鸽巢原理教案
人教版数学六年级下册鸽巢问题优秀教案(推荐3篇)

人教版数学六年级下册鸽巢问题优秀教案(推荐3篇)人教版数学六年级下册鸽巢问题优秀教案【第1篇】一、教材分析“鸽巢问题”是六年级下册教学内容,“鸽巢原理”又称“抽屉原理”,是组合教学中最基本最简单的原理之一,灵活多变,应用广泛。
教学“鸽巢问题”,教材安排了两个例题。
这节课教学内容是例1。
例1把4支铅笔放进3个笔筒中的操作情景,介绍“鸽巢原理”的最基本形式。
初步接触“鸽巢问题”对于学生来说,有一定的难度。
教学时,应放手让学生自主探索。
教师要引导学生对教材上提供的两种方法进行比较,思考枚举的方法有什么优越性和局限性,假设的方法有什么独特的优点,使学生逐步学会运用一般性的数学方法来思考问题。
二、教学内容教材第68页例1及“做一做”第1、2题。
三、教学目标1.让学生经历“鸽巢问题”的探究过程,通过数学活动理解“鸽巢原理”,学会简单的“鸽巢问题”分析方法,并解决一些简单问题。
2.结合具体的实际问题,通过实验、观察、分析、归纳等数学活动使学生经历“鸽巢原理”的形成过程,体会和掌握逻辑推理思想和模型思想,提高解决实际问题的能力。
3.在主动参与数学活动的过程中,让学生感受到数学的魅力,提高学习数学的兴趣。
四、教学重难点教学重点:能用“鸽巢原理”解决最基本的相关实际问题。
教学难点:初步理解“鸽巢原理”,能口头表达推理过程。
五、教学准备一副扑克牌、课件等。
六、教学过程(一)引入新知1.抢凳子游戏。
2.抽扑克牌游戏。
教师:这类问题在数学上称为鸽巢问题(板书)。
因为52张扑克牌数量较大,为了方便研究,我们先来玩数量较小的抢凳子游戏。
【设计意图】从学生喜欢的“抢凳子”“魔术”入手,设置悬念,激发学生学习的兴趣和求知欲望,从而提出需要研究的数学问题。
(二)探究新知1.教学例1。
(1)把3枝铅笔放进2个笔筒中。
想一想:可以怎样放?有几种不同的放法?(不考虑笔筒摆放顺序,学生可用笔盒当笔筒)摆一摆:先用来学具摆一摆,然后用自己喜欢的方法表示出来,如画一画,写一写。
六年级数学《鸽巢原理》教学设计

教学设计:鸽巢原理一、教学目标1.知识与能力目标:了解和掌握“鸽巢原理”的概念和基本特点,能够应用鸽巢原理解决实际问题。
2.过程与方法目标:培养学生观察分析、归纳总结、推理判断、问题解决的能力。
3.情感态度与价值观目标:培养学生合作学习、积极思考和乐于探索的意识,激发兴趣,培养对数学的兴趣和自信心。
二、教学重点与难点1.教学重点:掌握“鸽巢原理”的概念和基本特点,能够应用鸽巢原理解决实际问题。
2.教学难点:运用鸽巢原理解决实际问题。
三、教学准备1.教师准备:课堂PPT、黑板、教辅资料、装有鸽巢的模型等;2.学生准备:课本、笔记本、铅笔等。
四、教学过程Step 1 引入新知识(10分钟)教师可以利用一些简单的实例引发学生对鸽巢原理的思考,例如:一只鸽子窝里有15个鸡蛋,求证必有两个鸡蛋放在同一个鸽巢里。
Step 2 导入新课(10分钟)通过学生对鸽巢原理的思考,教师导入新知识,向学生介绍鸽巢原理的概念和基本特点。
Step 3 概念讲解与示范(15分钟)教师在黑板上向学生讲解鸽巢原理的基本概念,如何应用鸽巢原理解决实际问题,并通过几个示例让学生理解和掌握。
Step 4 学生合作探究(20分钟)将学生分成小组,每组分发一份题目,要求学生通过观察、分析和推理等方法来解决问题,找出使用鸽巢原理的思路,并在规定时间内完成。
Step 5 学生展示与讨论(15分钟)各小组展示自己的解题思路和答案,并进行班级讨论,互相学习和交流。
Step 6 拓展应用(10分钟)通过一些拓展的问题,让学生进一步应用鸽巢原理解决实际问题,培养学生的问题解决能力。
Step 7 总结归纳(10分钟)教师对学生的表现进行点评,总结鸽巢原理的基本概念和解题方法,并引导学生归纳总结。
五、教学反思通过本节课的教学设计和实施,学生通过观察、分析和推理等方法,运用鸽巢原理解决实际问题,培养了他们的思维能力和数学解决问题的能力。
教学过程中强调了学生的合作学习和积极思考的意识,激发了学生对数学的兴趣和自信心。
人教版六年级下册数学《鸽巢原理》优秀教案

《鸽巢原理》教案设计教学目标知识与技能了解“鸽巢原理”的两种形式,能用“鸽巢原理”解决相关的实际问题或解释相关的现象。
过程与方法经历“鸽巢原理”的探究过程,体验观察、猜测、实验、推理等活动的学习方法,渗透数形结合思想。
情感、态度与价值观1.通过动手操作活动,体会和掌握逻辑推理思想和模型思想,形成比较抽象的数学思维。
2.通过“鸽巢原理”的灵活应用,感受数学的魅力。
重点难点重点:理解“鸽巢原理”,掌握先“平均分”,再调整的方法。
难点:运用“总有”“至少”来表述结论,理解“至少数=商+1”,根据实际问题与“鸽巢原理”模型间的联系解决问题。
课前准备教师准备PPT课件一副扑克牌学生准备4支铅笔3个纸杯教学过程板块一课前游戏,引入新课1.组织学生玩“抽扑克牌”游戏。
(1)准备一副扑克牌,取出大王、小王。
(2)选出5名同学,请他们任意抽取一张扑克牌并记在心里,把牌收好。
(3)教师猜测“在这5张扑克牌里,至少有2张是同一花色的”。
(4)学生把扑克牌拿出来验证教师的猜测。
2.引入新课。
(板书课题:鸽巢原理)这节课我们就来学习鸽巢原理。
操作指导在玩“抽扑克牌”游戏时,一定要激发学生的好奇心,使学生初步体会“从一副4种花色的扑克牌中任意抽取5张扑克牌,不管怎么抽,都至少有2张是同一花色的”,为新知的探究做好情感上的铺垫。
板块二自主操作,探究新知活动1鸽巢原理(一)1.课件出示教材67页例1。
把4支铅笔放进3个笔筒中,不管怎么放,总有1个笔筒里至少有2支铅笔。
你知道这是为什么吗?用纸杯代替笔筒,事先分好组并准备学具。
2.合作学习提纲。
先独立思考:(1)可以怎么放?(2)共有几种不同的放法?再在小组内交流,全班总结。
3.小组汇报。
预设小组1:(用纸杯代替笔筒,实际放一放)第1种放法是在一个笔筒中放4支铅笔,剩余2个笔筒中不放;第2种放法是在一个笔筒中放3支铅笔,剩下1支铅笔放进任意一个笔筒中,剩余一个笔筒中不放;第3种放法是在2个笔筒中各放2支铅笔,剩余一个笔筒中不放;第4种放法是在一个笔筒中放2支铅笔,剩余2个笔筒中各放1支。
六年级数学下册《鸽巢原理》教案设计

六年级数学下册《鸽巢原理》教案设计一、教学目标:1. 让学生理解并掌握鸽巢原理的基本概念和应用。
2. 培养学生运用逻辑推理和数学思维解决实际问题的能力。
3. 培养学生合作交流的能力,提高学生的数学素养。
二、教学内容:1. 鸽巢原理的定义及基本性质。
2. 鸽巢原理在实际问题中的应用。
三、教学重点与难点:1. 教学重点:让学生掌握鸽巢原理的基本概念和应用。
2. 教学难点:如何引导学生运用鸽巢原理解决实际问题。
四、教学方法:1. 采用问题驱动法,引导学生探究鸽巢原理。
2. 运用案例分析法,让学生通过实际问题体验鸽巢原理的应用。
3. 采用合作交流法,培养学生合作解决问题的能力。
五、教学过程:1. 导入新课:通过一个有趣的故事引入鸽巢原理,激发学生的学习兴趣。
2. 自主学习:让学生阅读教材,了解鸽巢原理的定义及基本性质。
3. 案例分析:出示一些实际问题,让学生运用鸽巢原理进行解答。
4. 讨论交流:引导学生分享自己在解决问题过程中的心得体会,培养学生合作交流的能力。
5. 总结提升:对本节课的内容进行总结,让学生明确鸽巢原理的应用范围和价值。
6. 课后作业:布置一些有关鸽巢原理的练习题,巩固所学知识。
六、教学评价:1. 通过课堂提问、作业批改等方式,了解学生对鸽巢原理的理解程度。
2. 注重培养学生运用鸽巢原理解决实际问题的能力,评价学生在解决问题过程中的思维过程和方法。
3. 观察学生在合作交流中的表现,评价学生的团队协作能力和沟通能力。
七、教学反馈:1. 根据学生的课堂表现和作业情况,及时调整教学方法和策略,以提高教学效果。
2. 在课后与学生进行交流,了解他们在学习过程中的困惑和问题,给予针对性的指导。
3. 鼓励学生在课堂上积极提问,充分调动学生的学习积极性。
八、教学拓展:1. 引导学生深入研究鸽巢原理,探索其在其他学科和实际生活中的应用。
2. 介绍与鸽巢原理相关的数学问题和研究,激发学生的学术兴趣。
3. 组织一些有关鸽巢原理的竞赛或活动,提高学生的学习积极性。
六年级下册数学教案《鸽巢原理》(人教新课标)(2023秋)

最后,关于课堂总结,我觉得自己在引导学生回顾所学内容时,还可以更加细致和全面。在今后的教学中,我将尽量用简洁明了的语言,帮助学生梳理知识点,加深记忆。
2.培养学生将实际问题转化为数学问题的能力,运用所学的鸽巢原理解决生活中的问题,提高数学应用素养;
3.通过对例题的讲解和练习,发展学生的数据分析、推理及论证能力,培养严谨的数学思维和论证素养;
4.鼓励学生合作交流,提高表达和沟通能力,培养团队协作的素养;
5.引导学生在探索鸽巢原理过程中,培养勇于探究、善于思考的学习态度,增强数学学习的自信心和兴趣。
三、教学难点与重点
1.教学重点
-理解鸽巢原理的基本概念:重点在于使学生明白鸽巢原理的含义,即“如果n个物体放入m个容器中(n>m),那么至少有一个容器内至少有两个或更多物体”。
-掌握鸽巢原理的应用:重点在于学生能够运用鸽巢原理解决实际问题,如物品分配、座位安排等。
-运用除法和取余数方法:重点在于培养学生通过除法和取余数的方法求解鸽巢原理问题的能力。
其次,关于教学难点,除法和取余数方法的应用,学生们在计算过程中出现了一些错误。我认识到,这可能是因为我在讲解这部分内容时,没有充分考虑到学生们的接受程度,导致他们未能完全理解。因此,我打算在接下来的课程中,放慢讲解速度,通过更多具体的例子和练习,帮助学生巩固这一部分知识。
此外,课堂上的小组讨论环节,学生们表现得积极主动,提出了很多有创意的想法。但我也注意到,有些学生在讨论中过于依赖同伴,自己独立思考的能力有待提高。针对这一问题,我计划在后续的教学中,多鼓励学生发表自己的见解,培养他们独立思考和解决问题的能力。
六年级下册数学教案-5.1《鸽巢原理》人教新课标

《鸽巢原理》是六年级下册数学教材中的一节内容,属于人教新课标。
本节内容旨在通过学习鸽巢原理,培养学生的逻辑思维能力和数学推理能力。
以下是本节课的教案设计。
一、教学目标1. 知识与技能目标:理解鸽巢原理的含义,能够运用鸽巢原理解决实际问题。
2. 过程与方法目标:通过实际操作和观察,引导学生发现鸽巢原理,培养学生的逻辑思维能力和数学推理能力。
3. 情感态度与价值观目标:激发学生对数学的兴趣,培养学生合作学习的意识。
二、教学重点与难点1. 教学重点:理解鸽巢原理的含义,能够运用鸽巢原理解决实际问题。
2. 教学难点:引导学生发现鸽巢原理,培养学生的逻辑思维能力和数学推理能力。
三、教学方法1. 启发式教学法:通过提问、引导学生观察和思考,激发学生的思维。
2. 实践操作法:通过实际操作,让学生亲身体验鸽巢原理。
3. 小组合作法:分组讨论,培养学生的合作学习能力。
四、教学过程1. 导入新课通过一个有趣的故事引入鸽巢原理:小明有10个鸽巢,他的朋友小华送给他11只鸽子,请问小明如何将这11只鸽子安置在10个鸽巢中,使得每个鸽巢中至少有一只鸽子?2. 探究新知(1)引导学生观察和思考:如果每个鸽巢中最多只能容纳一只鸽子,那么小明最多能将几只鸽子安置在鸽巢中?(2)学生进行实践操作:让学生用10个鸽巢和11只鸽子进行实际操作,观察结果。
(3)引导学生发现鸽巢原理:通过观察和实践,引导学生发现鸽巢原理:如果有n个鸽巢和n 1只鸽子,那么至少有一个鸽巢中至少有两只鸽子。
3. 巩固练习(1)让学生运用鸽巢原理解决实际问题,如:有13个小朋友,每人至少有一个玩具,共有15个玩具,请问至少有几个小朋友的玩具是相同的?(2)小组讨论:让学生分组讨论,如何运用鸽巢原理解决生活中的问题。
4. 课堂小结通过本节课的学习,学生应掌握鸽巢原理的含义,并能够运用鸽巢原理解决实际问题。
同时,培养学生合作学习的意识,激发学生对数学的兴趣。
五、课后作业1. 根据本节课所学内容,完成课后练习题。
六年级数学下册《鸽巢原理》教案设计

六年级数学下册《鸽巢原理》教案设计教学目标:1. 让学生理解并掌握鸽巢原理的基本概念和应用。
2. 培养学生运用逻辑推理和数学思维解决问题的能力。
3. 培养学生合作交流的能力,提高学生的团队协作能力。
教学重点:1. 鸽巢原理的基本概念和应用。
2. 运用逻辑推理和数学思维解决问题的方法。
教学难点:1. 理解并运用鸽巢原理解决实际问题。
2. 培养学生合作交流的能力。
教学准备:1. 教学PPT或者黑板。
2. 教学卡片或者题目。
3. 学生分组,每组4-6人。
教学过程:一、导入(5分钟)1. 利用PPT或者黑板,展示一个简单的鸽巢原理问题,引导学生思考和讨论。
2. 邀请学生分享他们对鸽巢原理的理解和应用。
二、新课讲解(15分钟)1. 讲解鸽巢原理的基本概念和原理。
2. 通过示例题目,引导学生运用逻辑推理和数学思维解决问题。
1. 分发课堂练习题目,学生独立完成。
2. 引导学生互相检查和讨论答案。
3. 教师进行讲解和解析。
四、小组活动(15分钟)1. 将学生分成小组,每组4-6人。
2. 每个小组选择一道应用题,运用鸽巢原理进行解决。
3. 各小组汇报解题过程和结果,其他小组进行评价和讨论。
2. 学生分享他们在课堂练习和小组活动中的体验和感受。
3. 教师给出改进和提高的建议。
教学延伸:1. 布置课后作业,要求学生独立完成一道鸽巢原理的应用题。
2. 鼓励学生在日常生活中运用鸽巢原理解决问题,并分享给同学和老师。
教学反思:六、课堂拓展(10分钟)1. 通过PPT或黑板,展示一些与鸽巢原理相关的有趣问题和实际应用案例。
2. 引导学生思考和讨论,尝试解决这些问题。
3. 邀请学生分享他们的解题思路和解决方案。
七、练习与提升(10分钟)1. 分发练习题目,要求学生在规定时间内完成。
2. 引导学生独立思考,自主解决问题。
3. 教师进行讲解和解析,解答学生的疑问。
1. 将学生分成若干小组,每组4-6人。
2. 设置竞赛题目,要求各小组在规定时间内运用鸽巢原理解决问题。
人教版小学6年级数学-鸽巢原理章节教案

《鸽巢原理》教案一、教学目标1.经历“鸽巢原理”的探究过程,初步了解“鸽巢原理”。
2.会用“鸽巢原理”解决简单的实际问题,提高学生有根据、有条理地进行思考和推理的能力。
3.通过“鸽巢原理”的灵活应用,感受数学的魅力,提高学生学习数学的兴趣。
二、教学重难点1.重点(1)经历“鸽巢原理”的探究过程,理解“鸽巢原理”。
(2)对“总有”“至少”的理解。
2.难点运用“鸽巢原理”进行逆向思维。
三、教学方法操作法、讨论法、讲授法四、教学过程(一)游戏导入(5分钟)1.教师:“同学们,我们来玩一个游戏。
请5位同学上来,老师这里准备了4把椅子,大家都坐下,看看会出现什么情况?”2.引导学生观察并思考,引出课题:鸽巢原理。
(二)新授(20分钟)1.例1:把4支铅笔放进3个笔筒中,不管怎么放,总有一个笔筒里至少有2支铅笔。
让学生小组合作,动手摆一摆,记录不同的放法。
展示学生的摆放方法,共4种:(4,0,0)、(3,1,0)、(2,2,0)、(2,1,1)引导学生观察发现:不管怎么放,总有一个笔筒里至少有2支铅笔。
解释“总有”和“至少”的含义。
2.例2:把7本书放进3个抽屉,不管怎么放,总有一个抽屉里至少放进3本书。
引导学生用平均分的方法思考:7÷3=2......1,2+1=3 总结:物体数÷抽屉数=商......余数,至少数=商+1(三)课堂练习(10分钟)1.教材中的练习题,如:8只鸽子飞回3个鸽舍,至少有3只鸽子要飞进同一个鸽舍里。
为什么?2.生活中的例子:13个人中至少有几个人的生日在同一个月?(四)课堂总结(5分钟)1.回顾鸽巢原理的内容和解题方法。
2.强调在解决问题时要找准物体和抽屉。
五、课后作业1.完成课本上的课后习题。
2.思考:如果把“总有一个抽屉里至少放进3本书”改为“总有一个抽屉里至少放进2本书”,那么至少需要多少本书放进3个抽屉?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学广角“鸽巢问题”教学设计【教学目标】:
1、使学生理解“鸽巢原理”的基本形式,并能初步运用“鸽巢原理”解决相关的实际问题或解释相关的现象。
2、通过操作、观察、比较、说理等数学活动,使学生经历鸽巢原理的形成过程,体会和掌握逻辑推理思想和模型思想,提高学习数学的兴趣。
3、在主动参与数学活动的过程中,让学生切实体会到探索的乐趣,让学生切实体会到数学与生活的紧密结合。
【教学重点】:
经历“鸽巢原理”的探究过程,初步了解“鸽巢原理”。
【教学难点】:
理解“鸽巢原理”,并对一些简单实际问题加以“模型化”。
【教学准备】:
多媒体课件、扑克牌、铅笔、纸杯。
【教学过程】:
(一)游戏引入
出示一副扑克牌。
教师:今天老师要给大家表演一个“魔术”。
取出大王和小王,还剩下52张牌,下面请5位同学上来,每人随意抽一张,不管怎么抽,至少有2张牌是同花色的。
5位同学上台,抽牌,亮牌,统计。
教师:这里蕴含着一个有趣的数学原理,今天我们就一起来研究这个数学原理。
(二)探索新知
1.教学例1。
(1)把4支铅笔放到3个笔筒里,不管怎么放,总有一个笔筒里至少有2支铅笔。
理解“总有”和“至少”是什么意思
(2)小组讨论“为什么”。
(3)汇报交流列举法
学生:可以放(4,0,0);(3,1,0);(2,2,0);(2,1,1)。
(教师根据学生回答在黑板上画图表示四种结果)引导学生得出“不管怎么放,总有一个铅笔盒里至少有2支铅笔”。
(4)假设法(反证法):
教师:前面我们是通过动手操作得出这一结论的,想一想,能不能找到一种更为直接的方法得到这个结论呢?
如果每个盒子里放1支铅笔,最多放3支,剩下的1支不管放进哪一个盒子里,总有一个盒子里至少有2支铅笔。
首先通过平均分,余下1支,不管放在哪个盒子里,一定会出现“总有一个盒子里至少有2支铅笔”。
这就是平均分的方法。
提问:这样只能证明总有一个笔筒中肯定有2支笔,怎样能证明至少有2支呢?
2、拓展。
(1)把5支铅笔放到4个笔筒里,不管怎么放,总有一个笔筒里至少有2支铅笔。
为什么?
引导学生分析“如果每个盒子里放1支铅笔,最多放4支,剩下的1支不管放进哪一个盒子里,总有一个盒子里至少有2支铅笔。
首先通过平均分,余下1支,不管放在哪个盒子里,一定会出现“总有一个盒子里至少有2支铅笔”。
(2)把6支铅笔放到5个铅笔盒里呢?把100支铅笔放到99个铅笔盒里呢?让学生口头回到加深对假设法的理解。
(3)提问:我们为什么都采用假设法来分析,而不是列举法呢!通过刚才的分析,你发现了什么
引导学生得出“只要铅笔数比铅笔盒数多1,总有一个盒子里至少有2支铅笔”。
3、8只鸽子飞进了7个鸽笼,总有一个鸽笼至少飞进了2只鸽子。
为什么?
4、把10个苹果放进9个抽屉里,不管怎么放总有一个抽屉里至少放入2个苹果。
为什么?
5、揭题:我们可以把铅笔和苹果看作鸽子,把笔筒和抽屉看作鸽笼,把这一类问题通称为“鸽巢问题”,并介绍鸽巢原理的由来。
(三)巩固练习
1.5只鸽子飞进了3个鸽笼,总有一个鸽笼至少飞进了2只鸽子。
为什么?
小组合作体会剩余2只要分别放到不同的鸽笼里。
2、随意找13位老师,他们中至少有2个人的属相相同。
为什么?
3、你理解上面扑克牌魔术的道理了吗?
4、随意找13位人中至少有2个人的在同一个月出生。
为什么?
5、把6个苹果放进4个抽屉里,不管怎么放,总有一个抽屉里至少放入2个苹果。
为什么?
6、5个人坐4把椅子,总有一把椅子上至少坐2人。
为什么?。