《4.1一元二次方程(2)》微课教学设计
《一元二次方程》微课设计

《一元二次方程》微课设计《《一元二次方程》微课设计》这是优秀的教学设计文章,希望可以对您的学习工作中带来帮助!教学设计文本解读一元二次方程是中学数学的一个重要内容之一,在初中数学中占有重要地位。
从知识的发展来看,一元二次方程的学习,是一元一次方程、方程组及不等式知识的延续和深化,也是今后学生学习可化为一元二次方程的方程、一元二次不等式、二次函数等知识的基础。
从知识的横向来看,一元二次方程的学习对其它学科也有重要的意义,比如物理中的变速运动等问题就要通过解一元二次方程来解决。
这节课是一元二次方程的概念课,通过丰富的实例,抽象出一元二次方程的概念。
本节课的教学不仅使学生进一步体会方程是刻画现实世界中数量关系的一个有效的数学模型,而且提高了学生分析、比较、抽象和概括的能力。
为接下来的学习起到很好的铺垫作用教学目标一、知识与技能:1.理解并掌握一元二次方程的概念,知道一元二次方程的一般形式;2.会把一个一元二次方程化为一般形式,会正确地判断一元二次方程的项与系数;3.通过本节课的学习,培养学生观察、比较、分析、探究和归纳的能力。
二、过程与方法1. 在回顾一元一次方程的概念的基础上,让学生通过分析实际问题中的数量关系列出方程,从而引导他们发现问题,然后通过自主探究和合作交流,抽象出一元二次方程的概念;2. 借助于多媒体从实际问题抽象出概念,在通过巩固训练、回顾梳理、拓展提高到作业布置,完成本节课的教学三、情感态度与价值观1. 通过本节课的学习使学生认识到数学来源于生活实践,又反过来作用于生活的辩证唯物主义观点,激发学生学数学、用数学的意识;2. 通过本节知识的学习,使学生认识到知识的产生、变化和发展的过程。
教学重点和难点重点:一元二次方程的概念及一般形式。
难点:1.由实际问题向数学问题的转化过程。
2.正确识别一般式中的“项”及“系数”。
教学过程1.复习引入1.复习提问,做好铺垫通过复习一元一次方程的定义,一般形式和项与系数。
《一元二次方程》数学教案8篇

《一元二次方程》数学教案8篇作为一位兢兢业业的人民教师,通常需要准备好一份教案,编写教案有利于我们弄通教材内容,进而选择科学、恰当的教学方法。
那么什么样的教案才是好的呢?这里作者为大家分享了8篇《一元二次方程》数学教案,希望在一元二次方程教案的写作这方面对您有一定的启发与帮助。
元二次方程教案篇一一、教材分析:1、教材所处的地位:此前学生已经学习了应用一元一次方程与二元一次方程组来解决实际问题。
本节仍是进一步讨论如何建立和利用一元二次方程模型来解决实际问题,只是在问题中数量关系的复杂程度上又有了新的发展。
2、教学目标要求:(1)能根据具体问题中的数量关系,列出一元二次方程,体会方程是刻画现实世界的一个有效的数学模型;(2)能根据具体问题的实际意义,检验结果是否合理;(3)经历将实际问题抽象为代数问题的过程,探索问题中的数量关系,并能运用一元二次方程对之进行描述;(4)通过用一元二次方程解决身边的问题,体会数学知识应用的价值,提高学生学习数学的兴趣,了解数学对促进社会进步和发展人类理性精神的作用。
3、教学重点和难点:重点:列一元二次方程解与面积有关问题的应用题。
难点:发现问题中的等量关系。
二.教法、学法分析:1、本节课的设计中除了探究3教师参与多一些外,其余时间都坚持以学生为主体,充分发挥学生的主观能动性。
教学过程中,教师只注重点、引、激、评,注重学生探究能力的培养。
还课堂给学生,让学生去亲身体验知识的产生过程,拓展学生的创造性思维。
同时,注意加强对学生的启发和引导,鼓励培养学生们大胆猜想,小心求证的科学研究的思想。
2、本节内容学习的关键所在,是如何寻求、抓准问题中的数量关系,从而准确列出方程来解答。
因此课堂上从审题,找到等量关系,列方程等一系列活动都由生生交流,兵教兵从而达到发展学生思维能力和自学能力的目的,发掘学生的创新精神。
三.教学流程分析:本节课是新授课,根据学生的知识结构,整个课堂教学流程大致可分为:活动1复习回顾解决课前参与活动2封面设计问题的探究活动3草坪规划问题的延伸活动4课堂回眸这有名程体现了知识发生、形成和发展的过程,让学生体会到观察、猜想、归纳、验证的思想和数形结合的思想。
《一元二次方程》数学教案(优秀5篇)

《一元二次方程》数学教案(优秀5篇)元二次方程教案篇一教学设计思想解一元二次方程有四种方法,直接开平方法、配方法、公式法、因式分解法,这四种方法各有千秋。
直接开平方法很简单,在这里不做过多的介绍。
为保证学生掌握基本的运算技能,教学中进行了一定量的训练,但要避免学生简单的模仿。
我们在探究一元二次方程解法的过程中,要加强思想方法的渗透,发展学生的思维能力。
在解一元二次方程的几种方法中,均需要用到转化的思想方法。
如配方法需要将方程转化为能直接开平方的形式,公式法能根据一元二次方程转化为两个一元一次方程,所有这些均体现了转化的思想。
在教学时老师引导学生在主动进行观察、思考核探究的基础上,体会数学思想方法在其中的作用,充分发展学生的思维能力。
教学目标知识与技能:1.会用配方法、公式法、因式分解法解简单数字系数的一元二次方程。
2.能够根据一元二次方程的特点,灵活选用解方程的方法,体会解决问题策略的多样性。
过程与方法:1.参与对一元二次方程解法的探索,体验数学发现的过程,对结果比较、验证、归纳、理清几种解法之间的关系,并能根据方程的特点灵活选择适当的方法解一元二次方程。
2.在探究一元二次方程的过程中体会转化、降次的数学思想。
情感态度价值观:在解一元二次方程的实践中,交流、总结经验和规律,体验数学活动乐趣。
教学重难点重点:掌握配方法、公式法、因式分解法解一元二次方程的步骤,并熟练运用上述方法解题。
难点:根据方程的特点灵活选择适当的方法解一元二次方程。
教学方法探索发现,讲练结合元二次方程教案篇二一、教学目标1.使学生会用列一元二次方程的方法解有关数与数字之间关系的应用题。
2.通过列方程解应用问题,进一步体会提高分析问题、解决问题的能力。
3.通过列方程解应用问题,进一步体会代数中方程的思想方法解应用问题的优越性。
二、重点·难点·疑点及解决办法1.教学重点:会用列一元二次方程的方法解有关数与数字之间的关系的应用题。
初中数学初二数学上册《一元二次方程》教案、教学设计

1.教学内容:一元二次方程的定义、一般形式、标准形式及其解法。
2.教学过程:
(1)教师讲解一元二次方程的定义,让学生了解其一般形式和标准形式。
(2)教师通过示例,介绍直接开平方法、因式分解法、配方法等解法。
(3)学生跟随教师思路,理解并掌握一元二次方程的解法。
(三)学生小组讨论
1.教学内容:探讨一元二次方程在实际问题中的应用。
二、学情分析
初二是数学学习的关键时期,学生已经掌握了一元一次方程、不等式等基础知识,具备了一定的逻辑思维能力和解决问题的能力。在此基础上,学习一元二次方程,对学生来说既是对已有知识的巩固,也是对数学思维能力的提升。
学生在这个阶段,好奇心强,求知欲旺盛,但注意力容易分散。因此,在教学过程中,应注重激发学生的兴趣,引导他们积极参与课堂讨论和实践活动。同时,要关注学生的个体差异,针对不同学生的学习特点和能力,制定合理的教学策略,使他们在原有基础上得到提高。
(2)通过实际问题的引入,激发学生的学习兴趣,提高他们对数学知识的应用意识。
(3)运用多媒体教学手段,形象生动地展示一元二次方程的解法,帮助学生理解难点。
2.教学策略:
(1)针对学生的个体差异,实施分层教学,使每位学生都能在原有基础上得到提高。
(2)注重课堂小结,帮助学生梳理所学知识,形成知识体系。
2.引导学生认识到数学知识在实际生活中的重要作用,提高他们的数学素养。
3.培养学生严谨、认真的学习态度,养成良好的学习习惯,为未来的学习打下坚实基础。
在教学过程中,教师要关注学生的个体差异,因材施教,使每位学生都能在原有基础上得到提高。同时,教师要注重启发式教学,引导学生主动发现问题、解决问题,使他们在探索中成长,不断提高自身的数学素养。
一元二次方程的相关教案【优秀3篇】

一元二次方程的相关教案【优秀3篇】元二次方程篇一[教材分析]中学阶段我们研究的多项式函数中有二次函数,研究的几何图形中有二次曲线。
因此一元二次方程便成为了方程中研究的重要内容。
一元二次方程有根与系数关系,求根公式向我们揭示了两根与系数间的密切关系,而根与系数还有更进一步的发现,这一发现在数学学科中具有极强的实用价值,本节内容既是代数式、一元一次方程和一元二次方程求根公式等知识的进一步深化,又蕴含有丰富的数学思想方法,也为学生们将来的学习打下了必要的基础。
[学生分析]进入了初二下半学期,随着年龄的增长以及实验几何向论证几何的逐步推进,学生们的逻辑推理能力已有了较大提高。
因此在学过了一元二次方程的解法后,自主探究其根与系数的关系是完全可能的。
再加上我所执教的学生,他们有着较强的认知力与求知欲,基于以上思考,我在设计中扩大了学生的智力参与度,也相对放大了知识探索的空间。
[教学目标]在学生探求一元二次方程根与系数关系的活动中,经历观察、分析、概括的过程以及“实践——认识——再实践——再认识”的过程,得出一元二次方程根与系数的关系。
能利用一元二次方程根与系数的关系检验两数是否为原方程的根;已知一根求另一根及系数。
理解数学思想,体会代数论证的方法,感受辩证唯物主义认识论的基本观点。
[教学重难点]发现并掌握一元二次方程根与系数的关系,包括知识从特殊到一般的发生发展过程[教学过程](一)复习导入请学生求解表格内的方程,完成解法的交流以及求根公式的复习,求根公式向我们揭示了两根与系数间的关系,那么一元二次方程根与系数间是否还有更深一层的联系呢?由此疑问,导入新课。
(二)探求新知数学学科中由数到式的结构编排,让我们想到了从两根运算上的最简组合:和差积商展开进一步研究。
初探新知中,我将学生们分成两组,分别对二次项系数为1 的一元二次方程两根进行和差积商的运算,之后将结果汇总展示,共同观察与系数的联系。
我在这些方程中安排了两个无理根方程。
一元二次方程教学设计(精选6篇)

一元二次方程教学设计(精选6篇)一元二次方程教学设计1一、教学内容分析华师版九年级(上)23章《一元二次方程的根的判别式》一节,教材中作为阅读材料。
从推导到应用都比较简单。
但是它在整个中学数学中占有重要的地位。
从知识的发展来看,学生通过对一元二次方程的根的判别式的学习,可以巩固已学过实数、整式、二次根式、一元一次不等式、一元二次方程的相关概念、一元二次方程的解法等知识,既可以根据它来判断一元二次方程的根的情况,又可以为今后研究二次函数的图像与x轴交点情况,二次三项式以及二次曲线等奠定基础,并且用它可以解决许多其它综合性问题。
通过这一节的学习,使学生会用一元二次方程根的判别式判别方程是否有实根和两个实根是否相等,培养学生的探索精神和观察、分析、归纳的能力,以及逻辑思维能力、推理论证能力,并向学生渗透分类的数学思想,感受数学的简洁美。
教学重点:根的判别式的正确理解和运用教学难点:含字母系数的一元二次方程根的判别式的运用。
二、学情分析学生已经学过一元二次方程的四种解法,并对的作用已经有所了解,在此基础上来进一步研究作用,它是前面知识的深化与总结。
九年级学生的认识水平渐渐由具体直觉占优势过渡到抽象思维占优势。
教师的指导方法应适应他们的认知特点和相应规律。
从数学思想方法上来说,学生对分类讨论、归纳总结的数学思想已经有所接触。
所以可以通过让学生动手、动脑来培养学生探索精神和观察、分析、归纳的能力,以及逻辑思维能力、推理论证能力。
三、教学目标知识和技能目标:1、能运用根的判别式,判别方程根的情况和进行有关的推理论证;2、会运用根的判别式求一元二次方程中字母系数的取值范围;过程和方法目标:1、经历一元二次方程的根的判别式的产生的过程;2、向学生渗透分类的数学思想;3、培养学生的逻辑思维能力以及推理论证能力。
情感态度价值观目标:1、体验数学的简洁美;2、培养学生的探索、创新精神和协作精神。
四、教法、学法:教法:1、探索发现:本着“以学生发展为本”的教育理念,教师启发、诱导,学生探索发现新知识;2、观察演示:通过典型例题的分析、研究,引发学生的思考、质疑、解疑;3、归纳总结:通过课堂小结,完善认知结构,提高认识能力;4、讲练结合:通过变式训练、拓展训练,让学生学会分类、类比、转化等数学思想,培养学生分析问题和解决问题的能力。
《一元二次方程》教案

《一元二次方程》教案列方程10025023600x x -)(-)=(. 整理、化简得 7535002x x+=-.问题 2 要组织一次排球邀请赛,参赛的每两队之间都要比赛一场,根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,比赛组织者应邀请多少个队参加比赛?分析:设有x 支队伍参赛,每支队伍都要与其他的x -1支队伍各赛一场,所以共计x (x -1)场比赛.但是由于A 队对B 队的比赛与B 队对A 队的比赛是同一场比赛,所以还应将全部比赛的场次除以2,即如果每两个队之间都要比赛一场,则共有12x x-()场比赛.列方程 1282x x-()=,整理、化简得 562x x=- .知能演练提升一、能力提升1.方程x2-2(3x-2)+(x+1)=0的一般形式是()A.x2-5x+5=0B.x2+5x+5=0C.x2+5x-5=0D.x2+5=02.下列是方程3x2+x-2=0的解的是()A.x=-1B.x=1C.x=-2D.x=23.已知实数a,b满足a2-3a+1=0,b2-3b+1=0,则关于一元二次方程x2-3x+1=0的根的说法正确的是()A.x=a,x=b都不是该方程的解B.x=a是该方程的解,x=b不是该方程的解C.x=a不是该方程的解,x=b是该方程的解D.x=a,x=b都是该方程的解4.关于x的方程x2+4kx+2k2=4的一个解是-2,则实数k的值为()A.2或4B.0或4C.-2或0D.-2或2=6,其中一元二5.已知方程:x2+x=y,√5x-7x2=8,x2+y2=1,(x-1)(x-2)=0,x2-1x次方程的个数为.6.中国古代数学家杨辉的《田亩比数乘除捷法》中记载:“直田积八百六十四步,只云阔不及长一十二步,问阔及长各几步?”翻译成数学问题是:一块矩形田地的面积为864平方步,它的宽比长少12步,问它的长与宽各多少步?利用方程思想,设宽为x步,则依题意列方程为.(“步”是非标准计量单位)7.小刚在写作业时,一不小心,方程3x2-□x-5=0的一次项系数被墨水盖住了,但从题目的答案中,他知道方程的一个解为x=5,请你帮助小刚求出被覆盖的数.8.根据下列问题,列出关于x的方程,并将其化成ax2+bx+c=0(a≠0)的形式.(1)两个连续偶数的积为168,求较小的偶数x;(2)一个直角三角形的两条直角边的长的和是20,面积是25,求其中一条直角边的长x.9.已知关于x的一元二次方程ax2+bx+c=0,且a,b,c满足√a-1+(b-2)2+|a+b+c|=0,求满足条件的一元二次方程.★10.已知实数a是方程x2-x-1=0的一个根,求-a3+2a2+5 021的值.★11.有这样一道题目:把方程12x 2-x=2化为一元二次方程的一般形式,并写出它的二次项系数、一次项系数和常数项.现在把上面的题目改编成下面的两个小题,请回答问题:(1)下列式子中有哪些是方程12x 2-x=2化为一元二次方程的一般形式? .(填序号)①12x 2-x-2=0,②-12x 2+x+2=0,③x 2-2x=4,④-x 2+2x+4=0,⑤√3x 2-2√3x-4√3=0. (2)方程12x 2-x=2化为一元二次方程的一般形式后,它的二次项系数、一次项系数和常数项之间具有什么关系?知能演练·提升 一、能力提升 1.A 2.A 3.D 4.B 5.2 6.x (x+12)=8647.解x=5是关于x 的方程3x 2-ax-5=0的一个解,有3×52-5a-5=0,解得a=14,即被覆盖的数是14.8.解 (1)x (x+2)=168,化成ax 2+bx+c=0(a ≠0)的形式为x 2+2x-168=0. (2)12x (20-x )=25,化成ax 2+bx+c=0(a ≠0)的形式为x 2-20x+50=0.9.分析 关键是理解算术平方根、完全平方数和绝对值的意义,即√a -1≥0,(b-2)2≥0,|a+b+c|≥0.只有使各项都为0时,其和才为0.解 由√a -1+(b-2)2+|a+b+c|=0,得{a -1=0,b -2=0,a +b +c =0,解得{a =1,b =2,c =-3.由于a 是二次项系数,b 是一次项系数,c 是常数项,故所求方程为x 2+2x-3=0. 10.分析 由方程根的定义可知a 2-a-1=0,利用条件的变形对所求代数式中的字母逐渐降次,不难求得最后的结果.解 由方程根的定义知a 2-a-1=0, 从而a 2=a+1,a 2-a=1,故-a 3+2a 2+5 021=-a (a+1)+2a 2+5 021=a 2-a+5 021=1+5 021=5 022.11.解(1)①②④⑤;(2)若设它的二次项系数为a(a≠0),则一次项系数为-2a、常数项为-4a(或说:这个方程的二次项系数∶一次项系数∶常数项=1∶(-2)∶(-4)).。
《一元二次方程》优秀教案(精选5篇)

《一元二次方程》优秀教案(精选5篇)《一元二次方程》优秀教案1教学目标:1、经历抽象一元二次方程概念的过程,进一步体会是刻画现实世界的有效数学模型2、理解什么是一元二次方程及一元二次方程的一般形式。
3、能将一元二次方程转化为一般形式,正确识别二次项系数、一次项系数及常数项。
教学重点1、一元二次方程及其它有关的概念。
2、利用实际问题建立一元二次方程的数学模型。
教学难点1、建立一元二次方程实际问题的数学模型.2、把一元二次方程化为一般形式教学方法:指导自学,自主探究课时:第一课时教学过程:(学生通过导学提纲,了解本节课自己应该掌握的内容)一、自主探索:(学生通过自学,经历思考、讨论、分析的过程,最终形成一元二次方程及其有关概念)1、请认真完成课本P39—40议一议以上的内容;化简上述三个方程.。
2、你发现上述三个方程有什么共同特点?你能把这些特点用一个方程概括出来吗?3、请同学看课本40页,理解记忆一元二次方程的概念及有关概念你觉得理解这个概念要掌握哪几个要点?你还掌握了什么?二、学以致用:(通过练习,加深学生对一元二次方程及其有关概念的理解与把握)1、下列哪些是一元二次方程?哪些不是?①②③④x2+2x-3=1+x2 ⑤ax2+bx+c=02、判断下列方程是不是关于x的一元二次方程,如果是,写出它的二次项系数、一次项系数和常数项。
(1)3-6x2=0(2)3x(x+2)=4(x-1)+7(3)(2x+3)2=(x+1)(4x-1)3、若关于x的方程(k-3)x2+2x-1=0是一元二次方程,则k的值是多少?4、关于x的方程(k2-1)x2+2(k+1)x+2k+2=0,在什么条件下它是一元二次方程?在什么条件下它是一元一次方程?5、以-2、3、0三个数作为一个一元二次方程的系数和常数项,请你写出满足条件的不同的一元二次方程?三、反思:(学生,进一步加深本节课所学内容)这节课你学到了什么?四、自查自省:(通过当堂小测,及时发现问题,及时应对)1、下列方程中是一元二次方程的有()A、1个B、2个 C、3个D、4个(1)(2)(3)(4)(5)(6)2、将方程-5x2+1=6x化为一般形式为____________________.其二次项是_________,系数为_______,一次项系数为______,常数项为______。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《4.1一元二次方程(2)》微课教学设计
授课教师姓名洪晓琳孙春红学科数学
微课名称 4.1一元二次方程(2)视频长度8分32秒知识点来源学科:数学年级:九年级
知识点描述能用“观察-检验”法估计一元二次方程的根,理解二分法。
教学类型探究发现法
适用对象九年级学生
设计思路通过问题导入,使学生感受估计方法的重要性。
通过探究,引导学生总结出二分法估算一元二次方程的根的步骤
教学过程
内容时间
一、片头本节微课开头创设情境引入新课。
少于1分钟
二、正文第一部分内容:师生交流估计一元二次方程x2+(x+7)2
=112的根。
少于5分钟
第二部分内容:归纳二分法估算一元二次方程的根的步
骤。
约1分钟
三、结尾进一步提出新的问题让学生去探讨。
少于1分钟
自我教学反思
注重对学生运用观察,列表或计算器等手段估计方程的根的过程的培养,激发学生学习数学的兴趣。
《4.1一元二次方程(2)》微课教学习题
设计者:孙春红洪晓琳。