13节点潮流计算
电力系统潮流计算(九节点)

辽宁工程技术大学电力系统分析课程设计设计题目9节点电力网络潮流计算指导教师院(系、部)专业班级学号姓名日期电气工程系课程设计标准评分模板电力系统分析课程设计任务书9节点系统单线图如下:基本数据如下:母线名基准电压区域号电压上限电压下限发电 1 16.5000 2 18.1500 14.8500 发电 2 18.000 1 19.800 16.2000 发电 3 13.8000 1 15.1800 12.4200 GEN1-230 230.000 2 0.0000 0.0000 GEN2-230 230.000 1 0.0000 0.0000 GEN3-230 230.000 1 0.0000 0.0000 STNA-230 230.000 2 0.0000 0.0000 STNB-230 230.000 2 0.0000 0.0000 STNC-230 230.000 1 0.0000 0.0000数据组I 侧母线J 侧母线编号所属区域单位正序电阻正序电抗正序充电电纳的1/2常规GEN1-230 STNA-230 1 I侧标么0.010000 0.085000 0.088000 常规STNA-230 GEN2-230 2 I侧标么0.032000 0.161000 0.153000 常规GEN2-230 STNC-230 3 I侧标么0.008500 0.072000 0.074500 常规STNC-230 GEN3-230 4 I侧标么0.011900 0.100800 0.104500 常规GEN3-230 STNB-230 5 I侧标么0.039000 0.170000 0.179000 常规STNB-230 GEN1-230 6 I侧标么0.017000 0.092000 0.079000表3 两绕组变压器数据负荷数据电网12-1班数据目录1 PSASP软件简介 (1)1.1 PSASP平台的主要功能和特点 (7)1.2 PSASP的平台组成 (8)2 牛顿拉夫逊潮流计算简介 (9)2.1 牛顿—拉夫逊法概要 (9)2.2 直角坐标下的牛顿—拉夫逊潮流计算 (11)2.3 牛顿—拉夫逊潮流计算的方法 (6)3 九节点系统单线图及元件数据 (8)3.1 九节点系统单线图 (8)3.2 系统各项元件的数据 (9)4 潮流计算的结果 (11)4.1 潮流计算后的单线图 (17)4.2 潮流计算结果输出表格 (18)5 结论 (22)6 参考文献 (17)1 PSASP软件简介“电力系统分析综合程序”(Power System Analysis Software Package,PSASP)是一套历史悠久、功能强大、使用方便的电力系统分析程序,是高度集成和开发具有我国自主知识产权的大型软件包。
13节点配电网潮流计算—上机

13节点配电网潮流计算—上机D表1 系统支路参数支路R(Ω.)X(Ω.)B/2(TK) (S)1~2 3.367 3.685 0.02~3 2.356 2.541 0.03~4 1.145 1.28 0.04~5 4.524 5.04 0.02~6 0.856 1.14 0.06~7 2.745 2.965 0.02~8 3.743 4.251 0.08~9 2.237 2.756 0.03~10 4.14 4.696 0.03~11 1.328 1.763 0.011~12 2.436 2.866 0.04~13 3.521 3.966 0.0表2 系统负荷参数节点编号节点类型节点初始电压(kV)Pi(MVA)Qi(MVA)1 根节点10.4 0 02 中间节点10.0 0.0342 0.03013 中间节点10.0 0.0693 0.06424 中间节点10.0 0.0845 0.07635 叶节点10.0 0.0295 0.02616 中间节点10.0 0.0474 0.04097 叶节点10.0 0.1176 0.09578 中间节点10.0 0.0946 0.08579 叶节点10.0 0.0916 0.085910 叶节点10.0 0.0271 0.022911 中间节点10.0 0.0696 0.064312 叶节点10.0 0.0676 0.057913 叶节点10.0 0.0298 0.0242主程序清单:[PQ,FT,RX]=case113(); %调用数据文件NN=size(PQ,1); %节点数NB=size(FT,1); %支路数数V=PQ(:,1); %V初始电压相量maxd=1k=1while maxd>0.0001PQ2=PQ; %每一次迭代各节点的注入有功和无功相同PL=0.0;for i=1:NBkf=FT(i,1); %前推始节点号kt=FT(i,2); %前推终节点号x=(PQ2(kf,2)^2+PQ2(kf,3)^2)/V(kf)/V(kf);%计算沿线电流平方APQ1(i,1)=PQ2(kf,2)+RX(i,1)*x; %计算支路首端有功/MW RX(i,1)~RPQ1(i,2)=PQ2(kf,3)+RX(i,2)*x; %计算沿支路的无功损耗/Mvar RX(i,2)~X PQ2(kt,2)= PQ2(kt,2)+PQ1(i,1); %用PQ1去修正支路末端节点的有功P 单位MW PQ2(kt,3)= PQ2(kt,3)+PQ1(i,2); %用PQ1去修正支路末端节点的有功Q 单位MvarPL=PL+RX(i,1)*x;endangle(1)=0.0;for i=NB:-1:1kf=FT(i,2); %回代始节点号kt=FT(i,1); %回代终节点号dv1=(PQ1(i,1)*RX(i,1)+PQ1(i,2)*RX(i,2))/V(kf);%计算支路电压损耗的纵分量dv1dv2=(PQ1(i,1)*RX(i,2)-PQ1(i,2)*RX(i,1))/V(kf);%计算支路电压损耗的横分量dv2V2(kt)=sqrt((V(kf)-dv1)^2+dv2^2);%计算支路末端电压/kVangle(kt)=angle(kf)+atand(dv2/(V(kf)-dv1));%计算支路endmaxd=abs(V2(2)-V(2));V2(1)=V(1);for i=3:1:NNif abs(V2(i)-V(i))>maxd;maxd=abs(V2(i)-V(i));endendmaxdk=k+1PQ1 %潮流分布即支路首端潮流MVAV=V2 %节点电压模计算结果kVangle %节点电压角度计算结果单位度PL %网损单位MWendclear输入文件清单:function [PQ,FT,RX]=case113()PQ=[%节点电压有功无功10.5 0 010. 0.6 0.4510 0.4 0.310 0.4 0.2810 0.6 0.410 0.4 0.310 0.5 0.3510 0.5 0.4];FT=[%首端末端4 36 57 53 25 28 22 1];RX=[% R X0.6 0.351.0 0.550.65 0.350.62 0.50.72 0.750.90 0.50.54 0.65];计算结果清单:k =7PQ1 =0.4014 0.28080.4025 0.30140.5025 0.35130.8074 0.58571.5294 1.07820.5036 0.40203.5356 2.6303V =10.5000 10.1557 10.0776 10.0439 9.9677 9.9107 9.9226 10.0913angle = 0 0.4716 0.4944 0.4785 0.6815 0.6351 0.6511 0.4101PL =0.1356MW。
电力系统分析潮流计算课程序设计及其MATLAB程序设计-范本模板

电力系统分析潮流计算程序设计报告题目:13节点配电网潮流计算学院电气工程学院专业班级学生姓名学号班内序号指导教师房大中提交日期 2015年05月04日目录一、程序设计目的 (1)二、程序设计要求 (3)三、13节点配网潮流计算 (3)3.1主要流程................................................................................................... 错误!未定义书签。
3。
1.1第一步的前推公式如下(1—1)-(1—5): ................................. 错误!未定义书签。
3。
1.2第二步的回代公式如下(1-6)—(1-9): ..................................... 错误!未定义书签。
3.2配网前推后代潮流计算的原理 (7)3。
3配网前推后代潮流计算迭代过程 (7)3.3计算原理 (8)四、计算框图流程 (9)五、确定前推回代支路次序.......................................................................................... 错误!未定义书签。
六、前推回代计算输入文件 (10)主程序: (10)输入文件清单: (11)计算结果: (12)数据分析: (12)七、配电网潮流计算的要点 (13)八、自我总结 (13)九、参考文献 (14)附录一 MATLAB的简介 (14)一、程序设计目的开式网络潮流计算:配电网的结构特点呈辐射状,在正常运行时是开环的;配电网的潮流计算采用的方法是前推回代法,本程序利用前推回代法的基本原理、收敛性。
(1)在电网规划阶段,通过潮流计算,合理规划电源容量及接入点,合理规划网架,选择无功补偿方案,满足规划水平年的大、小方式下潮流交换控制、调峰、调相、调压的要求。
电力系统潮流计算用到的公式

电力系统潮流计算用到的公式电力系统潮流计算是电力系统运行和规划中的重要工作之一,它可以用来计算电力系统中各个节点的电压幅值和相角,以及各个支路的功率流动情况。
潮流计算的结果可以提供给系统运行人员和规划人员参考,用于电力系统的优化调度和规划设计。
在电力系统潮流计算中,常用的公式主要包括节点功率平衡方程、支路功率平衡方程、节点电压平衡方程以及支路电压平衡方程等。
节点功率平衡方程是电力系统潮流计算的基础,它描述了电力系统各个节点的功率平衡关系。
节点功率平衡方程可以用下面的公式表示:P_i - P_Gi + P_Li = 0Q_i - Q_Gi + Q_Li = 0其中,P_i和Q_i分别表示第i个节点的有功功率和无功功率,P_Gi 和Q_Gi表示第i个节点的发电机有功功率和无功功率,P_Li和Q_Li表示第i个节点的负荷有功功率和无功功率。
节点功率平衡方程表示了电力系统中各个节点的功率输入和输出之间的平衡关系。
支路功率平衡方程用来描述电力系统中各个支路的功率平衡关系。
支路功率平衡方程可以用下面的公式表示:P_ij + P_ji = 0Q_ij + Q_ji = 0其中,P_ij和Q_ij表示从节点i到节点j的有功功率和无功功率,P_ji和Q_ji表示从节点j到节点i的有功功率和无功功率。
支路功率平衡方程表示了电力系统中各个支路的功率流动之间的平衡关系。
节点电压平衡方程用来描述电力系统中各个节点的电压平衡关系。
节点电压平衡方程可以用下面的公式表示:|V_i|^2 - |V_Gi|^2 + |V_Li|^2 + 2*Re(V_i*conj(Y_ij*V_j)) = 0其中,|V_i|表示第i个节点的电压幅值,|V_Gi|表示第i个节点的发电机电压幅值,|V_Li|表示第i个节点的负荷电压幅值,Y_ij表示从节点i到节点j的导纳,V_j表示节点j的电压。
节点电压平衡方程表示了电力系统中各个节点的电压输入和输出之间的平衡关系。
节点导纳矩阵及潮流计算

目录摘要 (2)1任务及题目要求 (2)2原理介绍 (3)2.1节点导纳矩阵 (3)2.2牛顿-拉夫逊法 (4)2.2.1牛顿-拉夫逊法基本原理 (4)2.2.2牛顿--拉夫逊法潮流求解过程介绍 (6)3分析计算 (11)4结果分析 (15)5总结 (16)参考资料 (17)节点导纳矩阵及潮流计算摘要电力网的运行状态可用节点方程或回路方程来描述。
节点导纳矩阵是以系统元件的等值导纳为基础所建立的、描述电力网络各节点电压和注入电流之间关系的线性方程。
潮流计算是电力系统分析中的一种最基本的计算,它的任务是对给定的运行条件确定系统的运行状态,如各母线上的电压(幅值及相角)、网络中的功率分布及功率损耗等。
本文就节点导纳矩阵和潮流进行分析和计算。
1任务及题目要求题目初始条件:如图所示电网。
1∠002阵Y;2+j13)给出潮流方程或功率方程的表达式;4)当用牛顿-拉夫逊法计算潮流时,给出修正方程和迭代收敛条件。
2原理介绍2.1节点导纳矩阵节点导纳矩阵既可根据自导纳和互导纳的定义直接求取,也可根据电路知识中找出改网络的关联矩阵,在节点电压方程的矩阵形式进行求解。
本章节我们主要讨论的是直接求解导纳矩阵。
根据节点电压方程章节我们知道,在利用电子数字计算机计算电力系统运行情况时,多采用IYV 形式的节点方程式。
其中阶数等于电力网络的节点数。
从而可以得到n 个节点时的节点导纳矩阵方程组:nn Y n +V (2-1) 由此可以得到n 个节点导纳矩阵:nn Y ⎫⎪⎪⎪⎪⎭它反映了网络的参数及接线情况,因此导纳矩阵可以看成是对电力网络电气特性的一种数学抽象。
由导纳短阵所了解的节点方程式是电力网络广泛应用的一种数学模型。
通过上面的讨论,可以看出节点导纳矩阵的有以下特点:(1)导纳矩阵的元素很容易根据网络接线图和支路参数直观地求得,形成节点导纳矩阵的程序比较简单。
(3)导纳矩阵是稀疏矩阵。
它的对角线元素一般不为零,但在非对角线元素中则存在不少零元素。
节点导纳矩阵及潮流计算

目录摘要 (2)1任务及题目要求 (2)2原理介绍 (3)节点导纳矩阵 (3)牛顿-拉夫逊法 (4)牛顿-拉夫逊法基本原理 (4)牛顿--拉夫逊法潮流求解过程介绍 (6)3分析计算 (11)4结果分析 (15)5总结 (16)参考资料 (17)节点导纳矩阵及潮流计算摘要电力网的运行状态可用节点方程或回路方程来描述。
节点导纳矩阵是以系统元件的等值导纳为基础所建立的、描述电力网络各节点电压和注入电流之间关系的线性方程。
潮流计算是电力系统分析中的一种最基本的计算,它的任务是对给定的运行条件确定系统的运行状态,如各母线上的电压(幅值及相角)、网络中的功率分布及功率损耗等。
本文就节点导纳矩阵和潮流进行分析和计算。
1任务及题目要求题目初始条件: 如图所示电网。
其元件导纳参数为:y 12=, y 23=, y 13=任务及要求:1)根据给定的运行条件,确定图2所示电力系统潮流计算时各节点的类型和待求量;2)求节点导纳矩阵Y ;1???2+j13)给出潮流方程或功率方程的表达式;4)当用牛顿-拉夫逊法计算潮流时,给出修正方程和迭代收敛条件。
2原理介绍节点导纳矩阵节点导纳矩阵既可根据自导纳和互导纳的定义直接求取,也可根据电路知识中找出改网络的关联矩阵,在节点电压方程的矩阵形式进行求解。
本章节我们主要讨论的是直接求解导纳矩阵。
根据节点电压方程章节我们知道,在利用电子数字计算机计算电力系统运行情况时,多采用IYV 形式的节点方程式。
其中阶数等于电力网络的节点数。
从而可以得到n 个节点时的节点导纳矩阵方程组:11112211211222221122n n n n nn n Y Y Y n Y Y Y n Y Y Y n +++=⎫⎪+++=⎪⎬⎪⎪+++=⎭V V V I V V V I V V VI (2-1) 由此可以得到n 个节点导纳矩阵:111212212212n n n n nn Y Y Y Y Y Y Y Y Y Y ⎛⎫⎪ ⎪= ⎪⎪⎝⎭? (2-2) 它反映了网络的参数及接线情况,因此导纳矩阵可以看成是对电力网络电气特性的一种数学抽象。
自-配电网络的拓扑分析及潮流计算

配电网络的拓扑分析及潮流计算李晨在当前经济迅猛发展、供电日趋紧张的情况下,通过配电网络重构,充分发挥现有配电网的潜力,提高系统的安全性和经济性,具有很大的经济效益和社会效益。
本文对配电网拓扑分析、对配电网络潮流计算作分析研究,应用MATLAB编程来验证并分析配电网结构特点。
配电网的拓扑分析用树搜索法,并采用前推回代法进行潮流计算分析,通过树搜索形成网络拓扑表,然后利用前推回代法计算潮流分布。
1 配电网的接线分析配电网是指电力系统中二次降压侧直接或降压后向用户供电的网络。
配电网由馈线、降压变压器、断路器、各种开关构成。
就我国电力系统而言,配电网是指110kV及以下的电网。
在配电网中,通常把110kV,35kV级称为高压,10kV级称为中压,0.4kV级称为低压。
从体系结构上,配电网可以分作辐射状网、树状网和环状网,如图2.3所示。
我国配电网大部分是呈树状结构。
辐射网树状网环状网图1-1配电网的体系结构1.1 配电网的支路节点编号通过简化可把一个复杂的配电网络简化成一个节点一边关系的树状网络,于是就可以运行图论的知识进行网络拓扑分析。
按照这种简化模型,易知:节点数目比支路数目和开关数目多1,所以节点从0开始编号,而支路数和开关数从1开始编号,这样编号三者在序号上就可以完全一致,为后面的网损计算打下良好的基础。
联络线支路和上面的联络开关编号放在最后处理。
图1-2节点支路编号示意图图中①为节点号,1为支路号,其它节点、支路编号的含义相同。
节点、支路编号原则:将根节点编为0,并按父节点小于子节点号的原则由根节点向下顺序编号,规定去路正方向为父节点指向子节点,且支路编号与其子节点同号,则网络结构为层次结构如图1-2所示。
但是在配电网重构中,每次重构后的网络要重新进行编号,这样工作量将非常巨大,不得于工作的进行,因此必须寻找新的网络数据存储方法。
1.2 配电网的支路数据存储方式为了判断网络是否为辐射网和方便配电网潮流计算,本文采用上文所提到的编号方法,用结构数组来存储网络之间的连接关系和网络参数。
潮流计算步骤

潮流计算步骤
潮流计算是电力系统分析中的一种基本计算方法,用于确定电网中的电压分布和功率流动情况。
以下是潮流计算的基本步骤:
1、输入原始数据和信息:包括电网的结构信息、设备参数、负荷和电源的分布及大小等。
2、建立数学模型:根据电路理论和电力系统网络模型,建立描述电力系统中电压、电流和功率关系的数学模型。
3、形成节点导纳矩阵:根据电网结构,形成节点导纳矩阵,用于描述系统中各节点之间的电气联系。
4、确定待求状态变量初值:根据实际情况,为待求的状态变量(如节点电压)设定初值。
5、迭代求解:使用迭代法对数学模型进行求解,逐步更新状态变量的值,直到满足收敛条件为止。
6、计算节点电压:根据迭代求解的结果,计算出各节点的电压值。
7、计算功率分布:根据节点电压和网络参数,计算出各支路的功率流动情况。
8、结果分析:对计算结果进行整理和分析,评估电网的运行状态,为进一步优化和调整提供依据。
需要注意的是,潮流计算的具体步骤可能会因不同的计算方法和电力系统分析软件而有所差异。
在实际应用中,需要根据具体的软件
和要求进行操作。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
%本程序的功能是用牛顿——拉夫逊法进行潮流计算% B1矩阵:1、支路首端号;2、末端号;3、支路阻抗;4、支路对地电纳% 5、支路的变比;6、支路首端处于K侧为1,1侧为0% B2矩阵:1、该节点发电机功率;2、该节点负荷功率;3、节点电压初始值% 4、PV节点电压V的给定值;5、节点所接的无功补偿设备的容量% 6、节点分类标号:1为平衡节点(应为1号节点);2为PQ节点;% 3为PV节点;%S()为结点注入功率%B()结点无功补长量clear;n=13;%input('请输入节点数:n=');nl=13;%input('请输入支路数:nl=');isb=1;%input('请输入平衡母线节点号:isb=');pr=1;%input('请输入误差精度:pr=');B1=[1 3 10.349+31.68i 0.0018i 1.0 1;1 5 1.8+92.16i 0.0000118i 21.0 1;2 4 2.0328+58.1i 0.000001363i 21.0 1;2 3 6.688+19.25i 0.00109i 1.0 1;3 6 2.5+136.64i 0.000208i 15.4 1;3 7 2.36+111.55i 0.0000214i 20.0 1;3 8 14.41+44.11i 0.000627i 1 1;3 10 14.41+44.11i 0.000627i 1 1;8 10 12.84+39.3i 0.000559i 1 0;8 9 1.77+52.33i 0.0000267i 21.0 1;10 11 2.23+151.25i 0.0000267i 23.0 1;10 13 5.895+18.045i 0.000513i 1.0 0;12 13 7.08+209.28i 0.0000267i 23.0 0]B2=[0 0 220 220 0 1;0 0 220 220 0 3;0 0 220 0 0 2;0 66+41i 10.5 0 0 2;0 77+48i 10.5 0 0 2;800 0 15.75 15.75 0 2;100 0 11 0 0 2;0 0 220 0 0 2;0 88+55i 10.5 0 0 2;0 0 220 0 0 2;0 55+34i 10.5 0 0 2;71 0 10.5 0 0 2;0 0 220 0 0 2]%标幺值s=1000;u=220;for i=1:13B1(i,3)=B1(i,3)/(u^2/s*1000);B1(i,4)=B1(i,4)*(u^2/s*1000);endfor i=1:13B2(i,1)=B2(i,1)/u;B2(i,2)=B2(i,2)/u;B2(i,3)=B2(i,3)/u;B2(i,4)=B2(i,4)/u;end;%input('请输入各节点参数形成的矩阵:B2=');Y=zeros(n);e=zeros(1,n);f=zeros(1,n);V=zeros(1,n);sida=zeros(1,n);S1=zeros(nl);% % %---------------------------------------------------for i=1:nl %支路数if B1(i,6)==0 %左节点处于1侧p=B1(i,1);q=B1(i,2);else %左节点处于K侧p=B1(i,2);q=B1(i,1);endY(p,q)=Y(p,q)-1./(B1(i,3)*B1(i,5)); %非对角元Y(q,p)=Y(p,q); %非对角元Y(q,q)=Y(q,q)+1./(B1(i,3)*B1(i,5)^2)+B1(i,4)./2; %对角元K侧Y(p,p)=Y(p,p)+1./B1(i,3)+B1(i,4)./2; %对角元1侧end%求导纳矩阵disp('导纳矩阵Y=');disp(Y)%----------------------------------------------------------G=real(Y);B=imag(Y); %分解出导纳阵的实部和虚部for i=1:n %给定各节点初始电压的实部和虚部e(i)=real(B2(i,3));f(i)=imag(B2(i,3));V(i)=B2(i,4); %PV节点电压给定模值endfor i=1:n %给定各节点注入功率S(i)=B2(i,1)-B2(i,2); %i节点注入功率SG-SLB(i,i)=B(i,i)+B2(i,5); %i节点无功补偿量end%=================================================================== P=real(S);Q=imag(S); %分解出各节点注入的有功和无功功率ICT1=0;IT2=1;N0=2*n;N=N0+1;a=0; %迭代次数ICT1、a;不满足收敛要求的节点数IT2 while IT2~=0 % N0=2*n 雅可比矩阵的阶数;N=N0+1扩展列IT2=0;a=a+1;for i=1:nif i~=isb %非平衡节点C(i)=0;D(i)=0;for j1=1:nC(i)=C(i)+G(i,j1)*e(j1)-B(i,j1)*f(j1);%Σ(Gij*ej-Bij*fj)D(i)=D(i)+G(i,j1)*f(j1)+B(i,j1)*e(j1);%Σ(Gij*fj+Bij*ej)endP1=C(i)*e(i)+f(i)*D(i);%节点功率P计算eiΣ(Gij*ej-Bij*fj)+fiΣ(Gij*fj+Bij*ej)Q1=C(i)*f(i)-e(i)*D(i);%节点功率Q计算fiΣ(Gij*ej-Bij*fj)-eiΣ(Gij*fj+Bij*ej) %求i节点有功和无功功率P',Q'的计算值V2=e(i)^2+f(i)^2; %电压模平方%========= 以下针对非PV节点来求取功率差及Jacobi矩阵元素========= if B2(i,6)~=3 %非PV节点DP=P(i)-P1; %节点有功功率差DQ=Q(i)-Q1; %节点无功功率差%=============== 以上为除平衡节点外其它节点的功率计算=================%================= 求取Jacobi矩阵===================for j1=1:nif j1~=isb&j1~=i %非平衡节点&非对角元X1=-G(i,j1)*e(i)-B(i,j1)*f(i); % X1=dP/de=-dQ/dfX2=B(i,j1)*e(i)-G(i,j1)*f(i); % X2=dP/df=dQ/deX3=X2; % X2=dp/df X3=dQ/deX4=-X1; % X1=dP/de X4=dQ/dfp=2*i-1;q=2*j1-1;J(p,q)=X3;J(p,N)=DQ;m=p+1; % X3=dQ/de J(p,N)=DQ节点无功功率差J(m,q)=X1;J(m,N)=DP;q=q+1; % X1=dP/de J(m,N)=DP节点有功功率差J(p,q)=X4;J(m,q)=X2; % X4=dQ/df X2=dp/dfelseif j1==i&j1~=isb %非平衡节点&对角元X1=-C(i)-G(i,i)*e(i)-B(i,i)*f(i);% dP/deX2=-D(i)+B(i,i)*e(i)-G(i,i)*f(i);% dP/dfX3=D(i)+B(i,i)*e(i)-G(i,i)*f(i); % dQ/deX4=-C(i)+G(i,i)*e(i)+B(i,i)*f(i);% dQ/dfp=2*i-1;q=2*j1-1;J(p,q)=X3;J(p,N)=DQ;%扩展列△Qm=p+1;J(m,q)=X1;q=q+1;J(p,q)=X4;J(m,N)=DP;%扩展列△PJ(m,q)=X2;endendelse%=============== 下面是针对PV节点来求取Jacobi矩阵的元素=========== DP=P(i)-P1; % PV节点有功误差DV=V(i)^2-V2; % PV节点电压误差for j1=1:nif j1~=isb&j1~=i %非平衡节点&非对角元X1=-G(i,j1)*e(i)-B(i,j1)*f(i); % dP/deX2=B(i,j1)*e(i)-G(i,j1)*f(i); % dP/dfX5=0;X6=0;p=2*i-1;q=2*j1-1;J(p,q)=X5;J(p,N)=DV; % PV节点电压误差m=p+1;J(m,q)=X1;J(m,N)=DP;q=q+1;J(p,q)=X6; % PV节点有功误差J(m,q)=X2;elseif j1==i&j1~=isb %非平衡节点&对角元X1=-C(i)-G(i,i)*e(i)-B(i,i)*f(i);% dP/deX2=-D(i)+B(i,i)*e(i)-G(i,i)*f(i);% dP/dfX5=-2*e(i);X6=-2*f(i);p=2*i-1;q=2*j1-1;J(p,q)=X5;J(p,N)=DV; % PV节点电压误差m=p+1;J(m,q)=X1;J(m,N)=DP;q=q+1;J(p,q)=X6; % PV节点有功误差J(m,q)=X2;endendendendend%========= 以上为求雅可比矩阵的各个元素及扩展列的功率差或电压差=====================for k=3:N0 % N0=2*n (从第三行开始,第一、二行是平衡节点)k1=k+1;N1=N; % N=N0+1 即N=2*n+1扩展列△P、△Q 或△Ufor k2=k1:N1 % 从k+1列的Jacobi元素到扩展列的△P、△Q 或△UJ(k,k2)=J(k,k2)./J(k,k);% 用K行K列对角元素去除K行K列后的非对角元素进行规格化endJ(k,k)=1; % 对角元规格化K行K列对角元素赋1%==================== 回代运算=======================================if k~=3 % 不是第三行k > 3k4=k-1;for k3=3:k4 % 用k3行从第三行开始到当前行的前一行k4行消去for k2=k1:N1 % k3行后各行上三角元素J(k3,k2)=J(k3,k2)-J(k3,k)*J(k,k2);%消去运算(当前行k列元素消为0)end %用当前行K2列元素减去当前行k列元素乘以第k行K2列元素J(k3,k)=0; %当前行第k列元素已消为0endif k==N0 %若已到最后一行break;end%================== 前代运算==================================for k3=k1:N0 % 从k+1行到2*n最后一行for k2=k1:N1 % 从k+1列到扩展列消去k+1行后各行下三角元素J(k3,k2)=J(k3,k2)-J(k3,k)*J(k,k2);%消去运算end %用当前行K2列元素减去当前行k列元素乘以第k行K2列元素J(k3,k)=0; %当前行第k列元素已消为0endelse %是第三行k=3%====================== 第三行k=3的前代运算========================for k3=k1:N0 %从第四行到2n行(最后一行)for k2=k1:N1 %从第四列到2n+1列(即扩展列)J(k3,k2)=J(k3,k2)-J(k3,k)*J(k,k2);%消去运算(当前行3列元素消为0)end %用当前行K2列元素减去当前行3列元素乘以第三行K2列元素J(k3,k)=0; %当前行第3列元素已消为0endendend%====上面是用线性变换方式高斯消去法将Jacobi矩阵化成单位矩阵=====for k=3:2:N0-1L=(k+1)./2;e(L)=e(L)-J(k,N); %修改节点电压实部k1=k+1;f(L)=f(L)-J(k1,N); %修改节点电压虚部end%------修改节点电压-----------for k=3:N0DET=abs(J(k,N));if DET>=pr %电压偏差量是否满足要求IT2=IT2+1; %不满足要求的节点数加1endendICT2(a)=IT2; %不满足要求的节点数ICT1=ICT1+1; %迭代次数end%用高斯消去法解"w=-J*V"disp('迭代次数:');disp(ICT1);disp('没有达到精度要求的个数:');disp(ICT2);for k=1:nV(k)=sqrt(e(k)^2+f(k)^2); %计算各节点电压的模值sida(k)=atan(f(k)./e(k))*180./pi; %计算各节点电压的角度E(k)=e(k)+f(k)*j; %将各节点电压用复数表示end%=============== 计算各输出量===========================disp('各节点的实际电压标幺值E为(节点号从小到大排列):');disp(E); %显示各节点的实际电压标幺值E用复数表示disp('-----------------------------------------------------');disp('各节点的电压大小V为(节点号从小到大排列):');disp(V); %显示各节点的电压大小V的模值disp('-----------------------------------------------------');disp('各节点的电压相角sida为(节点号从小到大排列):');disp(sida); %显示各节点的电压相角for p=1:nC(p)=0;for q=1:nC(p)=C(p)+conj(Y(p,q))*conj(E(q)); %计算各节点的注入电流的共轭值endS(p)=E(p)*C(p); %计算各节点的功率S = 电压X 注入电流的共轭值enddisp('各节点的功率S为(节点号从小到大排列):');disp(S); %显示各节点的注入功率disp('-----------------------------------------------------');disp('各条支路的首端功率Si为(顺序同您输入B1时一致):');for i=1:nlp=B1(i,1);q=B1(i,2);if B1(i,6)==0Si(p,q)=E(p)*(conj(E(p))*conj(B1(i,4)./2)+(conj(E(p)*B1(i,5))...-conj(E(q)))*conj(1./(B1(i,3)*B1(i,5))));Siz(i)=Si(p,q);elseSi(p,q)=E(p)*(conj(E(p))*conj(B1(i,4)./2)+(conj(E(p)./B1(i,5))...-conj(E(q)))*conj(1./(B1(i,3)*B1(i,5))));Siz(i)=Si(p,q);enddisp(Si(p,q));SSi(p,q)=Si(p,q);ZF=['S(',num2str(p),',',num2str(q),')=',num2str(SSi(p,q))];disp(ZF);disp('-----------------------------------------------------');enddisp('各条支路的末端功率Sj为(顺序同您输入B1时一致):');for i=1:nlp=B1(i,1);q=B1(i,2);if B1(i,6)==0Sj(q,p)=E(q)*(conj(E(q))*conj(B1(i,4)./2)+(conj(E(q)./B1(i,5))...-conj(E(p)))*conj(1./(B1(i,3)*B1(i,5))));Sjy(i)=Sj(q,p);elseSj(q,p)=E(q)*(conj(E(q))*conj(B1(i,4)./2)+(conj(E(q)*B1(i,5))...-conj(E(p)))*conj(1./(B1(i,3)*B1(i,5))));Sjy(i)=Sj(q,p);enddisp(Sj(q,p));SSj(q,p)=Sj(q,p);ZF=['S(',num2str(q),',',num2str(p),')=',num2str(SSj(q,p))];disp(ZF);disp('-----------------------------------------------------');enddisp('各条支路的功率损耗DS为(顺序同您输入B1时一致):');for i=1:nlp=B1(i,1);q=B1(i,2);DS(i)=Si(p,q)+Sj(q,p);disp(DS(i));DDS(i)=DS(i);ZF=['DS(',num2str(p),',',num2str(q),')=',num2str(DDS(i))];disp(ZF);disp('-----------------------------------------------------');endfigure(1);subplot(1,2,1);plot(V);xlabel('节点号');ylabel('电压标幺值');grid on;subplot(1,2,2);plot(sida);xlabel('节点号');ylabel('电压角度');grid on;figure(2);subplot(2,2,1);P=real(S);Q=imag(S);bar(P);xlabel('节点号');ylabel('节点注入有功');grid on;subplot(2,2,2);bar(Q);xlabel('节点号');ylabel('节点注入无功'); grid on;subplot(2,2,3);P1=real(Siz);Q1=imag(Siz);bar(P1);xlabel('支路号');ylabel('支路首端注入有功'); grid on;subplot(2,2,4);bar(Q1);xlabel('支路号');ylabel('支路首端注入无功'); grid on;。