图像处理3种不同滤波方法比较(有源代码)

合集下载

改变图像质量的几种滤波方法比较

改变图像质量的几种滤波方法比较

1改变图像质量的几种滤波方法比较一、概述滤波是图像处理重要技术之一,是提高图像质量的主要手段。

对输入的图像实现直方图均衡化;设计完成同态滤波器,并用之改善图象质量;对某图像加入不同类型﹑不同强度的噪声(周期﹑椒盐噪声),并分别用空间域和频率域的方法抑制噪声。

二、图像处理过程1.直方图均衡化输入一幅图片,统计原图直方图数组,用一个数组hf 记录hf(i);i 从0到255,令pa(i)=pa(i-1)+hf(i),其中hf(i)为灰度值为i 的像素点占总像素点的概率;一个数组F 记录新的索引值,即令F(i,j)= (pa(f(i,j)+1))*255;依次循环每一个像素,取原图的像素值作为数组F 的下标值,取该下标对应的数组值为均衡化之后的像素值。

结果显示原图图像、原图直方图,均衡化后的图像和直方图,并用于对比。

其中图像中灰度级出现的概率近似为:()n n r p kk r =,k=0,1,2,…,L -1。

而变换函数为:00()(),0,1,2,,1k k j k k r j j j n s T r p r k L n ======-∑∑2.巴特沃斯同态滤波器:图像f(x,y)是由光源照度场(入射分量)fi(x,y)和场景中物体反射光(反射分量)的反射场fr(x,y)两部分乘积产生,关系式为: f(x,y)=fi(x,y)*fr(x,y);fi(x,y)的性质取决于照射源,fr(x,y)取决于成像物体的特性。

一般情况下,照度场f i ( x , y) 的变化缓慢,在频谱上其能量集中于低频;而反射场f r ( x , y) 包含了所需要的图像细节信息,它在空间的变化较快,其能量集中于高频. 这样就可以根据照度—反射模型将图像理解为高频分量与低频分量乘积的结果。

由于两个函数乘积的傅立叶变换是不可分的,故不能直接对照度和反射的频率部分分别进行操作。

2因此定义:z(x,y)=lnf(x,y)=lnfi(x,y)+lnfr(x,y)则Z(u,v)=Fi(u,v)+Fr(u,v)这里,Z(u,v)、Fi(u,v)和Fr(u,v)分别是lnf(x,y)、lnfi(x,y)和lnfr(x,y)的傅立叶变换。

一些软件滤波算法的原理和程序源代码

一些软件滤波算法的原理和程序源代码

一些软件滤波算法的原理和程序源代码滤波算法是信号处理中常用的技术,用于去除信号中的噪声或抽取感兴趣的信号特征。

在本文中,我将介绍几种常见的软件滤波算法的原理和程序源代码,包括均值滤波、中值滤波和高斯滤波。

1.均值滤波均值滤波是一种简单直观的滤波算法。

其原理是通过计算像素周围邻近像素的平均值,来替换掉原始图像像素的值。

均值滤波的算法步骤如下:-创建一个大小为n的窗口(n通常为奇数),以当前像素为中心。

-计算窗口中所有像素的平均值。

-将当前像素的值替换为计算得到的平均值。

-按顺序处理所有像素。

以下是均值滤波的C++程序源代码示例:```cppvoid meanFilter(const cv::Mat& src, cv::Mat& dst, int kernelSize)int kernelHalfSize = kernelSize / 2;dst.create(src.size(, src.type();for (int y = 0; y < src.rows; y++)for (int x = 0; x < src.cols; x++)cv::Vec3f sum = cv::Vec3f(0, 0, 0);int numPixels = 0;for (int ky = -kernelHalfSize; ky <= kernelHalfSize; ky++) for (int kx = -kernelHalfSize; kx <= kernelHalfSize; kx++) int px = x + kx;int py = y + ky;if (px >= 0 && py >= 0 && px < src.cols && py < src.rows) sum += src.at<cv::Vec3b>(py, px);numPixels++;}}}cv::Vec3f average = sum / numPixels;dst.at<cv::Vec3b>(y, x) = average;}}```2.中值滤波中值滤波是一种非线性滤波算法,主要用于去除图片中的椒盐噪声。

均值滤波,高斯滤波,中值滤波

均值滤波,高斯滤波,中值滤波

均值滤波,高斯滤波,中值滤波均值滤波,高斯滤波和中值滤波是数字图像处理中常用的三种平滑滤波技术,用于降低图像噪声和去除图像中的不相关细节。

本文将对这三种滤波方法进行介绍、比较和分析。

一、均值滤波均值滤波是一种简单的平滑滤波方法,它的原理是用滤波窗口内像素的平均值来代替中心像素的值。

具体来说,对于滤波窗口内的每个像素,计算其邻域内所有像素的平均值,然后将结果作为中心像素的值。

这样可以有效地平滑图像并去除高频噪声。

然而,均值滤波的缺点是它不能很好地保留图像的边缘信息,使得图像看起来模糊且失去细节。

二、高斯滤波高斯滤波是一种基于高斯分布的平滑滤波方法,它认为像素点的邻域内的像素值与中心像素点的距离越近,其权重越大。

它的滤波过程是在滤波窗口内,对每个像素点进行加权平均。

加权的权重由高斯函数决定,距离中心像素点越近的像素点的权重越大,距离越远的像素点的权重越小。

通过这种加权平均的方式,可以更好地保留图像的细节和边缘信息,同时有效地去除噪声。

高斯滤波的唯一缺点是计算复杂度较高,特别是对于大型滤波窗口和高分辨率图像来说。

三、中值滤波中值滤波是一种统计滤波方法,它的原理是用滤波窗口内像素的中值来代替中心像素的值。

具体来说,对于滤波窗口内的每个像素,将其邻域内的像素按照大小进行排序,然后将排序后像素的中值作为中心像素的值。

中值滤波对于椒盐噪声和脉冲噪声有很好的去噪效果,能够保持图像的边缘信息,避免了均值滤波和高斯滤波的模糊问题。

然而,中值滤波的缺点是不能去除高斯噪声和高频噪声,因为当滤波窗口内的像素含有这些噪声时,中值滤波会产生失真效果。

比较和分析:三种滤波方法各有优劣,应根据实际需求选择合适的滤波方法。

均值滤波是最简单、计算复杂度最低的方法,在去除高斯噪声和低频噪声方面效果较差,但对边缘信息的保留效果较差。

高斯滤波通过加权平均的方式更好地保留了图像的细节和边缘信息,适用于处理高斯噪声并且具有一定的平滑效果。

中值滤波对于椒盐噪声和脉冲噪声有很好的去噪效果,并保持了图像的边缘信息,但对于高斯噪声和高频噪声则效果较差。

均值滤波,中值滤波,最大值滤波,最小值滤波

均值滤波,中值滤波,最大值滤波,最小值滤波

均值滤波,中值滤波,最⼤值滤波,最⼩值滤波
均值滤波:
均值滤波是图像处理中常⽤的⼿段,从频率域观点来看均值滤波是⼀种低通滤波器,⾼频信号将被去掉,因此可以帮助消除图像尖锐噪声,实现图像平滑,模糊等功能。

理想的均值滤波是⽤每个像素和它周围像素计算出来的均值替换图像中每个像素。

采样Kernel数据通常是3x3的矩阵,如下所⽰:
从左到右,从上到下计算图像中的每个像素,最终得到处理后的图像。

均值滤波可以加上两个参数,即迭代次数,kernel数据⼤⼩。

⼀个相同⼤⼩的kernel,经过多次迭代效果会越来越好。

同样:迭代次数相同,均值滤波的效果就越明显。

中值滤波:
中值滤波也是消除图像噪声最常见的⼿段之⼀,特别是消除椒盐噪声,中值滤波的效果要⽐均值滤波更好。

中值滤波和均值滤波唯⼀的不同是,不是⽤均值来替换中⼼每个像素,⽽是将周围像素和中⼼像素排序以后,取中值,⼀个3x3⼤⼩的中值滤波如下:
最⼤最⼩值滤波:
最⼤最⼩值滤波是⼀种⽐较保守的图像处理⼿段,与中值滤波类似,⾸先要排序周围像素和中⼼像素值,然后将中⼼像素的值与最⼩和最⼤像素值⽐较,如果⽐最⼩值⼩,则替换中⼼像素为最⼩值,如果中⼼像素值⽐最⼤值⼤,则替换中⼼像素为最⼤值。

⼀个Kernel矩阵为3x3的最⼤最⼩滤波如下:。

图像处理中的边缘保留滤波算法使用教程

图像处理中的边缘保留滤波算法使用教程

图像处理中的边缘保留滤波算法使用教程在图像处理领域中,边缘保留滤波算法是一种常用的技术,用于在平滑图像的同时保留图像中的边缘信息。

该算法可以广泛应用于图像去噪、边缘检测、图像增强等多个领域。

本文将介绍四个常见的边缘保留滤波算法,并详细讲解它们的原理和使用方法。

1. 高斯滤波高斯滤波是一种线性平滑滤波算法,用于去除图像中的噪声,并平滑图像。

它的原理是利用高斯函数对图像进行卷积操作,通过调整高斯核的大小来控制滤波的强度。

这种算法可以有效地保持图像中的边缘信息,同时去除噪声。

使用高斯滤波算法可以通过以下步骤实现:1) 将图像转换为灰度图像,如果图像已经是灰度图像则跳过该步骤。

2) 选择适当的高斯核大小和标准差。

3) 对图像进行高斯滤波操作。

4) 输出滤波后的图像。

2. 双边滤波双边滤波是一种非线性平滑滤波算法,与高斯滤波相比,它考虑了像素间的空间距离和像素强度之间的相似性。

这意味着它能够更好地保留图像中的边缘信息,同时减少平滑的效果。

使用双边滤波算法可以通过以下步骤实现:1) 将图像转换为灰度图像,如果图像已经是灰度图像则跳过该步骤。

2) 选择适当的滤波器参数,包括空间领域核大小、颜色领域核大小和颜色相似性高斯函数的标准差。

3) 对图像进行双边滤波操作。

4) 输出滤波后的图像。

3. 中值滤波中值滤波是一种非线性滤波算法,适用于去除椒盐噪声等混合噪声。

它的原理是将像素点周围的邻域像素进行排序,然后选择中间值作为当前像素的值。

这种方法能够有效地平滑图像,同时保留图像中的边缘信息。

使用中值滤波算法可以通过以下步骤实现:1) 将图像转换为灰度图像,如果图像已经是灰度图像则跳过该步骤。

2) 选择适当的滤波器窗口大小。

3) 对图像进行中值滤波操作。

4) 输出滤波后的图像。

4. Laplacian滤波Laplacian滤波是一种常用的边缘检测算法,它基于图像的二阶导数运算。

通过对图像进行Laplacian滤波操作,可以提取出图像中的边缘信息。

图像处理中的平滑滤波方法比较

图像处理中的平滑滤波方法比较

图像处理中的平滑滤波方法比较近年来,图像处理被广泛应用于计算机视觉、图像识别等领域。

在图像处理中,平滑滤波是一个常见的操作,它可以去除噪点、边缘保持等。

不同的平滑滤波方法会对图像产生不同的影响,因此选择合适的平滑滤波方法非常重要。

本文将比较五种常见的平滑滤波方法:均值滤波、高斯滤波、中值滤波、双边滤波和小波变换。

一、均值滤波均值滤波是最简单的一种平滑滤波方法,它将图像中每个像素点周围的像素值取平均数,并将平均值赋值给该像素点。

均值滤波可以消除图像的高频噪声,但同时也会损失一些图像的细节信息。

此外,均值滤波对较大的噪声点效果并不理想,很容易使图像产生模糊现象。

二、高斯滤波高斯滤波是一种局部加权平均滤波方法,它可以对图像进行模糊处理,同时保留较多的图像细节信息。

高斯滤波的核心理念是将周围像素的加权平均值作为该像素点的值。

高斯滤波的其中一个优点是可以更好地处理高斯白噪声、椒盐噪声等图像噪声,提高图像质量。

但是,高斯滤波也可能产生一定程度的模糊。

三、中值滤波中值滤波是一种基于统计学原理的平滑滤波方法,它将3×3或者5×5个像素的中间值作为该像素点的值。

中值滤波不会像均值滤波那样对图像像素进行加权平均,因此可以更好地去除图像噪声。

中值滤波常用于处理椒盐噪声、斑点噪声等,它能够减弱噪点的影响,同时保持图像的轮廓、边缘等细节特征。

四、双边滤波双边滤波是一种非线性滤波方法,它在平滑图像的同时,还可以保留图像的细节信息。

双边滤波在处理不同光照条件下的图像、模糊图像、具有强噪音的图像等方面具有较好的效果。

它的核心思想是在像素空间和像素值空间同时进行加权,从而能够更好地保留图像细节信息。

双边滤波的计算速度相对较慢,但是它常被用于实时视频处理等场景。

五、小波变换小波变换是在频域进行滤波的一种方法,它能够分离图像信号的低频和高频成份,对于高频噪点可以进行好的去除。

小波变换可以提取出不同频率的信息,对于保留图像细节来说非常有用。

C语言十大滤波算法

C语言十大滤波算法

C语言十大滤波算法C语言是一种广泛应用于嵌入式系统、图形界面、游戏开发等领域的编程语言。

在信号处理和图像处理等领域,滤波算法是一种重要的处理方式。

滤波算法可以对信号进行去噪、平滑、边缘检测等操作,从而提高信号的质量和准确度。

在C语言中,有许多优秀的滤波算法被广泛应用。

下面将介绍C语言中的十大滤波算法,并讨论它们的原理和应用领域。

1.均值滤波算法:均值滤波是一种简单有效的滤波算法,通过计算像素周围若干个邻域像素的平均值作为滤波结果。

均值滤波适用于去除高频噪声,但会造成图像细节的模糊。

2.中值滤波算法:中值滤波算法通过计算像素周围若干个邻域像素的中值作为滤波结果。

中值滤波可以有效去除椒盐噪声,但不能处理高斯噪声。

3.高斯滤波算法:高斯滤波算法利用高斯函数对图像进行滤波,以平滑图像并去除噪声。

高斯滤波在保持图像边缘信息的同时,能够有效降低噪声。

4.自适应中值滤波算法:自适应中值滤波算法根据像素邻域内像素的不同情况选择中值滤波器的大小,对不同噪声情况进行适应性处理。

5.双边滤波算法:双边滤波算法是一种非线性滤波算法,通过同时考虑空间信息和灰度差异信息,可在去噪的同时保持图像的边缘信息。

6.快速傅里叶变换(FFT)滤波算法:FFT滤波是一种频域滤波算法,通过将信号从时域转换到频域,对频谱进行滤波后再进行逆变换,能够有效去除周期性噪声。

7.小波变换滤波算法:小波变换是一种时频联合分析方法,将信号分解为不同频率的子带,通过阈值处理可以实现去噪。

8.自适应滤波算法:自适应滤波算法根据图像中的纹理复杂度自动选择合适的滤波器,能够在保持图像细节的同时去除噪声。

9.协同滤波算法:协同滤波算法是一种基于用户行为数据的推荐算法,通过分析用户的历史数据和相似用户群体的数据,对用户进行个性化推荐。

10.卡尔曼滤波算法:卡尔曼滤波算法是一种利用动态模型对状态进行推断的滤波算法,适用于系统状态估计、信号恢复等应用。

以上是C语言中的十大滤波算法,它们在不同领域的应用有所差异,但都能够有效地处理信号和数据,提高数据质量和准确度。

Matlab中的空间滤波方法详解

Matlab中的空间滤波方法详解

Matlab中的空间滤波方法详解在图像处理和计算机视觉领域,空间滤波是一种常用的技术。

它通过在图像的空间域上操作像素的灰度值,来改变图像的特性和质量。

Matlab提供了丰富的空间滤波函数和工具,可以方便地对图像进行处理和分析。

本文将详细介绍Matlab中各种常见的空间滤波方法,并讨论它们的优缺点和适用场景。

1. 均值滤波均值滤波是最简单的空间滤波方法之一。

它通过对图像中每个像素周围邻域的像素值取平均来平滑图像。

在Matlab中,可以使用函数`imfilter`来实现均值滤波。

具体的操作可以使用邻域平均值的方式,也可以使用邻域中位数的方式,分别对应`filt2`和`medfilt2`函数。

均值滤波的优点在于简单易用,能够有效地减小图像中的噪声。

然而,它也存在一些缺点。

均值滤波会导致图像失去细节,并且对边缘和纹理的保护能力较弱。

2. 中值滤波中值滤波是一种非线性的空间滤波方法。

它通过对邻域中像素值的排序,并取中间值来平滑图像。

在Matlab中,使用`medfilt2`函数可以轻松实现中值滤波。

中值滤波的主要优点是能够有效地去除椒盐噪声等脉冲噪声。

相比于均值滤波,中值滤波能够在去除噪声的同时保留图像的边缘和细节信息。

然而,中值滤波不适用于其他类型的噪声,比如高斯噪声。

3. 高斯滤波高斯滤波是一种基于高斯函数的线性空间滤波方法。

它通过对图像中每个像素周围邻域的像素值进行加权平均来平滑图像。

在Matlab中,可以使用`imgaussfilt`函数来实现高斯滤波。

高斯滤波的主要优点在于能够平滑图像的同时保留边缘和细节信息。

由于高斯函数的特殊性,高斯滤波具有良好的频域性质,可以在频域中对图像进行快速操作。

然而,高斯滤波也存在一些缺点,比如处理时间较长,并且对于一些特定类型的噪声效果不佳。

4. 锐化滤波锐化滤波是一种用于增强图像细节和边缘的空间滤波方法。

它通过高频增强的方式来增强图像的边缘和细节信息。

在Matlab中,可以使用`imsharpen`函数来实现锐化滤波。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.3.1 邻域平均法均值滤波
邻域平均法是空间域平滑噪声技术,也是用消除噪声的最简单的方法,最简单的是将原图中一个像素的灰度值和它周围邻近8个像素的灰度值相加,然后将求得的平均值(除以9)作为新图中该像素的灰度值。

它采用模板计算的思想,模板操作实现了一种邻域运算,即某个像素点的结果不仅与本像素灰度有关,而且与其邻域点的像素值有关。

邻域平均法的用数学表达如公式2.2所示:
,(i,j)∈M(2-2)
g(i,j)=∑f(i,j)
N
其中f(i,j)为给定的含有噪声的图像, g(i,j)为经过邻域平均处理后的图像为,M是所取邻域中各邻近像素的坐标,是邻域中包含的邻近像素的个数。

邻域平均处理方法是以图像模糊为代价来减小噪声的,且模板尺寸越大,噪声减小的效果越显著。

如果是噪声点f(i,j),其邻近像素灰度与之相差很大,采用邻域平均法就是用邻近像素的平均值来代替它,这样能明显消弱噪声点,使邻域中灰度接近均匀,起到平滑灰度的作用。

在实际应用中,可根据图像处理的要求、处理区域的大小和噪声的多少选择不同寸的模板,如3x3, 5x5, 7x7. 9x9等。

邻域平滑滤波方法程序设计简单,处理速度快并且能去除大部分的噪声,但是会导致图像模糊,特别是边缘部分[14]。

2.3.2 中值滤波
中值滤波法是一种去除噪声的非线性处理技术,其基本原理是把数字图像或数字序列中一点的值用该点的一个邻域中各点值的中值代替,让周围的像素值接近的真实值,从而消除孤立的噪声点。

中值滤波的特点即是首先确定一个以某个像素为中心点的邻域,一般为方形邻域,也可以为圆形、十字形等等,然后将邻域中各像素的灰度值排序,取其中间值作为中心像素灰度的新值,这里邻域被称为窗口,当窗口移动时,利用中值滤波可以对图像进行平滑处理。

与均值滤波相比,中值滤波能够比较好的实现在消除噪声的同时,图像边缘完好的保留。

在均值滤波器中,由于噪声成分被放入平均计算中,所以输出受到了噪声的影响,但是在中值滤波器中,由于噪声成分很难选上,所以几乎不会影响到输出,因此同样用3x3区域进行处理,中值滤波消除的噪声能力更胜一筹。

中值滤波无论是在消除噪声还是保存边缘方面都是一个不错的方法,但与此同时,中值滤波花费的时间是均值滤波的5倍以上。

2.3.3 高斯滤波
高斯滤波是一类根据高斯函数的形状来选择权值的线性平滑滤波,适用于消除高斯噪声,广泛应用于图像处理的减噪过程,其基本原理就是对整幅图像进行
加权平均的过程,每一个像素点的值,都由其本身和邻域内的其他像素值经过加权平均后得到。

高斯滤波的具体操作是用一个模板(或称卷积、掩模)扫描图像中的每一个像素,用模板确定的邻域内像素的加权平均灰度值去替代模板中心像素点的值。

加权平均就是根据某一点周围不同位置的点对滤波效果的贡献不同,在进行计算时需要乘以不同的权重值。

一般情况下,模板中心像素的权重比较大,模板边界像素点的权重比较小,其他位置的像素权重介于两者之间。

对于图像处理来说,常用二维零均值离散高斯函数作平滑滤波器, 主要用于去除抑制服从正态分布的噪声。

2.3.4 处理结果比较
我们在图像的采集过程中难免会产生一些噪声,这些噪声最为典型就是椒盐噪,本文同我们首先对车牌增强灰度图添加椒盐噪声,如图2.4所示,然后分别采用以上3种不同的滤波方法对添加椒盐噪声的车牌图像进行滤波处理,滤波效果如图2.5、图2.6、图2.7所示:
图2.4 椒盐噪声灰度图 图2.5 邻域平均法均值滤波效果图
(a ) 加噪图像 (b ) 加噪图像
(a )邻域平均法均值滤波 (b )邻域平均法均值滤波 (b ) 加噪图像
(a)中值滤波(b)中值滤波
图2.6 中值滤波效果图
(a) 高斯滤波效果(b) 高斯滤波效果
图2.7 高斯滤波效果图
通过用三种不同的滤波方法对图像进行处理,邻域平均法均值滤波、高斯滤波对三幅图像的处理耗时较短,中值滤波耗时最长,但是从滤波效果来看中值滤波优于其他两者,并且高斯平滑滤波效果最差。

从综合效果出发,结合车牌快速检测对图片处理的要求本文采用中值滤波。

clear;
close all;
clf;
[fn,pn,fi]=uigetfile('ChePaiKu\*.jpg','选择图片');
I=imread([pn fn]);%输入原始图像
subplot(1,3,1),imshow(I);title('原图像');
imwrite(I,'C:\Users\Administrator\Desktop\原图像.jpg'); %把图像写入图形文件中
gray=rgb2gray(I);
subplot(1,3,2),imshow(gray); title('灰度图像');
imwrite(gray,'C:\Users\Administrator\Desktop\灰度图像.jpg'); %把图像写入图形文件中
J=imnoise(gray,'salt & pepper',0.04);
subplot(1,3,3),imshow(J),title('添加椒盐噪声图像');
imwrite(J,'C:\Users\Administrator\Desktop\添加椒盐噪声图像.jpg'); I1=medfilt2(J);
figure(2),subplot(1,3,1),imshow(I1); title('中值滤波图像');
imwrite(I1,'C:\Users\Administrator\Desktop\中值滤波后图像.jpg'); K1=filter2(fspecial('average',3),J)/255;%应用3*3邻域窗口法? subplot(1,3,2),imshow(K1),title('邻域平均滤波');
imwrite(K1,'C:\Users\Administrator\Desktop\邻域平均滤波.jpg');
J=double(J);
J=fft2(J);
J=fftshift(J);
[m,n]=size(J);
d0=80;
m1=fix(m/2);
n1=fix(n/2);
for i=1:m
for j=1:n
d=sqrt((i-m1)^2+(j-n1)^2);
h(i,j)=exp(-d^2/2/d0^2);
end
end
g=J.*h;
g=ifftshift(g);
g=ifft2(g);
g=mat2gray(real(g));
subplot(1,3,3);imshow(g),title('高斯滤波');
imwrite(g,'C:\Users\Administrator\Desktop\高斯滤波.jpg');。

相关文档
最新文档