为了正确使用材料,并把它加工成合格的工件,必须掌握材料的使用性能和工艺性能。
使用性能,是指为保证工件正常工作材料应具备的性能,包括力学性能、物理和化学性能等。
工艺性能,是指材料在加工过程中所表现出来的性能,包括铸造性能、锻压性能、焊接性能和切削加工性等。
所谓力学性能,是指材料在外力作用下所表现出来的性能,主要有强度、塑性、硬度、冲击韧性、疲劳强度等,是设计机械零件时选材的重要依据。
这些性能指标是通过试验测定的。
第一节刚度、强度、塑性刚度、强度和塑性是根据试验测定出来的。
将材料制成标准试样(图1-1a),然后把试样装在试验机上施加静拉力,随着拉力的增加试样逐渐变形,直到拉断为止(图1-1b)。
将试样从开始到拉断所受的力F 及所对应的伸长量ΔL绘制在F—ΔL坐标上,得出力一伸长曲线。
低碳钢的力一伸长曲线如图1—2所示。
从图1—2可知,在OE 阶段,试样的伸长量随拉力成比例增加,若去除拉力后试样恢复原状,这种变形称为弹性变形。
超过E 点后,若去除拉力试样不能完全恢复原状,尚有一部分伸长量保留下来,这部分保留下来的变形称为塑性变形。
当拉力增加到F s 时,力一伸长曲线在S 点呈现水平台阶,即表示外力不再增加而试样继续伸长,这种现象称为屈服,该水平台阶称为屈服台阶。
屈服以后,试样又随拉力增加而逐渐均匀伸长。
达到B 点,试样的某一局部开始变细,出现缩颈现象。
由于在缩颈部分试样横截面积迅速减小,因此使试样继续伸长所需的拉力也就相应减小。
当达到K 点时,试样在缩颈处断裂。
低碳钢在拉伸过程中经历了弹性变形、弹一塑性变形和断裂三个阶段。
F —ΔL 曲线与试样尺寸有关。
为了消除试样尺寸的影响,把拉力F 除以试样原始横截面积A0,得出试样横截面积上的应力,同时把伸长量ΔL 除以试样原始标距L 0,得到试样的应变LL ε∆=0F A σ=σ—ε曲线与F —ΔL 曲线形状一样,只是坐标不同。
金属材料的力学性能

第1章工程材料1.1 金属材料的力学性能金属材料的性能包括使用性能和工艺性能。
使用性能是指金属材料在使用过程中应具备的性能,它包括力学性能(强度、塑性、硬度、冲击韧性、疲劳强度等)、物理性能(密度、熔点、导热性、导电性等)和化学性能(耐蚀性、抗氧化性等)。
工艺性能是金属材料从冶炼到成品的生产过程中,适应各种加工工艺(如:铸造、冷热压力加工、焊接、切削加工、热处理等)应具备的性能。
金属材料的力学性能是指金属材料在载荷作用时所表现的性能。
1.1.1 强度金属材料的强度、塑性一般可以通过金属拉伸试验来测定。
1.拉伸试样图1.1.1拉伸试样与拉伸曲线2.拉伸曲线拉伸曲线反映了材料在拉伸过程中的弹性变形、塑性变形和直到拉断时的力F时,拉伸曲线Op为一直线,即试样的伸长量与载荷学特性。
当载荷不超过p成正比地增加,如果卸除载荷,试样立即恢复到原来的尺寸,即试样处于弹性变形阶段。
载荷在Fp-Fe间,试样的伸长量与载荷已不再成正比关系,但若卸除载荷,试样仍然恢复到原来的尺寸,故仍处于弹性变形阶段。
当载荷超过Fe后,试样将进一步伸长,但此时若卸除载荷,弹性变形消失,而有一部分变形当载荷增加到Fs时,试样开始明显的塑性变形,在拉伸曲线上出现了水平的或锯齿形的线段,这种现象称为屈服。
当载荷继续增加到某一最大值Fb时,试样的局部截面缩小,产生了颈缩现象。
由于试样局部截面的逐渐减少,故载荷也逐渐降低,试样就被拉断。
3.强度强度是指金属材料在载荷作用下,抵抗塑性变形和断裂的能力。
(1) 弹性极限金属材料在载荷作用下产生弹性变形时所能承受的最大应力称为弹性极限,用符号σe 表示:(2) 屈服强度金属材料开始明显塑性变形时的最低应力称为屈服强度在拉伸试验中不出现明显的屈服现象,无法确定其屈服点。
所以国标中规定,以试样塑性变形量为试样标距长度的0.2%时,材料承受的应力称为“条件屈服强度”,并以符号σ0.2 表示。
1.1.2 塑性金属材料在载荷作用下,产生塑性变形而不破坏的能力称为塑性。
金属材料的力学性能

金属材料的力学性能
金属材料的力学性能是指材料在受到力的作用下的行为和性能。
常见的金属材料(如钢、铝、铜等)具有较高的强度和刚性,具有良好的塑性和延展性。
其主要的力学性能包括以下几个方面:
1. 强度:金属材料的强度是指材料在受到外力作用下抵抗变形和破坏的能力。
常见的强度指标有屈服强度、抗拉强度、抗压强度等。
2. 延展性:金属材料具有较好的延展性,即在受到外力作用下能够发生塑性变形。
延展性可以通过材料的延伸率、断面收缩率等指标来描述。
3. 韧性:金属材料的韧性是指材料能够在承受外力作用下吸收较大的能量而不发生断裂或破坏的能力。
韧性也可以通过断裂韧性、冲击韧性等指标来描述。
4. 硬度:金属材料的硬度是指材料抵抗局部变形和外界划
痕的能力。
硬度可以通过洛氏硬度、布氏硬度等进行测量。
5. 弹性模量:金属材料的弹性模量是指材料在受到外力后,能够恢复到原来形状的能力。
弹性模量可以描述材料的刚
度和变形的程度。
6. 疲劳性能:金属材料的疲劳性能是指材料在受到交替或
重复载荷下的疲劳寿命和抗疲劳性能。
疲劳性能可以通过
疲劳寿命、疲劳极限等指标来描述。
以上是金属材料的一些常见力学性能参数,不同的金属材
料在这些性能方面有所差异。
这些性能参数的好坏直接决
定了金属材料在工程实践中的应用范围和性能优势。
金属材料的力学性能

第1章 金属材料的力学性能
二、洛氏硬度 HR ( Rockwll hardness ) 1、测量原理
10HRC≈HBS
洛氏硬度测试示意图
第1章 金属材料的力学性能
三、维氏硬度 HV
1、测量原理:
第1章 金属材料的力学性能
2、表示方法: 符号HV。标注时,硬度值写在符号之前,如666HV
3、特点: 维氏硬度试验的测试精度较高,测试的硬度范围大,被测试样的厚度 或表面深度几乎不受限制(如能测很薄的工件、渗氮层、金属镀层等)。 但是, 维氏硬度试验操作不够简便,试样表面质量要求较高,故在生 产现场很少使用。
抗拉强度为设计机械零件和选材的主要依据。
σe σs σb
第1章 金属材料的力学性能
(二)疲劳强度
工程上规定,材料经无数次重复循环(交变)载荷作用而不发生 断裂的最大应力称为疲劳强度。表示材料经无数次交变载荷作用而 不致引起断裂的最大应力值。
钢材的循环次数一般取 N = 107 有色金属的循环次数一般取 N = 108
主要指标: 强度、塑性、冲击韧性和硬度。
第1章 金属材料的力学性能
1.1 强度
按照载荷的性质,金属材料的强度有静强度、疲劳强度和 冲击强度。一般意义上的强度是指静强度。
(一)强度 一、拉伸试验
1.拉伸试样 标准试样(按GB/T6397-1986规定) 常用圆截面拉伸试样 : 长试样:L0=10d0 短试样:L0=5d0
钢铁材料的疲劳曲线
第1章 金属材料的力学性能
疲劳的危害:
1章 金属材料的力学性能 寒假(1)

第一章金属材料的力学性能姓名:一、填空题(共10小题,每小题3分,共30分)l.是指金属材料抵抗局部变形,特别是塑性变形、压痕或划痕的能力,常用的硬度实验法有硬度实验法、硬度实验法和硬度实验法。
2.金属材料在作用下,抵抗和的能力称为强度。
3.金属材料的性能分为和。
4.塑性指标是和,其值越大表示材料的塑性越。
5.变形一般可分为和两种,不能随载荷的去除而消失的变形称为6.200HBS表示硬度,硬度值是,压头是。
7.测定原材料常用试验,测定淬火钢常用试验。
8.金属材料抵抗载荷作用而的能力,称为冲击载荷。
9.布氏硬度值测量压痕,洛氏硬度值测量压痕,维氏硬度值测量压痕。
10.金属材料在循环应力作用下能经受无限多次循环而不断裂的最大应力称为金属材料的。
二、判断题(共10小题,每小题2分,共20分)1.洛氏硬度值无单位。
()2.做布氏硬度测试时,当试验条件相同时,其压痕直径越小,材料的硬度越低。
()3.在实际应用中,维氏硬度值是测定压痕对角线长度的算术平方值后再查表得到的。
()4.各种不同的标尺的洛氏硬度值可进行直接比较,因此应用方便。
()5.维氏硬度值具有连续性,故可测定很软到很硬的各种金属材料的硬度,其准确性高。
()6.金属的塑性越好,变压抗力越小,金属的锻造性能越好。
()7.金属材料的力学性能差异是由其内部组织所决定的。
()8.金属在强大的冲击作用下,会产生疲劳现象。
()9.拉伸试验可以测定金属材料的强度、塑性等多项指标。
()10.布氏硬度测量法宜用于测量成品及较薄零件。
()三、单项选择题(共10小题,每题2分,共20分)1.金属材料抵抗塑性变形或断裂的能力称为()。
A.塑性B.硬度C.强度D.韧性2.做疲劳试验时.试样承受的载荷为()。
A.静载荷B.冲击载荷C.循环载荷D.过载荷3.下列属于力学性能指标的是()。
A.热膨胀性B.化学稳定性C.疲劳强度D.可锻性4.拉伸试验时,试样拉断前能承受的最大标称应力称为材料的()。
金属材料的力学性能

金属材料的力学性能
金属材料的力学性能主要包括以下几个方面:
1. 强度:金属材料的强度是指它抵抗外力的能力。
通常用屈服强度、抗拉强度或抗压强度来表示材料的强度。
2. 延展性:金属材料的延展性是指其在受力下能够发生塑性变形的
能力。
常用的评价指标有伸长率、断面收缩率和断裂延伸率。
3. 硬度:金属材料的硬度是指其抵抗局部划痕或压痕的能力。
常用
的硬度测试方法有布氏硬度、洛氏硬度和维氏硬度等。
4. 韧性:金属材料的韧性是指其抵抗断裂的能力。
韧性与强度和延
展性密切相关,一般用冲击韧性和断裂韧性来评价材料的韧性。
5. 塑性:金属材料的塑性是指其在受力作用下发生可逆形变的能力。
塑性是金属材料特有的力学性能,它使得金属材料可以制成各种形状。
6. 疲劳性能:金属材料的疲劳性能是指其在交变或周期性载荷下抵抗疲劳损伤的能力。
疲劳性能的评价指标包括疲劳寿命和疲劳极限等。
不同的金属材料具有不同的力学性能,这些性能会受到材料的化学成分、晶体结构、热处理和加工工艺等因素的影响。
因此,在选择和使用金属材料时,需要根据具体的工程要求和环境条件来考虑其力学性能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Fb A0
精选课件
12
塑性
(一) 定义 金属材料断裂前发生永久变形的能力。
(二)衡量指标 伸长率:试样拉断后,标距的伸长与原始标距的百分比。
断面收缩率:试样拉断后,颈缩处的横截面积的缩减量与原 始横截面积的百分比。
精选课件
13
断后伸长率( δ )
l1-l0
δ=
×100%
l0
l1——试样拉断后的标距,mm; l0——试样的原始标距,mm。
精选课件
2
拉伸实验
万能材料试验机
a) WE系列液压精式选课件b) WDW系列电子式
3
力-伸长曲线
拉伸试验中得出的拉伸力与伸长量的关系曲线。
弹性变形阶段 屈服阶段 强化阶段 颈缩现象
精选课件
4
拉 伸 试 样 的 颈 缩 现 象
精选课件
5
(a)试样 (b)伸长 (精c选)产课件生缩颈 (d)断裂
6
3. 脆性材料的拉伸曲线(与低碳钢试样相对比)
F
0
ΔL
脆性材料在断裂前没有明显的屈服现象。
精选课件
7
屈服现象
❖ 在金属拉伸试验过程中,
当应力超过弹性极限后,
变形增加较快,此时除
了弹性变形外,还产生
部分塑性变形。当外力
增加到一定数值时突然
下降,随后,在外力不
增加或上下波动情况下,
试样继续伸长变形,在
力-伸长曲线出现一个
波动的小平台,这便是屈服现象。Fra bibliotek精选课件8
强度
屈服点
在伸长过程中力不增加(保持恒定),试样仍能继续
伸长时的应力,单位为MPa,即:
S
FS Ao
式中:Fs——材料屈服时的拉伸力,( N ); Ao——试样原始截面积,( mm2 )。
精选课件
9
规定残余延伸强度
❖ 对于高碳淬火钢、铸铁等材料,在拉伸试验 中没有明显的屈服现象,无法确定其屈服强 度。
❖ 金属材料的力学性能是指在承受各种外加载荷(拉 伸、压缩、弯曲、扭转、冲击、交变应力等)时, 对变形与断裂的抵抗能力及发生变形的能力。
精选课件
1
强度与塑性
❖ 强度是指金属材料在静载荷作用下,抵抗塑性 变形和断裂的能力。
❖ 塑性是指金属材料在静载荷作用下产生塑性变 形而不致引起破坏的能力。
❖ 金属材料的强度和塑性的判据可通过拉伸试验 测定。
精选课件
14
断面收缩率(ψ)
ψ= S0-S1 ×100% S0
S0——试样原始横截面积,mm2; S1——颈缩处的横截面积,mm2 。
精选课件
15
此课件下载可自行编辑修改,此课件供参考! 部分内容来源于网络,如有侵权请与我联系删除!感谢你的观看!
❖ 国标GB228-2002规定,一般规定以试样达
到一定残余伸长率对应的应力作为材料的屈
服强度,称为规定残余延伸强度,通常记作
Rr。例如Rr0.2表示残余伸长率为0.2%时的
应力。
精选课件
10
规定残余延伸应力
F0.2 A0
F
F0.2
0 0.2%L0
精选课件
ΔL
11
抗拉强度
材料在断裂前所能承受的最大应力,用符号 表 示。