四川省普通高中2018级2021届高三毕业班高考诊断性测试数学(文)试题及答案

合集下载

四川省凉山州2018 届高三毕业班第一次诊断性检测数学试题(word版,附解析)

四川省凉山州2018 届高三毕业班第一次诊断性检测数学试题(word版,附解析)

凉山州2018届高中毕业班第一次诊断性检测文科数学第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,,则集合的元素个数为()A. 6B. 5C. 4D. 3【答案】B【解析】【详解】集合,根据集合交集的概念得到个数为5个。

故答案为:B。

2.命题“,”的否定是()A. ,B. ,C. ,D.【答案】C【解析】因为“,”是全称命题,所以依据含一个量词的命题的否定可知:其否定是存在性命题,即“,”,应选答案C 。

3.已知复数,则()A. B. 0 C. 1 D.【答案】C【解析】复数,故答案为:C。

4.已知,则的最小正周期是()A. B. C. D.【答案】A【解析】根据三角函数周期的概念得到故答案为:A。

5.以椭圆短轴为直径的圆经过此椭圆的长轴的两个三等分点,则椭圆的离心率是()A. B. C. D.【答案】D【解析】根据题意,以椭圆短轴为直径的圆经过此椭圆的长轴的两个三等分点,则有2b=,即a=3b,则c==2b,则椭圆的离心率e==;故选:D.6.已知锐角满足,则等于()A. B. C. D.【答案】A【解析】由cos(α﹣)=cos2α,得,∴sinα+cosα>0,则cosα﹣sinα=.两边平方得:,∴.故答案为:A。

7.执行如图所示的程序框图,当输出时,则输入的值可以为A.B.C.D.【答案】B【解析】由题意,模拟执行程序,可得程序框图的功能是计算S=n×(n-1)×…×5的值,由于S=210=7×6×5,可得:n=7,即输入n的值为7.故选:B.8.已知点的坐标满足不等式组,为直线上任一点,则的最小值是()A. B. C. 1 D.【答案】A【解析】点的坐标满足不等式组的可行域如图:点的坐标满足不等式组,为直线上任一点,则的最小值,就是两条平行线与之间的距离:,故选A.点睛:本题考查线性规划的应用,平行线之间的距离的求法,考查转化思想以及计算能力,解决本题的关键是作出不等式组所表示的平面区域与的位置关系,难度一般;画出约束条件的可行域,利用已知条件,把的最小值转化求解平行线间的距离即可.9.在中,已知,则该的形状为()A. 等腰三角形B. 直角三角形C. 正三角形D. 等腰或直角三角形【答案】D【解析】试题分析:由正弦定理,得,则即,即,所以,即,即为等腰或直角三角形.考点:三角形形状的判定.10.设是上的奇函数,且在区间上递减,,则的解集是()A. B.C. D.【答案】C【解析】根据题意,函数f(x)是奇函数,在区间(0,+∞)上单调递减,且f (2)=0,则函数f(x)在(-∞,0)上单调递减,且f(-2)=-f(2)=0,当x>0时,若f(x)>0,必有0<x<2,当x<0时,若f(x)>0,必有x<-2,即f(x)>0的解集是(-∞,-2)∪(0,2);故答案选:C.点睛:本题考查函数的单调性与奇偶性的综合应用,注意奇函数的在对称区间上的单调性的性质;对于解抽象函数的不等式问题或者有解析式,但是直接解不等式非常麻烦的问题,可以考虑研究函数的单调性和奇偶性等,以及函数零点等,直接根据这些性质得到不等式的解集。

四川省凉山州2018 届高三毕业班第一次诊断性检测数学试题(解析版)

四川省凉山州2018 届高三毕业班第一次诊断性检测数学试题(解析版)

凉山州2018届高中毕业班第一次诊断性检测文科数学第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,,则集合的元素个数为()A. 6B. 5C. 4D. 3【答案】B【解析】【详解】集合,根据集合交集的概念得到个数为5个。

故答案为:B。

2.命题“,”的否定是()A. ,B. ,C. ,D.【答案】C【解析】因为“,”是全称命题,所以依据含一个量词的命题的否定可知:其否定是存在性命题,即“,”,应选答案C 。

3.已知复数,则()A. B. 0 C. 1 D.【答案】C【解析】复数,故答案为:C。

4.已知,则的最小正周期是()A. B. C. D.【答案】A【解析】根据三角函数周期的概念得到故答案为:A。

5.以椭圆短轴为直径的圆经过此椭圆的长轴的两个三等分点,则椭圆的离心率是()A. B. C. D.【答案】D【解析】根据题意,以椭圆短轴为直径的圆经过此椭圆的长轴的两个三等分点,则有2b=,即a=3b,则c==2b,则椭圆的离心率e==;故选:D.6.已知锐角满足,则等于()A. B. C. D.【答案】A【解析】由cos(α﹣)=cos2α,得,∴sinα+cosα>0,则cosα﹣sinα=.两边平方得:,∴.故答案为:A。

7.执行如图所示的程序框图,当输出时,则输入的值可以为A.B.C.D.【答案】B【解析】由题意,模拟执行程序,可得程序框图的功能是计算S=n×(n-1)×…×5的值,由于S=210=7×6×5,可得:n=7,即输入n的值为7.故选:B.8.已知点的坐标满足不等式组,为直线上任一点,则的最小值是()A. B. C. 1 D.【答案】A【解析】点的坐标满足不等式组的可行域如图:点的坐标满足不等式组,为直线上任一点,则的最小值,就是两条平行线与之间的距离:,故选A.点睛:本题考查线性规划的应用,平行线之间的距离的求法,考查转化思想以及计算能力,解决本题的关键是作出不等式组所表示的平面区域与的位置关系,难度一般;画出约束条件的可行域,利用已知条件,把的最小值转化求解平行线间的距离即可.9.在中,已知,则该的形状为()A. 等腰三角形B. 直角三角形C. 正三角形D. 等腰或直角三角形【答案】D【解析】试题分析:由正弦定理,得,则即,即,所以,即,即为等腰或直角三角形.考点:三角形形状的判定.10.设是上的奇函数,且在区间上递减,,则的解集是()A. B.C. D.【答案】C【解析】根据题意,函数f(x)是奇函数,在区间(0,+∞)上单调递减,且f (2)=0,则函数f(x)在(-∞,0)上单调递减,且f(-2)=-f(2)=0,当x>0时,若f(x)>0,必有0<x<2,当x<0时,若f(x)>0,必有x<-2,即f(x)>0的解集是(-∞,-2)∪(0,2);故答案选:C.点睛:本题考查函数的单调性与奇偶性的综合应用,注意奇函数的在对称区间上的单调性的性质;对于解抽象函数的不等式问题或者有解析式,但是直接解不等式非常麻烦的问题,可以考虑研究函数的单调性和奇偶性等,以及函数零点等,直接根据这些性质得到不等式的解集。

【数学】四川省凉山州2018届高中毕业班第二次诊断性检测数学(文科)含解析

【数学】四川省凉山州2018届高中毕业班第二次诊断性检测数学(文科)含解析

凉山州2018届高中毕业班第二次诊断性检测数学(文科)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,,则()A. B. C. D.【答案】C【解析】则故选2. 若,则()A. B. C. D.【答案】D【解析】∵∴故选:D3. 已知命题:,,则为()A. ,B. ,C. ,D. ,【答案】C【解析】∵命题:,∴,故选:C4. 已知命题:对,总有;是且的必要不充分条件条件,则下列命题为真命题的是()A. B. C. D.【答案】B【解析】命题:对,总有是假命题,当时不成立;由,,反之不成立,例如当,时,,,命题为真命题;故选,是真命题5. 设函数()的图像是曲线,则下列说法中正确的是()A. 点是曲线的一个对称中心B. 直线是曲线的一条对称轴C. 曲线的图像可以由的图像向左平移个单位得到D. 曲线的图像可以由的图像向左平移个单位得到【答案】D【解析】对于A,,错误;对于B,,错误;对于C,的图像向左平移个单位得到,错误;对于D,的图像向左平移个单位得到,正确。

故选:D6. 若实数,满足,则的最大值为()A. B. C. D.【答案】C【解析】如图:由图可知,当取得最大值为故选7. 某程序框图如图所示,该程序运行后输出的值是()A. B. C. D.【答案】D【解析】执行程序,,符合判断,返回,,符合判断,返回,,符合判断,返回,,符合判断,返回,,符合判断,返回,,符合判断,返回,,符合判断,返回,,符合判断,返回,,不符合判断,输出故选:D8. 在区间上任取两个数,则这两个数之和大于3的概率是()A. B. C. D.【答案】A【解析】如图:不妨设两个数为故如图所示,其概率为故选9. 已知一个几何体的三视图如图所示(正方形边长为),则该几何体的体积为()A. B. C. D.【答案】B【解析】由三视图可知:该几何体为正方体挖去了一个四棱锥,该几何体的体积为故选:B点睛:思考三视图还原空间几何体首先应深刻理解三视图之间的关系,遵循“长对正,高平齐,宽相等”的基本原则,其内涵为正视图的高是几何体的高,长是几何体的长;俯视图的长是几何体的长,宽是几何体的宽;侧视图的高是几何体的高,宽是几何体的宽.10. 在中,,,为角,,所对的边,若,则角的值为()A. B. C. 或 D. 或【答案】C【解析】由题意得,在中,根据余弦定理,有意义,,是的内角,或故选11. 已知函数(),若函数在上有两个零点,则的取值范围是()A. B. C. D.【答案】A【解析】函数()在上有两个零点则是函数的一个零点,故方程在上有解再根据当时,,可得故选点睛:本题主要考查的是分段函数的零点问题与方程根的关系的知识点,由分段函数有两个零点,分别求出在其定义域内的解,符合条件即解出关于参量的不等式,本题较为简单,属于基础题。

高三数学第二次诊断性检测试题文(2021学年)

高三数学第二次诊断性检测试题文(2021学年)

四川省成都市2018届高三数学第二次诊断性检测试题文编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(四川省成都市2018届高三数学第二次诊断性检测试题文)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为四川省成都市2018届高三数学第二次诊断性检测试题文的全部内容。

四川省成都市2018届高三数学第二次诊断性检测试题 文第Ⅰ卷(选择题,共60分)一、选择题:本大题共12个小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设集合{|11}P x x =-<,{|12}Q x x =-<<,则P Q =( )A .1(1,)2- B .(1,2)- C .(1,2) D.(0,2) 2。

已知向量(2,1)a =,(3,4)b =,(,2)c k =.若(3)//a b c -,则实数的值为( ) A.8- B.6- C.1- D . 3.若复数满足3(1)12i z i +=-,则z 等于( )B.32 D .124.设等差数列{}n a 的前项和为n S .若420S =,510a =,则16a =( ) A.32- B .12 C.16 D.325.已知m ,是空间中两条不同的直线,α,β为空间中两个互相垂直的平面,则下列命题正确的是( )A .若m α⊂,则m β⊥ B.若m α⊂,n β⊂,则m n ⊥ C.若m α⊄,m β⊥,则//m α D.若m αβ=,n m ⊥,则n α⊥6.在平面直角坐标系中,经过点P )A .22142x y -= B.221714x y -=C.22136x y -=D.221147y x -=7.已知函数()sin()f x A x ωϕ=+(0,0,)2A πωϕ>><的部分图象如图所示.现将函数()f x 图象上的所有点向右平移4π个单位长度得到函数()g x 的图象,则函数()g x 的解析式为( )A.()2sin(2)4g x x π=+ B .3()2sin(2)4g x x π=+C.()2cos 2g x x =D.()2sin(2)4g x x π=-8.若为实数,则“2222x ≤≤”是“22223x x +≤≤”成立的( ) A.充分不必要条件 B.必要不充分条件C .充要条件 D.既不充分也不必要条件9.《九章算术》中将底面为长方形,且有一条侧棱与底面垂直的四棱锥称之为“阳马”.现有一阳马,其正视图和侧视图是如图所示的直角三角形.若该阳马的顶点都在同一个球面上,则该球的体积为( )A86B .86πC 6π D.24π 10。

四川省成都市2018届高三第三次诊断性检测数学(文)试卷(含答案)

四川省成都市2018届高三第三次诊断性检测数学(文)试卷(含答案)

为定值 a .若正三棱柱 ABC A1B1C1 的顶点都在球 O 的表面上,则当正三棱柱侧面积取得最 大值 24 时,该球的表面积为( )
A. 4 3
32
B.
3
C. 12
64
D.
3
【答案】D
【解析】设正三棱柱 ABC A1B1C1 底面边长为 x ,侧棱为 y ,则 6x 3y a ,三棱柱
则角 C 的大小为
.

【答案】
2
【解析】由正弦定理 a b 得 sin B 1 ,又 b a ,所以 B ,所以 C .
sin A sin B
2
6
2
考点:弧度制的概念.
15.如图,在正方体 ABCD A1B1C1D1 中, E 是棱 DD1 的中点,则异面直线 AE 与 BD1 所
B.

9 4e3
,
1 2e

C.

16 5e4
,
4 3e2

D.

9 4e3
,
4 3e2

【答案】D
【解析】易得不等式 x2 axex aex 0 x2 a x 1ex .
设 f x x2 , g x a x 1ex ,则原不等式等价与 f x g x.
44 4
3
,所以该球的表面积为
3
4
64
.故选 D.
3
考点:1、简单几何体;2、基本不等式.
x2 10.已知双曲线 C : a2

y2 b2
1a 0,b 0的左右焦点分别为 F1 c, 0, F2 c, 0.双曲
线 C 上存在一点 P ,使得 sin PF1F2 a ,则双曲线 C 的离心率的取值范围是( ) sin PF2F1 c

2018届四川省资阳市高三第二次诊断性考试文科数学试题及答案

2018届四川省资阳市高三第二次诊断性考试文科数学试题及答案

资阳市高中2018级第二次诊断性考试数 学(文史类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)。

第Ⅰ卷1至2页,第Ⅱ卷3至4页。

满分150分。

考试时间120分钟。

考生作答时,须将答案答在答题卡上,在本试题卷、草稿纸上答题无效。

考试结束后,将本试题卷和答题卡一并收回。

第Ⅰ卷 (选择题 共50分)注意事项:必须使用2B 铅笔在答题卡上将所选答案的标号涂黑。

第Ⅰ卷共10小题。

一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.复数21(1)i m m -++是纯虚数,则实数m 的值为(A)-1 (B)1 (C)1± (D)2±2.集合{|12}M x x =<<,{|}N x x a =<,若M N ⊆,则实数a 的取值范围是(A)[2,)+∞ (B)(2,)+∞ (C)[1,)+∞ (D)(1,)+∞ 3.抛物线22yx =的焦点到其准线的距离是(A)14(B)12(C) 1 (D) 2 4.“2a =”是“直线2()10aa x y -+-=和210x y ++=互相平行”的(A) 充要条件 (B)必要不充分条件 (C)充分不必要条件 (D)既不充分又不必要条件5.设13log 2a =,2log 3b =,0.31()2c =,则a ,b ,c 大小关系为(A) a b c << (B)a c b <<(C)b c a << (D)c a b <<6.已知双曲线22221x y a b-=(a >0,b >0) 的渐近线方程为(A) 2y x =± (B)y = (C)12y x =± (D)y =7.在不等式组02,02x y ≤≤⎧⎨≤≤⎩所表示的平面区域内任取一点P ,则点P 的坐标(x ,y )满足20x y -≤的概率为(A)34(B)23(C)12(D)148.执行如图所示的程序框图,则输出S 的值为(B)(D) 09.已知 a 、b 为平面向量,若a +b 与a 的夹角为3π,a +b 与b 的夹角为4π,则||||=a b10.定义在R 上的函数()f x 满足1(2)()2f x f x +=,当[0,2)x ∈时,31||212,01,2()2,1 2.x x x f x x --⎧-≤<⎪=⎨⎪-≤<⎩函数32()3g x x x m =++.若[4,2)s ∀∈--,[4,2)t ∃∈--,不等式()()0f s g t -≥成立,则实数m 的取值范围是(A)(,12]-∞- (B)(,4]-∞- (C)(,8]-∞ (D)31(,]2-∞第Ⅱ卷 (非选择题 共100分)注意事项:必须使用0.5毫米黑色墨迹签字笔在答题卡上题目指示的答题区域内作答。

四川省成都2018年高考数学三诊试卷(文科)Word版含解析

四川省成都2018年高考数学三诊试卷(文科)Word版含解析

四川省成都2018年高考数学三诊试卷(文科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.在一次抛硬币实验中,甲、乙两人各抛一枚硬币一次,设命题p是“甲抛的硬币正面向上”,q是“乙抛的硬币正面向上”,则命题“至少有一人抛的硬币是正面向下”可表示为()A.(¬p)∨(¬q)B.p∧(¬q)C.(¬p)∧(¬q)D.p∨q2.已知集合A={x|0<x<2},B={x|x2﹣1<0},则A∪B=()A.(﹣1,1)B.(﹣1,2)C.(1,2)D.(0,1)3.若,则a=()A.﹣5﹣i B.﹣5+i C.5﹣i D.5+i4.设f(x)是定义在R上周期为2的奇函数,当0≤x≤1时,f(x)=x2﹣x,则=()A.B.C.D.5.某几何体的三视图如图所示,则该几何体的表面积为()A.36+12πB.36+16πC.40+12πD.40+16π6.设D为△ABC中BC边上的中点,且O为AD边的中点,则()A.B.C.D.7.执行如图的程序框图,则输出x的值是()A.2016 B.1024 C.D.﹣18.函数f(x)=sinx•(4cos2x﹣1)的最小正周期是()A.B. C.πD.2π9.等差数列{a n}中的a2、a4030是函数的两个极值点,则log2(a2016)=()A.2 B.3 C.4 D.510.已知M(x0,y0)是函数C: +y2=1上的一点,F1,F2是C上的两个焦点,若•<0,则x0的取值范围是()A.(﹣,) B.(﹣,) C.(﹣,)D.(﹣,)11.已知函数f(x)=x2﹣2ax+1对任意x∈(0,2]恒有f(x)≥0成立,则实数a的取值范围是()A. B. C.(﹣∞,1] D.12.设集合,C={(x,y)|2|x﹣3|+|y ﹣4|=λ},若(A∪B)∩C≠ϕ,则实数λ的取值范围是()A. B.C. D.二、填空题:本大题共四小题,每小题5分13.已知向量||=l,||=,且•(2+)=1,则向量,的夹角的余弦值为.14.若m,n满足,则u=m﹣2n的取值范围是.15.直线y=kx+1与曲线y=x3+ax+b相切于点A(1,2),则b﹣a= .16.已知函数,若函数h(x)=f(x)﹣mx﹣2有且仅有一个零点,则实数m的取值范围是.三、解答题(共70分.解答应写出文字说明、证明过程或演算步骤.)17.在△ABC中,角A,B,C所对应的边分别为a,b,c,已知,cosA﹣cos2A=0.(1)求角C;(2)若b2+c2=a﹣bc+2,求S△ABC.18.某农场计划种植某种新作物,为此对这种作物的两个品种(分别称为品种甲和品种乙)进行田间试验.选取两大块地,每大块地分成n小块地,在总共2n小块地中,随机选n小块地种植品种甲,另外n小块地种植品种乙.(1)假设n=2,求第一大块地都种植品种甲的概率;(2)试验时每大块地分成8小块,即n=8,试验结束后得到品种甲和品种乙在个小块地上的每公顷产量(单位:kg/hm2)如表:分别求品种甲和品种乙的每公顷产量的样本平均数和样本方差;根据试验结果,你认为应该种植哪一品种?19.如图,三棱柱ABC﹣A1B1C1中,侧面BB1C1C为菱形,B1C的中点为O,且AO⊥平面BB1C1C.(1)证明:B1C⊥AB;(2)若AC⊥AB1,∠CBB1=60°,BC=1,求三棱柱ABC﹣A1B1C1的高.20.如图,椭圆的左焦点为F,过点F的直线交椭圆于A,B两点.当直线AB经过椭圆的一个顶点时,其倾斜角恰为60°.(Ⅰ)求该椭圆的离心率;(Ⅱ)设线段AB的中点为G,AB的中垂线与x轴和y轴分别交于D,E两点.记△GFD的面积为S1,△OED(O为原点)的面积为S2,求的取值范围.21.已知函数(a∈R,且a≠0).(1)讨论f(x)的单调区间;(2)若直线y=ax的图象恒在函数y=f(x)图象的上方,求a的取值范围.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.在极坐标系下,知圆O:ρ=cosθ+sinθ和直线.(1)求圆O与直线l的直角坐标方程;(2)当θ∈(0,π)时,求圆O和直线l的公共点的极坐标.23.已知函数f(x)=|2x+3|+|2x﹣1|.(1)求不等式f(x)≤5的解集;(2)若关于x的不等式f(x)<|m﹣1|的解集非空,求实数m的取值范围.四川省成都2018年高考数学三诊试卷(文科)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.在一次抛硬币实验中,甲、乙两人各抛一枚硬币一次,设命题p是“甲抛的硬币正面向上”,q是“乙抛的硬币正面向上”,则命题“至少有一人抛的硬币是正面向下”可表示为()A.(¬p)∨(¬q)B.p∧(¬q)C.(¬p)∧(¬q)D.p∨q【考点】2E:复合命题的真假.【分析】利用“或”“且”“非”命题的意义即可得出.【解答】解:¬P,表示“甲抛的硬币正面向下”,¬q表示“乙抛的硬币正面向下”.则(¬p)∨(¬q)表示“至少有一人抛的硬币是正面向下”.故选:A.2.已知集合A={x|0<x<2},B={x|x2﹣1<0},则A∪B=()A.(﹣1,1)B.(﹣1,2)C.(1,2)D.(0,1)【考点】1D:并集及其运算.【分析】先分别求出集合A和B,由此能求出A∪B.【解答】解:集合A={x|0<x<2},B={x|x2﹣1<0}={x|﹣1<x<1},A∪B={x|﹣1<x<2}=(﹣1,2).故选:B.3.若,则a=()A.﹣5﹣i B.﹣5+i C.5﹣i D.5+i【考点】A5:复数代数形式的乘除运算.【分析】利用复数的运算法则、共轭复数的定义即可得出.【解答】解:∵,∴1+ai=(2+i)(1+2i)=5i,∴a===5+i.故选:D.4.设f(x)是定义在R上周期为2的奇函数,当0≤x≤1时,f(x)=x2﹣x,则=()A.B.C.D.【考点】3L:函数奇偶性的性质;31:函数的概念及其构成要素.【分析】根据题意,由函数的周期性以及奇偶性分析可得=﹣f()=﹣f(),又由函数在解析式可得f()的值,综合可得答案.【解答】解:根据题意,f(x)是定义在R上周期为2的奇函数,则=﹣f()=﹣f(),又由当0≤x≤1时,f(x)=x2﹣x,则f()=()2﹣()=﹣,则=,故选:C.5.某几何体的三视图如图所示,则该几何体的表面积为()A.36+12πB.36+16πC.40+12πD.40+16π【考点】L!:由三视图求面积、体积.【分析】几何体为棱柱与半圆柱的组合体,作出直观图,代入数据计算.【解答】解:由三视图可知几何体为长方体与半圆柱的组合体,作出几何体的直观图如图所示:其中半圆柱的底面半径为2,高为4,长方体的棱长分别为4,2,2,∴几何体的表面积S=π×22×2++2×4+2×4×2+2×4+2×2×2=12π+40.故选C.6.设D为△ABC中BC边上的中点,且O为AD边的中点,则()A.B.C.D.【考点】9H:平面向量的基本定理及其意义.【分析】根据向量的平行四边形法则和三角形法则即可求出【解答】解:如图=﹣=﹣=×(+)﹣=﹣+,故选:A.7.执行如图的程序框图,则输出x的值是()A.2016 B.1024 C.D.﹣1【考点】EF:程序框图.【分析】模拟执行程序框图,依次写出每次循环得到的x,y的值,当y=1024时,不满足条件退出循环,输出x的值即可得解.【解答】解:模拟执行程序框图,可得x=2,y=0满足条件y<1024,执行循环体,x=﹣1,y=1满足条件y<1024,执行循环体,x=,y=2满足条件y<1024,执行循环体,x=2,y=3满足条件y<1024,执行循环体,x=﹣1,y=4…观察规律可知,x的取值周期为3,由于1024=341×3+1,可得:满足条件y<1024,执行循环体,x=﹣1,y=1024不满足条件y<1024,退出循环,输出x的值为﹣1.故选:D.8.函数f(x)=sinx•(4cos2x﹣1)的最小正周期是()A.B. C.πD.2π【考点】H1:三角函数的周期性及其求法.【分析】利用二倍角和两角和与差以及辅助角公式基本公式将函数化为y=Asin(ωx+φ)的形式,再利用周期公式求函数的最小正周期.【解答】解:函数f(x)=sinx•(4cos2x﹣1)化简可得:f(x)=4sinx•cos2x﹣sinx=4sinx(1﹣sin2x)﹣sinx=3sinx﹣4sin3x=sin3x.∴最小正周期T=.故选:B.9.等差数列{a n}中的a2、a4030是函数的两个极值点,则log2(a2016)=()A.2 B.3 C.4 D.5【考点】84:等差数列的通项公式;6D:利用导数研究函数的极值.【分析】求函数的导数,由题意可得a2、a4030是对应方程的实根,由韦达定理可得a2+a4030的值,然后由等差数列的性质可得a2016的值,代入化简即可.【解答】解:∵,∴f′(x)=x2﹣8x+6,∵等差数列{a n}中的a2、a4030是函数的两个极值点,∴a2+a4030=8,∴,∴log2(a2016)=log24=2.故选:A.10.已知M(x0,y0)是函数C: +y2=1上的一点,F1,F2是C上的两个焦点,若•<0,则x0的取值范围是()A.(﹣,) B.(﹣,) C.(﹣,)D.(﹣,)【考点】K4:椭圆的简单性质.【分析】由椭圆方程求得焦点坐标,利用向量的数量积公式,结合椭圆的方程,即可求出x0的取值范围.【解答】解:椭圆C: +y2=1,的焦点坐标F1(﹣,0),F2(,0),=(﹣﹣x0,﹣y0),=(﹣x0,﹣y0)则•=x02﹣3+y02=﹣2,∵•<0,∴﹣2<0,解得:﹣<x0<,故答案选:C.11.已知函数f(x)=x2﹣2ax+1对任意x∈(0,2]恒有f(x)≥0成立,则实数a的取值范围是()A. B. C.(﹣∞,1] D.【考点】3W:二次函数的性质.【分析】运用参数分离,得到2a≤x+在x∈(0,2]恒成立,对右边运用基本不等式,求得最小值2,解2a≤2,即可得到.【解答】解:f(x)=x2﹣2ax+1对任意x∈(0,2]恒有f(x)≥0成立,即有2a≤x+在x∈(0,2]恒成立,由于x+≥2,当且仅当x=1取最小值2,则2a≤2,即有a≤1.故选C.12.设集合,C={(x,y)|2|x﹣3|+|y ﹣4|=λ},若(A∪B)∩C≠ϕ,则实数λ的取值范围是()A. B.C. D.【考点】1H:交、并、补集的混合运算.【分析】集合A、B是表示以(3,4)点为圆心,半径为和的同心圆;集合C在λ>0时表示以(3,4)为中心,四条边的斜率为±2的菱形;结合题意画出图形,利用图形知(A∪B)∩C≠∅,是菱形与A或B圆有交点,从而求得实数λ的取值范围.【解答】解:集合A={(x,y)|(x﹣3)2+(y﹣4)2=}表示以(3,4)点为圆心,半径为的圆;集合B={(x,y)|(x﹣3)2+(y﹣4)2=}表示以(3,4)点为圆心半径为的圆;集合C={(x,y)|2|x﹣3|+|y﹣4|=λ}在λ>0时,表示以(3,4)为中心,四条边的斜率为±2的菱形,如下图所示:若(A∪B)∩C≠∅,则菱形与A或B圆有交点,当λ<时,菱形在小圆的内部,与两圆均无交点,不满足答案;当菱形与小圆相切时,圆心(3,4)到菱形2|x﹣3|+|y﹣4|=λ任一边的距离等于大于半径,当x>3,且y>4时,菱形一边的方程可化为2x+y﹣(10+λ)=0,由d==得:λ=2;当2<λ<时,菱形在大圆的内部,与两圆均无交点,不满足答案;当菱形与大圆相切时,圆心(3,4)到菱形2|x﹣3|+|y﹣4|=λ任一边的距离等于大于半径,当x>3,且y>4时,菱形一边的方程可化为2x+y﹣(10+λ)=0,由d==得:λ=6,故λ>6时,两圆均在菱形内部,与菱形无交点,不满足答案;综上实数λ的取值范围是[,2]∪[,6],即[,2]∪[,6].故选:A.二、填空题:本大题共四小题,每小题5分13.已知向量||=l,||=,且•(2+)=1,则向量,的夹角的余弦值为.【考点】9R:平面向量数量积的运算.【分析】利用向量的数量积运算法则和夹角公式即可得出.【解答】解:∵•(2+)=1,∴,∵,∴,化为.∴==﹣.故答案为:.14.若m,n满足,则u=m﹣2n的取值范围是.【考点】7C:简单线性规划.【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,把最优解的坐标代入目标函数得答案.【解答】解:由约束条件作出可行域如图,A(4,0),联立,解得B(,).化目标函数u=m﹣2n为n=,由图可知,当直线n=过A时,直线在n轴上的截距最小,z有最大值为4;当直线n=过B时,直线在n轴上的截距最大,z有最小值为.∴u=m﹣2n的取值范围是:.故答案为:.15.直线y=kx+1与曲线y=x3+ax+b相切于点A(1,2),则b﹣a= 5 .【考点】6H:利用导数研究曲线上某点切线方程.【分析】先根据曲线y=x3+ax+b过点(1,2)得出a、b的关系式,再根据切线过点(1,2)求出k,然后求出x=1处的导数并求出a,从而得到b,即可得到b﹣a的值.【解答】解:∵y=x3+ax+b过点(1,2),∴a+b=1,∵直线y=kx+1过点(1,2),∴k+1=2,即k=1,又∵y′=3x2+a,∴k=y′|x=1=3+a=1,即a=﹣2,∴b=1﹣a=3,∴b﹣a=3+2=5.故答案为:5.16.已知函数,若函数h(x)=f(x)﹣mx﹣2有且仅有一个零点,则实数m的取值范围是(﹣∞,﹣e]∪{0}∪{﹣} .【考点】52:函数零点的判定定理.【分析】画出图象f(x)=转化为函数f(x)与y=mx﹣2有且仅有一个公共点,分类讨论,①当m=0时,y=2与f(x)有一个交点;②当y=mx+2与y=相切,结合导数求解即可,求解相切问题;③y=mx+2过(1,2﹣e)(0,2),动态变化得出此时的m的范围.【解答】解:∵f(x)=∴f(x)=∵函数h(x)=f(x)﹣mx﹣2有且仅有一个零点,∴f(x)与y=mx+2有一个公共点∵直线y=mx+2过(0,2)点①当m=0时,y=2与f(x)有一个交点②当y=mx+2与y=相切即y′=切点(x0,),m=﹣=﹣+2,x0>1x0=(舍去),x0=3∴m==③y=mx+2过(1,2﹣e),(0,2)m=﹣e当m≤﹣e时,f(x)与y=mx+2有一个公共点故答案为:(﹣∞,﹣e]∪{0}∪{﹣}三、解答题(共70分.解答应写出文字说明、证明过程或演算步骤.)17.在△ABC中,角A,B,C所对应的边分别为a,b,c,已知,cosA﹣cos2A=0.(1)求角C;(2)若b2+c2=a﹣bc+2,求S△ABC.【考点】HT:三角形中的几何计算.【分析】(1)根据二倍角公式即可求出A,再根据三角形的内角和定理即可求出C,(2)根据余弦定理和b2+c2=a﹣bc+2,求出a,再根据两角差的正弦公式即可求出sinC,再由正弦公式和三角形的面积公式即可求出【解答】解:(1)因为cosA﹣cos2A=0,所以2cos2A﹣cosA﹣1=0,解得cosA=﹣,cosA=1(舍去).所以,又,所以.(2)在△ABC中,因为,由余弦定理所以a2=b2+c2﹣2bccosA=b2+c2+bc,又b2+c2=a﹣bc+2,所以a2=a+2,所以a=2,又因为,由正弦定理得,所以.18.某农场计划种植某种新作物,为此对这种作物的两个品种(分别称为品种甲和品种乙)进行田间试验.选取两大块地,每大块地分成n小块地,在总共2n小块地中,随机选n小块地种植品种甲,另外n小块地种植品种乙.(1)假设n=2,求第一大块地都种植品种甲的概率;(2)试验时每大块地分成8小块,即n=8,试验结束后得到品种甲和品种乙在个小块地上的每公顷产量(单位:kg/hm2)如表:分别求品种甲和品种乙的每公顷产量的样本平均数和样本方差;根据试验结果,你认为应该种植哪一品种?【考点】CC:列举法计算基本事件数及事件发生的概率;BC:极差、方差与标准差.【分析】(1)本题是一个古典概型,试验发生包含的事件是先从4小块地中任选2小块地种植品种甲的基本事件共6个,满足条件的事件是第一大块地都种品种甲,根据古典概型概率公式得到结果.(2)首先做出两个品种的每公顷产量的样本平均数和样本方差,把两个品种的平均数和方差进行比较,得到乙的平均数大,乙的方差比较小,得到结果.【解答】解:(1)设第一大块地中的两小块地编号为1,2,第二大块地中的两小块地编号为3,4,令事件A=“第一大块地都种品种甲”.从4小块地中任选2小块地种植品种甲的基本事件共6个:(1,2),(1,3),(1,4),(2,3),(2,4),(3,4).而事件A包含1个基本事件:(1,2).所以P(A)=(2)品种甲的每公顷产量的样本平均数和样本方差分别为:==400,S2甲=(32+(﹣3)2+(﹣10)2+42+(﹣12)2+02+122+62)=57.25,品种乙的每公顷产量的样本平均数和样本方差分别为:==412,S2乙=(72+(﹣9)2+(0)2+62+(﹣4)2+112+(﹣12)2+12)=56.由以上结果可以看出,品种乙的样本平均数大于品种甲的样本平均数,且两品种的样本方差差异不大,故应该选择种植品种乙.19.如图,三棱柱ABC﹣A1B1C1中,侧面BB1C1C为菱形,B1C的中点为O,且AO⊥平面BB1C1C.(1)证明:B1C⊥AB;(2)若AC⊥AB1,∠CBB1=60°,BC=1,求三棱柱ABC﹣A1B1C1的高.【考点】LX:直线与平面垂直的性质;LF:棱柱、棱锥、棱台的体积.【分析】(1)连接BC1,则O为B1C与BC1的交点,证明B1C⊥平面ABO,可得B1C⊥AB;(2)作OD⊥BC,垂足为D,连接AD,作OH⊥AD,垂足为H,证明△CBB1为等边三角形,求出B1到平面ABC 的距离,即可求三棱柱ABC﹣A1B1C1的高.【解答】(1)证明:连接BC1,则O为B1C与BC1的交点,∵侧面BB1C1C为菱形,∴BC1⊥B1C,∵AO⊥平面BB1C1C,∴AO⊥B1C,∵AO∩BC1=O,∴B1C⊥平面ABO,∵AB⊂平面ABO,∴B1C⊥AB;(2)解:作OD⊥BC,垂足为D,连接AD,作OH⊥AD,垂足为H,∵BC⊥AO,BC⊥OD,AO∩OD=O,∴BC⊥平面AOD,∴OH⊥BC,∵OH⊥AD,BC∩AD=D,∴OH⊥平面ABC,∵∠CBB1=60°,∴△CBB1为等边三角形,∵BC=1,∴OD=,∵AC⊥AB1,∴OA=B1C=,由OH•AD=OD•OA,可得AD==,∴OH=,∵O为B1C的中点,∴B1到平面ABC的距离为,∴三棱柱ABC﹣A1B1C1的高.20.如图,椭圆的左焦点为F,过点F的直线交椭圆于A,B两点.当直线AB经过椭圆的一个顶点时,其倾斜角恰为60°.(Ⅰ)求该椭圆的离心率;(Ⅱ)设线段AB的中点为G,AB的中垂线与x轴和y轴分别交于D,E两点.记△GFD的面积为S1,△OED(O为原点)的面积为S2,求的取值范围.【考点】KG:直线与圆锥曲线的关系;K4:椭圆的简单性质.【分析】(Ⅰ)由题意知当直线AB经过椭圆的顶点(0,b)时,其倾斜角为60°,设 F(﹣c,0),由直线斜率可求得b,c关系式,再与a2=b2+c2联立可得a,c关系,由此即可求得离心率;(Ⅱ)由(Ⅰ)椭圆方程可化为,设A(x1,y1),B(x2,y2).由题意直线AB 不能与x,y轴垂直,故设直线AB的方程为y=k(x+c),将其代入椭圆方程消掉y变为关于x的二次方程,由韦达定理及中点坐标公式可用k,c表示出中点G的坐标,由GD⊥AB得k GD•k=﹣1,则D点横坐标也可表示出来,易知△GFD∽△OED,故=,用两点间距离公式即可表示出来,根据式子结构特点可求得的范围;【解答】解:(Ⅰ)依题意,当直线AB经过椭圆的顶点(0,b)时,其倾斜角为60°.设 F(﹣c,0),则.将代入a2=b2+c2,得a=2c.所以椭圆的离心率为.(Ⅱ)由(Ⅰ),椭圆的方程可设为,设A(x1,y1),B(x2,y2).依题意,直线AB不能与x,y轴垂直,故设直线AB的方程为y=k(x+c),将其代入3x2+4y2=12c2,整理得(4k2+3)x2+8ck2x+4k2c2﹣12c2=0.则,,所以.因为 GD⊥AB,所以,.因为△GFD∽△OED,所以=.所以的取值范围是(9,+∞).21.已知函数(a∈R,且a≠0).(1)讨论f(x)的单调区间;(2)若直线y=ax的图象恒在函数y=f(x)图象的上方,求a的取值范围.【考点】6B:利用导数研究函数的单调性;6E:利用导数求闭区间上函数的最值.【分析】(1)求出函数的定义域,求出导函数,根据导函数讨论参数a,得出函数的单调区间;(2)构造函数令h(x)=ax﹣f(x),则.问题转化为h(x)>0恒成立时a的取值范围.对参数a进行分类讨论,利用导函数得出函数的最值即可.【解答】解:(1)f (x )的定义域为,且.①当a <0时,∵,∴ax <﹣1,∴f'(x )>0,函数在是增函数;②当a >0时,ax+1>0,在区间上,f'(x )>0;在区间(0,+∞)上,f'(x )<0.所以f (x )在区间上是增函数;在区间(0,+∞)上是减函数.(2)令h (x )=ax ﹣f (x ),则.问题转化为h (x )>0恒成立时a 的取值范围.当a <0时,取,则h (x )=2ae ﹣3<0,不合题意.当a >0时,h (x )=ax ﹣f (x ),则.由于,所以在区间上,h'(x )<0;在区间上,h'(x )>0.所以h (x )的最小值为,所以只需,即,所以,所以.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.在极坐标系下,知圆O:ρ=cos θ+sin θ和直线.(1)求圆O 与直线l 的直角坐标方程;(2)当θ∈(0,π)时,求圆O 和直线l 的公共点的极坐标. 【考点】Q4:简单曲线的极坐标方程.【分析】(1)圆O的极坐标方程化为ρ2=ρcosθ+ρsinθ,由此能求出圆O的直角坐标方程;直线l的极坐标方程化为ρsinθ﹣ρcosθ=1,由此能求出直线l的直角坐标方程.(2)圆O与直线l的直角坐标方程联立,求出圆O与直线l的在直角坐标系下的公共点,由此能求出圆O 和直线l的公共点的极坐标.【解答】解:(1)圆O:ρ=cosθ+sinθ,即ρ2=ρcosθ+ρsinθ,故圆O的直角坐标方程为:x2+y2﹣x﹣y=0,直线,即ρsinθ﹣ρcosθ=1,则直线的直角坐标方程为:x﹣y+1=0.(2)由(1)知圆O与直线l的直角坐标方程,将两方程联立得,解得.即圆O与直线l的在直角坐标系下的公共点为(0,1),转化为极坐标为.23.已知函数f(x)=|2x+3|+|2x﹣1|.(1)求不等式f(x)≤5的解集;(2)若关于x的不等式f(x)<|m﹣1|的解集非空,求实数m的取值范围.【考点】R4:绝对值三角不等式;R5:绝对值不等式的解法.【分析】(1)让绝对值内各因式为0,求得x值,再由求得的x值把函数定义域分段化简求解,取并集得答案;(2)由(1)可得函数f(x)的最小值,把不等式f(x)<|m﹣1|的解集非空转化为|m﹣2|大于f(x)的最小值求解.【解答】解:(1)原不等式为:|2x+3|+|2x﹣1|≤5,当时,原不等式可转化为﹣4x﹣2≤5,即;当时,原不等式可转化为4≤5恒成立,∴;当时,原不等式可转化为4x+2≤5,即.∴原不等式的解集为.(2)由已知函数,可得函数y=f(x)的最小值为4,∴|m﹣2|>4,解得m>6或m<﹣2.。

2018届四川省绵阳市高三第三次诊断考试文科数学试题及答案精品

2018届四川省绵阳市高三第三次诊断考试文科数学试题及答案精品

2
1 m3 6m,
2
S
3 m2 6
3 (m 2)(m 2),S 0 0 m 2,S 0
2
2
m 2,
∴ 当 m 2 时, ( S ) △MAB max=8,此时 t 2 4 .
二、填空题:本大题共 5 小题,每小题 5 分,共 25 分.
11. 4
12 . 7
3
13 . 208
15 .②③④
三、解答题:本大题共 6 小题,共 75 分.
其中正确的结论有 结论序号)
.(请填上你认为所有正确的
三、解容题:本大皿共 5 4111. 共 75 分.解答应写出文字说明. 证 明过程或演 NOW 16. (本小题满分 12 分)
绵阳二诊后, 某学校随机抽查部分学生的政治成绩进行统计 分析. 已知统计出的成绩频率分布直方图如图, 数据的分组依次 为[ 20, 40) ,[40 , 60) , [60 ,80) , [80 , 100) ,己知低于 60 分的人数是 6 人

cos(2 x0 ) 1 sin2 (2 x0 ) 5 , …………………………………
6
63
∴ cos2x0
cos[(2 x0
) 6
] 6
10 分
cos(2 x0 ) cos sin(2x0 ) sin
66
66
15 2 . ……………………………………………
6
…………… 12 分
19.解: ( Ⅰ) 设数列 { an} 公差为 d,
,求 h(x) 的单调区间;
(II) 若存在
成立,求证:
绵阳市高 2018 级第三次诊断性考试 数学 ( 文史类 ) 参考解答及评分标准 一、选择题:本大题共 10 小题,每小题 5 分,共 50 分.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档