5、2 函数(一)
高中数学选择性必修二 专题5 2 导数在研究函数中的应用(A卷基础篇)(含答案)

专题5. 2导数在研究函数中的应用(1)(A 卷基础篇)(新教材人教A 版,浙江专用)参考答案与试题解析第Ⅰ卷(选择题)一.选择题(共10小题,满分50分,每小题5分)1.(2020·全国高二课时练习)设函数()f x 的图象如图所示,则导函数()'f x 的图象可能为( )A .B .C .D .【答案】C 【解析】∵()f x 在(,1)-∞,(4,)+∞上为减函数,在(1,4)上为增函数, ∴当1x <或4x >时,()0f x '<;当14x <<时,()0f x '>. 故选:C .2.(2020·河北张家口市·高三月考)下列函数中,在其定义域上为增函数的是( ) A .4y x = B .2x y -=C .cos y x x =+D .12y x =-【答案】C 【解析】对于A 选项,函数4y x =为偶函数,在()0,∞+上递增,在(),0-∞上递减; 对于B 选项,函数2xy -=在R 上递减;对于C 选项,1sin 0y x '=-≥在R 上恒成立,则函数cos y x x =+在其定义域R 上递增; 对于D 选项,函数12y x =-在()0,∞+上递减. 故选:C .3.(2020·赣州市赣县第三中学高三期中(文))已知函数21()ln 2f x x x =-,则其单调增区间是( ) A .()1,+∞ B .()0,∞+C .(]0,1D .[]0,1【答案】A 【解析】 由21()ln 2f x x x =-,函数定义域为()0,∞+, 求导211()x f x x x x='-=-,令()0f x '>,得1x >或1x <-(舍去)所以()f x 单调增区间是()1,+∞ 故选:A.4.(2020·张家界市民族中学高二月考)函数22y x x=+的单调递增区间为( )A .(),1-∞B .)+∞C .()1,+∞D .(),0-∞【答案】C 【解析】3222222x y x x x-'=-=,由0y '>得3220x ->,即1x >, 所以函数22y x x=+的单调递增区间为(1,)+∞. 故选:C5.(2020·全国高三专题练习)如图所示为()y f x '=的图象,则函数()y f x =的单调递减区间是( )A .(),1-∞-B .()2,0-C .()()2,0,2,-+∞D .()(),1,1,-∞-+∞【答案】C 【解析】由导函数图象,知20x -<<或2x >时,()0f x '<,∴()f x 的减区间是(2,0)-,(2,)+∞. 故选:C .6.(2019·江西九江市·高二期末(理))函数()22ln f x x x =-的递增区间是( )A .10,2⎛⎫ ⎪⎝⎭B .1,02⎛⎫-⎪⎝⎭和1,2⎛⎫+∞ ⎪⎝⎭C .1,2⎛⎫+∞⎪⎝⎭D .1,2⎛⎫-∞-⎪⎝⎭和10,2⎛⎫ ⎪⎝⎭【答案】C 【解析】因为()22ln f x x x =-的定义域为(0,)+∞,1()4f x x x'=-, 由()0f x '>,得140x x ->,解得12x >,所以()f x 的递增区间为1(,)2+∞. 故选:C.7.(2020·四川内江市·高三三模(文))函数xy x e =⋅的图像大致为( )A .B .C .D .【答案】C 【解析】'(1)x y x e =+⋅,当1x >-时,'0y >,当1x <-时,'0y <,所以函数x y x e =⋅在(1,)-+∞上单调递增,在(,1)-∞-上单调递减. 故选:C8.(2020·广东深圳市·高三开学考试)已知函数()f x 与f x 的图象如图所示,则不等式组()()03f x f x x '<⎧⎨<<⎩解集为( )A .0,1B .()1,3C .1,2D .()1,4【答案】B 【解析】由导函数与原函数单调性关系知图中实线是()'f x 的图象,虚线是()f x 的图象,不等式组()()03f x f x x <⎧⎨<<'⎩解集是{|13}x x <<. 故选:B .9.(2020·全国高三专题练习)已知()'f x 是定义在R 上的函数()f x 的导函数,且满足()()0xf x f x '+>对任意的x ∈R 都成立,则下列选项中一定正确的是( ) A .(2)(1)2f f > B .(1)(2)2f f > C .(2)(1)2f f <D .(1)(2)2f f < 【答案】D 【解析】令()()F x xf x =,则()()()0xf x x F x f '='+>,故()F x 为R 上的增函数, 所以()()21F F >即()()221f f >, 故选:D.10.(2020·黄梅国际育才高级中学高二期中)已知函数()2ln 1f x x a x =-+在()1,3内不是单调函数,则实数a 的取值范围是( ) A .()2,18 B .[]2,18C .(][),218,-∞+∞D .[)2,18【答案】A 【解析】 ∵()'2a f x x x=-,()2ln 1f x x a x =-+在()1,3内不是单调函数, 故20ax x-=在()1,3存在变号零点,即22a x =在()1,3存在零点, ∴218a <<. 故选:A.第Ⅱ卷(非选择题)二.填空题(共7小题,单空每小题4分,两空每小题6分,共36分)11.(2020·长顺县文博高级中学有限公司高三月考)函数322611y x x =-+的单调减区间是__________.【答案】()0,2 【解析】()261262y x x x x '=-=-,令0y '<,解得02x <<,所以函数的单调减区间为()0,2. 故答案为:()0,212.(2020·全国高三专题练习)函数()52ln f x x x =-的单调递减区间是______.【答案】20,5⎛⎫ ⎪⎝⎭【解析】()f x 的定义域是()0,∞+,()252'5x f x x x-=-=, 令()'0f x <,解得:205x <<,所以()f x 在20,5⎛⎫ ⎪⎝⎭递减,故答案为20,.5⎛⎫ ⎪⎝⎭13.(2019·全国高三月考(文))已知0a >,函数3()2f x x ax =-在[1,)+∞上是单调增函数,则a 的最大值是_______. 【答案】6 【解析】2()6f x x a '=-,令()0f x '>,得6a x >6a x <-16a≤,解得6a . 故答案为:614.(2018·全国高二专题练习) 函数()32267f x x x =-+在区间______上是增函数,在区间______上是减函数.【答案】(),0-∞和()2,+∞ ()0,2 【解析】2'()612f x x x =-=6(2)x x -,令'()0f x <,解得:02x <<,令'()0f x >,解得:0x <或2x >.函数()32267f x x x =-+在区间(,0)-∞,(2,)+∞上是增函数,在区间(0,2)上是减函数.15.(2020·浙江高一期末)已知2()(3)f x x b x =+-是定义在R 上的偶函数,则实数b =_____,写出函数2()2g x x x=+-在(0,)+∞的单调递增区间是______ 【答案】3 )2,+∞【解析】()f x 是定义在R 上的偶函数,()()f x f x ∴-=,()22(3)(3)x b x x b x ∴---=+-,解得3b =,()(2221x x g x x x+'=-+=, 令()0g x '>,解得x >()g x ∴的单调递增区间是)+∞.故答案为:3;)+∞.16.(2020·全国高三专题练习)已知()lg f x x x =,那么()f x 单调递增区间__________;()f x 单调递减区间__________.【答案】1,e ⎛⎫+∞ ⎪⎝⎭ 10,e ⎛⎫ ⎪⎝⎭【解析】因为()lg f x x x =,故11()lg lg lg lg lg ln10ln10f x x x x x e ex x '=+⋅=+=+=.令()0f x '=可得1ex =,即1x e=. 又()f x '为增函数,故当10,e x ⎛⎫∈ ⎪⎝⎭时,()0f x '<,()f x 单调递减;当1,x e ⎛⎫∈+∞ ⎪⎝⎭时, ()0f x '>,()f x 单调递增.故答案为:(1) 1,e ⎛⎫+∞ ⎪⎝⎭;(2)10,e ⎛⎫ ⎪⎝⎭17.(2019·山西运城市·高三期中(文))设函数()-=-x xf x e ae (a 为常数).若()f x 为奇函数,则a =________;若()f x 是[2,2]-上的减函数,则a 的取值范围是________.【答案】1 41≥-a e 【解析】 (1)若()-=-xx f x eae 为奇函数则()()xxx x f x e ae x e ae f --=-=-+-=-,则1a =(2)若()f x 是[2,2]-上的减函数,则()x xf x e ae -'=--在[2,2]-上小于或者等于零,即0x x e ae ---≤在[2,2]-上恒成立,2x e a --≤,可知2xy e-=-在[2,2]-上单调递增,所以41≥-a e .三.解答题(共5小题,满分64分,18--20每小题12分,21,22每小题14分) 18.(2020·甘肃省岷县第二中学高二期中(理))求函数()33f x x x =-的递减区间.【答案】()1,1- 【解析】 ∵233fxx ,∴令2330x ,解得11x -<<.∴函数()33f x x x =-的递减区间为()1,1-.19.(2019·甘肃省武威第一中学高二月考(理))求函数ln ()(0)xf x x x=>的单调区间. 【答案】增区间为(0e),,减区间为(e )+∞,. 【解析】 由()f x 得()()2221·ln ln ''ln 1ln 'x xx x x x x x f x x x x ---===, 令()'0f x =,即21ln 0xx -=,得1ln 0x -=,从而e x =,令()'0f x >,即21ln 0xx ->,得e x <,此时()f x 为增函数,又0x >,得增区间为()0e ,,令()'0fx <,即21ln 0xx-<,得e x >,此时()f x 为减函数,减区间为()e +∞,.20.(2020·横峰中学月考(文))已知()1xf x e ax =--. (1)当2a =时,讨论()f x 的单调区间;(2)若()f x 在定义域R 内单调递增,求a 的取值范围.【答案】(1)()f x 的单调递增区间为()ln 2,+∞,单调递减区间为(),ln 2-∞;(2)0a ≤ 【解析】(1)当2a =时,()21xf x e x =--则()'2x f x e =-,令()'20x f x e =->,得ln 2x > 令()'20x fx e =-<,得ln 2x <所以()f x 的单调递增区间为()ln 2,+∞ 单调递减区间为(),ln 2-∞(2)由题可知:()f x 在定义域R 内单调递增 等价于()'0x f x e a =-≥由()'x fx e a =-在R 上单调递增,又0x e >则000a a -≥⇒≤21.(2020·西宁市海湖中学高二月考(文))已知函数()31f x x ax =--. (1)若()f x 在区间(1,)+∞上为增函数,求a 的取值范围. (2)若()f x 的单调递减区间为(1,1)-,求a 的值. 【答案】(1)(],3-∞;(2)3. 【解析】(1)因为()23f x x a '=-,且()f x 在区间(1,)+∞上为增函数,所以()0f x '≥在(1,)+∞上恒成立,即230x a -≥在(1,+∞)上恒成立, 所以23a x ≤在(1,)+∞上恒成立,所以3a ≤,即a 的取值范围是(],3-∞ (2)由题意知0a >.因为()31f x x ax =--,所以()23f x x a '=-.由()0f x '<,得33aa x -<<, 所以()f x 的单调递减区间为(,)33a a -, 又已知()f x 的单调递减区间为(1,1)-,所以(,)33a a -=(1,1)-, 所以13a=,即3a =. 22.已知函数,其中.(Ⅰ)当时,求曲线在点处的切线方程;(Ⅱ)求的单调区间.【答案】(Ⅰ).(Ⅱ)①当时,的单调递减区间为;单调递增区间为,.②当时,的单调递减区间为,;单调递增区间为,.③当时,为常值函数,不存在单调区间.④当时,的单调递减区间为,;单调递增区间为,.【解析】(Ⅰ)解:当时,,.……2分由于,,所以曲线在点处的切线方程是. ……4分(Ⅱ)解:,. …………6分①当时,令,解得.的单调递减区间为;单调递增区间为,.…8分当时,令,解得,或.②当时,的单调递减区间为,;单调递增区间为,. ……10分③当时,为常值函数,不存在单调区间.……………11分④当时,的单调递减区间为,;单调递增区间为,. …………14分。
高中数学 第五章 三角函数 5.2.1 三角函数的概念(二)课件 a高一第一册数学课件

答案:一或二
12/8/2021
第三十一页,共三十九页。
【补偿训练】若tan x<0,且sin x-cos x<0,则角x的终边在
()
A.第一象限
B.第二象限
C.第三(dìsān)象限
D.第四象限
【解析】选D.因为tan x<0,所以角x的终边在第二、四象限,又sin x-cos x
(1)已知α是三角形的内角,则必有cos α>0. ( )
(2)终边相同的角的同一三角函数值相等. ( )
(3)若sin α>0,则α一定在第一(dìyī)或第二象限.
()
12/8/2021
第七页,共三十九页。
2.若sin θ·cos θ>0,则角θ在 ( )
A.第一或第四象限
B.第一或第三象限
C.第一或第二象限
【典例】1.tan
A. 3
B.
2.求值:
的(-值2为3 ) ( 6 3 C.
3
)
D3.1 2
s in 7 c o s (- 2 3 ) ta n (- 1 5 )c o s1 3 .
【思3 路导引】6 1.由
4 3 ,所以用公式一求值.
234
2.用公式一化简后求值. 6
6
12/8/2021
第十七页,共三十九页。
【解题策略】
利用(lìyòng)公式一进行化简求值的步骤
(1)定形:将已知的任意角写成2kπ+α的形式,其中α∈[0,2π),k∈Z. (2)转化:根据公式一,转化为求角α的某个三角函数值. (3)求值:若角为特殊角,可直接求出该角的三角函数值.
12/8/2021
第十九页,共三十九页。
数学人教A版(2019)必修第一册5.2.2同角三角函数的基本关系(共29张ppt)

1.两个公式的结构特点:
(1)
是
的简写,
不能将
写成
,
(2)
同角三角函数基本关系的理解与认识
2.同角的理解: (1) 关系式中的角要相同,与角的形式无关。
同角三角函数基本关系的理解与认识
3.公式等价变形 (1)
(2)
学以致用
例1 解:
∵ 为第三象限角 ∴
学以致用
变式 思考2: 若把题目中的条件“角 该解如:何解答?
是第三象限角”这个条件舍去,
学以致用
小结:如果已知某个三角函数值,且角所在象限是确定,那么可以通 过同角三角函数关系式,求出其它三角函数,而且只有一种结果. 如果只给了某个三角函数值,那么要按角所在象限进行讨论,分别 写出答案,这时一般有两组结果.所以在求值中,确定角所在象限是 解题关键。
学以致用 练习:
作业布置
1、复习本节课内容 2、课本P185-186(6、11、12、15)
科作业纸 3、预习下节课内容
学以致用
学以致用
例2
学以致用
例2 解:
学以致用
变式:
解:
学以致用
变式:
学以致用
变式:
解:方法一
综上所述:
学以致用
变式:
解:方法二
学以致用
变式:
解:方法三
学以致用
变式:
方法一:
解:
方法二:
解:
课堂小结
本节课你收获了什么? 同角三角函数的基本关系 1、平方关系:
2、商数关系:
数形结合、化归转化思想
探究:同一个角的不同三角函数值之间的关系
问题2:给一个角 ,在单位圆中你能找到与点 P 坐标 对应的线段吗?从而建立 与 关系吗?
选择性必修第二册第五章 5.2.3 简单复合函数的导数(1)

5.2.3简单复合函数的导数学习目标 1.进一步运用导数公式和导数运算法则求函数的导数.2.了解复合函数的概念,掌握复合函数的求导法则.知识点复合函数的导数1.复合函数的概念一般地,对于两个函数y=f(u)和u=g(x),如果通过中间变量u,y可以表示成x的函数,那么称这个函数为函数y=f(u)和u=g(x)的复合函数,记作y=f(g(x)).思考函数y=log2(x+1)是由哪些函数复合而成的?答案函数y=log2(x+1)是由y=log2u及u=x+1两个函数复合而成的.2.复合函数的求导法则一般地,对于由函数y=f(u)和u=g(x)复合而成的函数y=f(g(x)),它的导数与函数y=f(u),u =g(x)的导数间的关系为y′x=y′u·u′x,即y对x的导数等于y对u的导数与u对x的导数的乘积.1.y=cos 3x由函数y=cos u,u=3x复合而成.(√)2.函数f(x)=sin(2x)的导数为f′(x)=cos 2x.(×)3.函数f(x)=e2x-1的导数为f′(x)=2e2x-1.(√)一、求复合函数的导数例1求下列函数的导数:(1)y=1(1-3x)4;(2)y=cos(x2);(3)y=log2(2x+1);(4)y=e3x+2.解(1)令u=1-3x,则y=1u4=u-4,所以y′u=-4u-5,u′x=-3.所以y′x=y′u·u′x=12u-5=12 (1-3x)5.(2)令u =x 2,则y =cos u ,所以y ′x =y ′u ·u ′x =-sin u ·2x =-2x sin(x 2).(3)设y =log 2u ,u =2x +1,则y x ′=y u ′u x ′=2u ln 2=2(2x +1)ln 2. (4)设y =e u ,u =3x +2,则y x ′=(e u )′·(3x +2)′=3e u =3e 3x +2. 反思感悟 (1)求复合函数的导数的步骤(2)求复合函数的导数的注意点:①分解的函数通常为基本初等函数;②求导时分清是对哪个变量求导;③计算结果尽量简洁.跟踪训练1 求下列函数的导数:(1)y =11-2x; (2)y =5log 2(1-x );(3)y =sin ⎝⎛⎭⎫2x +π3. 解 (1)()12=12,y x -- 设y =12u -,u =1-2x ,则y ′x =()1212u 'x '⎛⎫- ⎪⎝⎭-()32212u -⎛⎫-⋅ ⎪⎝⎭=-()32=12x .--(2)函数y =5log 2(1-x )可看作函数y =5log 2u 和u =1-x 的复合函数,所以y ′x =y ′u ·u ′x =5(log 2u )′·(1-x )′=-5u ln 2=5(x -1)ln 2.(3) 设y =sin u ,u =2x +π3, 则y x ′=(sin u )′⎝⎛⎭⎫2x +π3′=cos u ·2=2cos ⎝⎛⎭⎫2x +π3. 二、复合函数与导数的运算法则的综合应用例2 求下列函数的导数:(1)y =ln 3x e x ; (2)y =x 1+x 2;(3)y =x cos ⎝⎛⎭⎫2x +π2sin ⎝⎛⎭⎫2x +π2. 解 (1)∵(ln 3x )′=13x ×(3x )′=1x, ∴y ′=(ln 3x )′e x -(ln 3x )(e x )′(e x )2=1x -ln 3x e x =1-x ln 3x x e x. (2)y ′=(x 1+x 2)′=x ′1+x 2+x (1+x 2)′ =1+x 2+x 21+x 2=(1+2x 2)1+x 21+x 2. (3)∵y =x cos ⎝⎛⎭⎫2x +π2sin ⎝⎛⎭⎫2x +π2 =x (-sin 2x )cos 2x =-12x sin 4x , ∴y ′=⎝⎛⎭⎫-12x sin 4x ′=-12sin 4x -x 2cos 4x ·4 =-12sin 4x -2x cos 4x . 反思感悟 (1)在对函数求导时,应仔细观察及分析函数的结构特征,紧扣求导法则,联系学过的求导公式,对不易用求导法则求导的函数,可适当地进行等价变形,以达到化异求同、化繁为简的目的.(2)复合函数的求导熟练后,中间步骤可以省略,即不必再写出函数的复合过程,直接运用公式,从外层开始由外及内逐层求导.跟踪训练2 求下列函数的导数:(1)y =sin 2x 3; (2)y =sin 3x +sin x 3;。
新苏科版九年级数学下册《5章二次函数5.2二次函数的图像和性质y=ax^2+k、y=a(x+m)^2的图像》教案_17

3. 函数 y = x 2+ 1 是由 y= x2- 2 向 _____平移 _____单位得到的。
4. 函数
1 y=3
x
2- 4
是由
1 y=3
x
2+
5
向
_____平移
_____ 单位得到的。
5.
函数
2
y=ax -a
与
y= a (a
0) 在同一直角坐标系中的图像可能是
x
()
6. 抛物线 y ax2 c 的顶点坐标为( 0, -2 ),形状及开口方向与 y 3 x2 1 相同,求 a 与 c 的值。
。将
抛物线 y=-5x 2+1 向下平移 5 个单位 , 所得的抛物线的函数式是
。
观察上面的函数图像,你能总结函数 填写下列表格:
y=ax2+c 的性质 吗?
y=ax2+c (a ≠ 0)
a>0
a<0
开口方向
顶点坐标
对称轴
增减性
最值
2
2
抛物线 y=ax +c (a ≠ 0) 的图像可由 y=ax 的图像通过 ________得到 .
2
可由 y=4x 的图像向
平移 个单位得到。
(2) 、将函数 y=-3x 2+4 的图像向
平移
个单位可得 y=-3x 2的图像;将 y=2x 2-7 的图
像向
平移
个单位得到可由 y=2x 2 的图像。 将 y=x 2-7 的图像向
平移 个单
位可得到 y=x 2+2 的图像。
(3)将抛物线 y=4x2 向上平移 3 个单位, 所得的抛物线的函数式是
检测 反馈
苏科版九年级数学下册《5章 二次函数 5.2 二次函数的图像和性质 y=ax^2+k、y=a(x+m)^2的图像》教案_1

二次函数2y axk =+的图象与性质教学设计一、学生学习水平状况分析知识储备分析:上一节课中学生已经学习了二次函数y=x ²与y=-x ²的图象及其,对二次函数的顶点、对称轴、开口方向,增减性等都有了基础的了解,但是对y=ax ²+k 中的a 和k 对二次函数图象的影响并不了解,所以,这节课重点研究形如2y ax k =+的二次隐函数的图像及其性质。
目的对二次函数有更高层次的理解与运用。
学习习惯分析:我班学生经过长时间的培育,已经具备了自主学习与小组合作学习的良好的学习风格。
他们通过自学课本、查找学习资料,制作学习课件(我已教会学生制作PPT ,几何画板课件),能自主(小组)设计要研究的问题,并寻找解决问题的途径;小组内已形成良好的竞争意识和小组认同感(对于小组内学习困难的学伴定时定量进行课内或课外辅导),使学习小组形成强有力的战斗的集体。
二、教学任务分析一、三维目标①、知识目标:1、能画出二次函数y=ax ²和y=ax ²+k 的图象,并能够比较他们与二次函数y=x ²的图象的异同,理解a 与k 对二次函数图象的影响.2、能说出二次函数y=ax ²与y=ax ²+k 图象的开口方向、对称轴和顶点坐标.②、能力目标:经历探索二次函数y=ax ²和y=ax ²+k 的图象的作法和性质的过程,进一步获得将表格、表达式、图象三者联系起来的经验,掌握研究一个函数图象的三个基本步骤.③、情感态度价值观:体验从特殊到一般的过程,在深入学习新知的过程中体验到科学的分析精神.二、教学重难点a 与k 对二次函数图象的影响,运用二次函数的知识解决实际问题。
三、教学过程分析一、创设问题情境,引入新知1.同学们,对于二次函数2y ax =的图像与性质,你们都知道些什么?给大家说说吧!(引导学生分别说出开口方向、顶点、对称轴、增减性)2.同学们:你知道二次函数221,2y x y x =+=-的图像与其性质又是如何?它们与2y x =的图像与其性质有什么关系?根据课前对它们的研究,请同学们讲讲吧!(学生独立发表自己的研究结果,并提出疑难问题)二、新知研究活动一:学生利用自己制作的课件给同学们讲221,2y x y x =+=-的图像的画法与其性质1、列表x -3-2-10123y=x^2+1105212510y=x^-272-1-2-127(学生自己制作Excel 计算函数值)师表扬学生计算机水平很高,但还要培养自己强大的计算能力。
5-2-1三角函数的概念 教案——高一上学期数学人教A版必修第一册

第五章三角函数5.2.1三角函数的概念教学设计一、教学目标1. 借助单位圆理解三角函数(正弦、余弦、正切)的定义,会求具体弧度的三个三角函数值.2.从三角函数的定义认识其定义域、函数值在各个象限的符号.3.根据定义理解公式一,初步解决与三角函数值有关的一些简单问题.二、教学重难点1.教学重点三角函数的定义.三角函数值在各个象限内的符号,公式一.2.教学难点用角的终边上的点刻画三角函数.三角函数值的符号的应用.三、教学过程(一)探究一:三角函数的概念1.定义:设α是一个任意角,α∈R,它的終边OP与单位圆交于点P(x,y).(1)把点P的纵坐标y叫做α的正弦函数,记作sinα,即y=sinα;(2)把点P的横坐标x叫做α的余弦函数,记作cosα,即x=cosα;(3)把点P 的纵坐标与横坐标的比值y x叫做α的正切,记作tan α,即tan y x α=(x ≠0).2.记法:通常将三角函数记为:正弦函数:sin ,y x x =∈R ;余弦函数:cos ,y x x =∈R ; 正切函数:tan ,()2y x x k k ππ=≠+∈Z . 探究二:三角函数的定义域交流讨论完成下表:探究三:各象限角的三角函数值的符号各个象限角的三角函数值的符号求证:角θ为第三象限角的充要条件是sin 0,(1)tan 0.(2)θθ<⎧⎨>⎩.证明:先证充分性,即如果(1)(2)式都成立,那么θ为第三象限角.因为(1)式sin 0θ<成立,所以θ角的终边可能位于第三或第四象限,也可能与y 轴的负半轴重合;又因为(2)式tan 0θ>成立,所以θ角的终边可能位于第一或第三象限.因为(1)(2)式都成立,所以θ角的终边只能位于第三象限.于是角θ为第三象限角.再证必要性,即如果角θ为第三象限角,那么(1)(2)式都成立.因为角θ为第三象限角,所以sin 0θ<,同时tan 0θ>,即(1)(2)式都成立.综上,命题得证.探究四:公式一公式一:sin(2)sin cos(2)cos tan(2)tan .k k k k απααπααπα+⋅=+⋅=+⋅=∈Z 其中 在运算中起到简化的作用,即利用公式一,可以把任意角的三角函数值,转化为求0到2π范围角的三角函数值.(二)课堂练习1.已知4sin 5α=,α在第二象限,则tan α=( ) A .43 B .43- C .34 D .34- 答案:B 解析:由4sin 5α=及α是第二象限角,得3cos 5α==-,所以sin tan s 43co ααα==-. 故选: B2.如果点(sin ,cos )P θθ位于第三象限,那么角θ所在的象限是( ) A .第一象限B .第二象限C .第三象限D .第四象限 答案:C3.已知点()2,0A -,()2,0B ,若圆()()22230x y r r -+=>上存在点P (不同于点A ,B ),使得0PA PB ⋅=,则r 的取值范围是( )A.(1,5)B.[]1,5C.(]1,3D.[)3,5 答案:B解析:0PA PB ⋅=,∴点P 在以AB 为直径的圆224x y +=上. 圆222(3)(0)x y r r -+=>上存在点P (不同于点A ,B ),使得0PA PB ⋅=,∴圆222(3)(0)x y r r -+=>与圆224x y +=有公共点,|2|32r r ∴-≤≤+,解得15r ≤≤,故选B.(三)小结作业小结:本节课我们主要学习了哪些内容?1.三角函数的定义.2.三角函数的定义域.3.各象限角的三角函数值的符号.4.公式一.四、板书设计1.定义:正弦函数:sin ,y x x =∈R ; 余弦函数:cos ,y x x =∈R ;正切函数:tan ,()2y x x k k ππ=≠+∈Z . 2.三角函数的定义域.3.各象限角的三角函数值的符号.4.公式一sin(2)sin cos(2)cos tan(2)tan .k k k k απααπααπα+⋅=+⋅=+⋅=∈Z 其中。
高中数学角的三角函数5-2-1任意角三角函数的定义第1课时用比值定义三角函数学生用书湘教版必修第一册

5.2 任意角的三角函数5.2.1任意角三角函数的定义第1课时用比值定义三角函数教材要点要点一任意角的三角函数的定义如图,设α是一个任意角,在角α的终边OM上任取不同于原点O的点P,利用点P的坐标(x,y)的定义:sinα=________,cosα=________,tanα=________,其中r=√x2+y2.以上三个比值分别称为角α的正弦、余弦、正切,y=sinα,y=cosα,y=tanα分别叫作角α的正弦函数、余弦函数、正切函数,以上三种函数都称为三角函数.状元随笔角α的三角函数值是比值,是一个实数,这个实数的大小与点P(x,y)在终边上的位置无关.要点二三角函数的定义域正弦函数y=sinα,定义域为________;余弦函数y =cos α,定义域为________; 正切函数y =tan α,定义域为________.基础自测1.思考辨析(正确的画“√”,错误的画“×”) (1)sin α表示sin 与α的乘积.( )(2)角的三角函数值随终边上点的位置变化而变化.( )(3)设角α终边上的点P (x ,y ),r =|OP |≠0,则sin α=yr ,且y 越大,sin α的值越大.( )(4)终边落在y 轴上的角的正切函数值为0.( ) 2.已知角α的终边与单位圆交于点(−√32,−12),则sin α的值为( )A .-√32B .-12C .√32D .12 3.若角θ的终边经过点P (−√22,√22),则tan θ=( )A .√22B .-√22C .-1D .-√324.如果角α的终边经过点P (-1,√3),则cos α=________.题型1 单位圆法求三角函数值例1 (1)角α终边与单位圆相交于点M (√32,12),则cos α+sin α的值为________. (2)利用定义求5π6的正弦、余弦和正切值.方法归纳1.若已知角α的大小,只需确定出角α的终边与以坐标原点为圆心的单位圆的交点坐标,即可求出角α的各三角函数值.2.若已知角α终边上一点P (x ,y )(x ≠0)是以坐标原点为圆心的单位圆上的点,则sinα=y ,cos α=x ,tan α=yx .跟踪训练1 (1)在平面直角坐标系中,以x 轴的非负半轴为角的始边,如果角α,β的终边分别与单位圆交于点(1213,513)和(−35,45),那么sin αcos β=( )A .-3665B .-313C .413D .4865(2)在平面直角坐标系中,角α的终边与单位圆交于点A ,点A 的纵坐标为35,求tan α.题型2 坐标法求三角函数值例2 已知角α的终边过点P (-3a ,4a )(a ≠0),求2sin α+cos α的值.方法归纳(1)已知角α终边上任意一点的坐标求三角函数值的方法,cosα在α的终边上任选一点P(x,y),设P到原点的距离为r(r>0),则sinα=yr .当已知α的终边上一点求α的三角函数值时,用该方法更方便.=xr(2)当角α的终边上点的坐标以参数形式给出时,要根据问题的实际情况对参数进行分类讨论.,则m=( ) 跟踪训练2 已知角α的终边上一点P(1,m),且sinα=√63A.±√2B.√2C.-√2D.√62题型3 三角函数概念的综合应用的值.例3 已知角α的终边在直线y=-3x上,求10sinα+3cosα方法归纳在解决有关角的终边在直线上的问题时,应注意到角的终边为射线,所以应分两种情况进行处理,取射线上异于原点的任意一点的坐标(a,b),则对应角的三角函数值分别为sinα=√a 2+b 2,cos α=√a 2+b 2,tan α=ba .跟踪训练3 已知角α的终边在直线y =√3x 上,求sin α,cos α,tan α的值.易错辨析 忽略题目中的隐含条件致误例4 已知角α的终边过点P (-8m ,-6sin30°)且cos α=-45,则m 的值为( )A .12B .-12C .-√32D .±12解析:∵点P 到原点的距离r =√64m 2+9, ∴cos α=√64m 2+9=-45,即4m 264m 2+9=125,且m >0,解得m =12. 故选A. 答案:A 易错警示课堂十分钟1.已知角α的顶点在原点,始边与x 轴的非负半轴重合,终边过点(−35,45),则tanα的值为( )A .-43B .-34 C .-45D .-352.在平面直角坐标系中,角θ的顶点与原点重合,角θ的始边与x 轴非负半轴重合,角θ的终边经过点P (-3,4),则cos θ=( )A .-35B .45C .-325D .4253.若角α的终边过点(2sin30°,-2cos30°),则sin α的值等于( ) A .12B .-12C .-√32D .-√334.已知角α的终边在射线y =-x (x ≤0)上,则cos α=________. 5.已知角θ的终边上一点P (-√3,m ),且sin θ=√24m .求cos θ与tan θ.5.2 任意角的三角函数 5.2.1 任意角三角函数的定义第1课时 用比值定义三角函数新知初探·课前预习要点一y rx ryx要点二R R {α|α≠π2+kπ,k ∈Z}[基础自测]1.答案:(1)× (2)× (3)× (4)×2.解析:根据任意角的正弦定义,可得sin α=y =-12. 故选B. 答案:B3.解析:角θ的终边经过点P (-√22,√22),则tan θ=√22-√22=-1,故选C. 答案:C4.解析:∵角α的终边经过点P (-1,√3),∴|OP |=√(−1)2+(√3)2=2,∴cos α=-12.答案:-12题型探究·课堂解透例1 解析:(1)由三角函数的定义得sin α=12,cos α=32,所以cos α+sin α=32+12=3+12.(2)如图所示,5π6的终边与单位圆的交点为P ,过P 作PB ⊥x 轴于点B ,在△OPB 中,|OP |=1,∠POB =π6,则|PB |=12,|OB |=32,则P ⎝ ⎛⎭⎪⎫-32,12 所以sin 5π6=12,cos 5π6=-32tan 5π6=-33.答案:(1)3+12(2)见解析 跟踪训练1 解析:(1)由三角函数的定义sin α=513,cos β=-35,所以sin αcos β=513×⎝ ⎛⎭⎪⎫-35=-313.故选B.(2)由题意,设点A 的坐标为⎝ ⎛⎭⎪⎫x ,35,所以x 2+⎝ ⎛⎭⎪⎫352=1,解得x =45或-45. 当x =45时,tan α=3545=34;当x =-45时,tan α=35-45=-34.答案:(1)B (2)见解析例2 解析:r =(-3a )2+(4a )2=5|a |, ①若a >0,则r =5a ,角α在第二象限.sin α=y r =4a 5a =45,cos α=x r =-3a 5a =-35,所以2sin α+cos α=85-35=1.②若a <0,则r =-5a ,角α在第四象限, sin α=4a -5a =-45,cos α=-3a -5a =35.所以2sin α+cos α=-85+35=-1.综上所述:当a >0时,2sin α+cos α=1;当a <0时,2sin α+cos α=-1. 跟踪训练2 解析:角α的终边上一点P (1,m ), 所以r =|OP |=1+m 2, 所以sin α=m1+m2=63>0, 解得m = 2. 故选B. 答案:B例3 解析:由题意知,cos α≠0.设角α的终边上任意一点为P (k ,-3k )(k ≠0), 则x =k ,y =-3k ,r =k 2+(-3k )2=10|k |. (1)当k >0时,r =10k ,α是第四象限角, sin α=y r=-3k10k=-31010,1cos α=r x =10kk=10, 所以10sin α+3cos α=10×⎝ ⎛⎭⎪⎫-31010+310=-310+310=0.(2)当k <0时,r =-10k ,α是第二象限角,sin α=y r =-3k -10k =31010,1cos α=r x =-10kk=-10, 所以10sin α+3cos α=10×31010+3×(-10)=310-310=0.综上所述,10sin α+3cos α=0.跟踪训练3 解析:因为角α的终边在直线y =3x 上,所以可设P (a ,3a )(a ≠0)为角α终边上任意一点,则r =a 2+(3a )2=2|a |(a ≠0).若a >0,则α为第一象限角,r =2a , 所以sin α=3a 2a =32,cos α=a 2a =12, tan α=3aa= 3.若a <0时,则α为第三象限角,r =-2a , 所以sin α=3a -2a =-32,cos α=a -2a =-12,tan α=3aa= 3.[课堂十分钟]1.解析:由正切函数的定义可得,tan α=45−35=-43.故选A. 答案:A2.解析:∵角θ的顶点与原点重合,角θ的始边与x 轴非负半轴重合, 角θ的终边经过点P (-3,4),则cos θ=√9+16=-35, 故选A. 答案:A3.解析:∵x =2sin 30°=1,y =-2cos 30°=-√3,∴r =√12+(−√3)2=2,∴sin α=y r=-√32.故选C. 答案:C4.解析:在角α的终边y =-x (x ≤0)上任取一点(-1,1), 则cos α=√1+1=-√22.答案:-225.解析:由题意得sin θ=mm2+3=24m,若m=0,则cosθ=-1,tan θ=0. 若m≠0,则m=± 5.当m=5时,cosθ=-64,tan θ=-153;当m=-5时,cosθ=-64,tan θ=153.11。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5、2 函数(一)
1、某居民所在区域电的单价为0、53元/kW·h,所付电费y (元)与用电量x (kW·h)之间的关系式是y =0、53x 、其中常量是0、53,变量是x , y 、
2、球的表面积S 与半径R 之间的关系是S =4πR 2
、对于各种不同大小的圆,公式S =4πR 2中的常量是4和π,变量是S 和R 、
3、一辆汽车以50 km/h 的速度行驶,则行驶的路程s (km)与行驶的时间t (h)之间的关系式为s =50t ,其中变量为(C )
A 、 速度与路程
B 、 速度与时间
C 、 路程与时间
D 、 三者均为变量
4、若三角形底边长为a ,底边上的高为h ,则三角形的面积S =12ah 、若h 为定长,则此式中(A )
A 、S ,a 是变量,12,h 是常量
B 、S ,h ,a 是变量,12
是常量 C 、S ,12
是常量,a ,h 是变量 D 、以上答案均不对 5、 指出下面事例中的常量与变量:
拖拉机油箱中有油50 L ,如果拖拉机工作时每小时耗油5 L ,那么油箱中的余油量Q (L)与工作时间t (h)之间的关系式为Q =50-5t 、
【解】常量:50,5;变量:Q,t、
6、一位在读大学生利用假期去一家公司打工,报酬按每小时15元计算,设该学生打工时间为t(h),应得报酬为w元、
(1)填表:
工作时间
2510…t
t(h)
报酬w(元)3075150…15t
(2)用t表示w;
(3)指出(2)中哪些是常量,哪些是变量、
【解】(1)如上表、(2)w=15t、(3)常量:15,变量:w,t、
7、心理学家发现,学生对概念的接受能力y与提出概念所用的时间x(min)之间有如下关系(其中0≤x≤20):
提出概念
所用
的时间(x)257101213141720
对概念的接受
能力(y)
47、
853、
5
56、
3
59
59、
8
59、
9
59、
8
58、
3
55
(1)上表反映了哪两个变量之间的关系?
(2)当提出概念所用的时间是10 min时,学生的接受能力是多少?
(3)根据表格中的数据,你认为提出概念几分钟时,学生的接受能力最强?
(4)从表中可知,当时间x在什么范围内,学生的接受能力逐步增强?当时间x在什么范围内,学生的接受能力逐步降低?
【解】(1)提出概念所用的时间x和对概念的接受能力y两个变量之间的关系、
(2)当x=10时,y=59,所以当提出概念所用的时间是10 min时,学生的接受能力是59、
(3)当x=13时,y的值最大,是59、9,所以提出概念13 min时,学生的接受能力最强、
(4)由表中数据可知:当2<x<13时,y的值逐渐增大,学生的接受能力逐步增强;当13<x<20时,y的值逐渐减小,学生的接受
能力逐步降低、。