汽车发动机参数(二)范文

汽车发动机参数(二)范文
汽车发动机参数(二)范文

在之前的文章中,我们已经对数据库中所涉及的车身参数和发动机前十项参数做了较为详细的解析,本文将从第十一项开始,继续对发动机的其余参数进行详解:

● 压缩比

压缩比就是发动机混合气体被压缩的程度,用压缩前的气缸总容积与压缩后的气缸容积(即燃烧室容积)之比来表示。为了能更直观全面的了解,我们还需要明白以下几个相关的概念。

往复式发动机:

简单地讲,就是在发动机气缸中,有一只活塞周而复始地做着直线往复运动,且一直循环不已。在周而复始又持续不断的工作行程之中有其一定的运动行程范围。

最大行程容积与最小行程容积:

就发动机某个气缸而言,当活塞的行程到达最低点,此时的位置点便称为下止点,整个气缸包括燃烧室所形成的容积便是最大行程容积。当活塞反向运动,到达最高点位置时,这个位置点便称为上止点,所形成的容积为整个活塞运动行程是最小行程容积。

压缩比的表示和范围:

压缩比就是这最大行程容积与最小容积的比值。常见的汽油发动机压缩比表示方法为9.0:1、9.5:1或10.5:1等。汽油发动机压缩比一般是8-11,柴油发动机压缩比一般是18-23。

压缩比与发动机性能的关系:

压缩比越高就意味着发动机的动力越大。通常低压压缩比一般在10以下,高压压缩比在10以上。目前所知汽油发动机的压缩比最高已经达到了12:1。

压缩比与冷却系统的关系:

发动机的运转正常的工作温度都设计在80—110℃之间。压缩比太高可能会导致汽油自燃、预燃,而引起爆震的发生,使发动机无力、损坏机械元件。所以,在提升压缩比的同时又能使发动机保持正常的工作温度是至关重要的。

发动机冷却系统

爆震:

正常燃烧是由火花塞的电极间隙附近形成火焰核心,此火焰燃烧速度为30—40米/秒。而爆震则是远离火花塞的末端未燃混合气经过压缩后达到自燃温度,自身产生火焰提前引燃,此火焰燃烧速度为200—1000米/秒以上。比正常燃烧的火焰传播速度高几十倍,很容易造成发动机损坏。

压缩比与90号、93号、97号汽油:

汽油发动机压缩比越高,引发爆震的可能性越大。我们通常说的标号90号、93号、97号汽油,标号越高,辛烷值越高,抗爆性能就越强,当然价钱也越贵。

增压与可变压缩比:

增压就是将空气预先压缩然后再供入气缸,以期提高空气密度、增加进气量的一项技术。现今运用在汽车的增压系统有两大主流:机械增压、涡轮增压。发动机在低速时,增压作用滞后,等发动机加速至一定转速后,增压系统会开始工作,在同等行程容积下,空气密度的提升就相当于压缩比的提高。

机械增压

压缩比与环保:

众所周知,发动机气缸的压缩比高时,燃烧的温度也相对的升高,则排放出来的废气中氮氧化合物的含量也就增加,会引起污染。如何才能达到动力与环保的最佳平衡点,也是现今发动机技术的着重研究课题。

● 汽缸数

汽缸:

举个简单的例子,见过医院打针用的针管吧?里面推药的是活塞,那个外壳就可以看做是汽缸。按照冷却方式分为水冷发动机气缸体和风冷发动机气缸体。

汽缸数:

汽车发动机常用缸数有3、4、6、8、10、12、16缸。一般家用轿车发动机采用4缸居多,售价多在20万以下。6缸以上的车型售价基本都高于20万元。

而8缸甚至更多缸数的发动机则是被中大型豪华车和超级跑车所采用。这其中,具备1001匹马力的布加迪威龙就是16缸发动机的典型代表车型。

布加迪威龙

汽缸数与发动机性能的关系:

一般来说,在同等缸径下,缸数越多,排量越大功率越高,也就是最高速越高。在同等排量下,缸数越多,缸径越小,转速越高扭矩越大,也就是加速度越快。

●每缸气门数

气门:

指汽缸的进气门和排气门。进气门直接连接进气歧管是发动机用来吸入混合气(或新鲜空气)的入口;排气门则连接着排气歧管,是发动机排出燃烧废气的出口。

每缸气门数:

是指发动机每个汽缸所拥有的气门数,有两气门,三气门,四气门和五气门几种。达到或超过六气门不仅使配气结构过于复杂,还会导致发动机寿命缩短,气门开启的空间帘区(气门的圆周和气门的升程)也较小,效率下降。因此,四气门技术目前使用最为普遍。

气门数与发动机性能的关系:

一般来说,同等排量情况下,气门越多,进排气效率越好,就像一个人跑步,累得气喘吁吁时,需要张大嘴巴呼吸。排量较大、功率较大的发动机要采用多气门技术。

汽缸和气门数可以作为判断发动机优劣的标准之一,但不是唯一标准。宝马公司的直列4缸2.0升发动机,由于其独特的可变气门技术,在功率和扭矩输出上丝毫不逊于普通的6缸机,这也是宝马318轿车动力性广受好评的原因。奔驰公司长期采用每缸3气门技术,也达到了很好的功率、扭矩和环保水平。

● 凸轮轴和气门的布置

凸轮轴:

凸轮轴是活塞发动机里的一个部件。它的作用是控制气门的开启和闭合动作。其材质一般是特种铸铁,偶尔也有采用锻件的。凸轮轴的主体是一根与汽缸组长度相同的圆柱形棒体。上面套有若干个凸轮,用于驱动气门。凸轮轴的一端是轴承支撑点,另一端与驱动轮相连接。

凸轮:

凸轮侧面呈鸡蛋形,目的在于保证汽缸充分的进气和排气。一般来说直列式发动机中,一个凸轮都对应一个气门,V型发动机或水平对置式发动机则是每两个气门共享一个凸轮。而转子发动机和无阀配气发动机由于其特殊的结构,并不需要凸轮。

凸轮轴和气门的布置:

在以前很长的一段时间里,底置式凸轮轴在内燃机中最为常见。而现在大多数量产车的发动

机配备的是顶置式凸轮轴。

顶置式气门与顶置凸轮轴(OHC):

发动机的凸轮轴安装位置有下置、中置、顶置三种形式。轿车发动机由于每分钟转速可达5000转以上,为保证进排气效率,都采用进气门和排气门倒挂的形式,即顶置式气门装置。

现代轿车发动机将凸轮轴配置在发动机的上方,相比中、下置更为合理。既缩短了凸轮轴与气门之间的距离,又省略了气门的挺杆和挺柱,将发动机的结构变得更加紧凑。更重要的是,这种安装方式可以减少整个系统往复运动的质量,提高了传动效率。

顶置凸轮轴分类:

按凸轮轴数目的多少,一般可分为单顶置凸轮轴(SOHC)和双顶置凸轮轴(DOHC)两种比较常见,当然还有制作工艺更复杂的四顶置凸轮轴。

单顶置凸轮轴(SOHC)就是Single Overhead Camshaft。在双顶置凸轮轴出现之前,就叫OHC,单顶置凸轮轴的凸轮轴置于汽缸顶部,在气门之上。有些还配有可变正时凸轮用来调整发动机扭矩曲线,满足不同的使用要求。

双顶置凸轮轴(DOHC)就是Double Overhead Camshaft。每个汽缸头有两个曲轴,V型汽缸因为分坐左右两块,就会总共有4个曲轴,这样对每缸4气门的设计就很便利,同时发动机也可达到更高的转速。而气门的位置更有利于高马力输出,但是这样的设计,其缺点就是重量加大,构造复杂且较昂贵。

四种常见的气门和凸轮轴布置:

第一种:顶置气门,侧置凸轮轴。即凸轮轴在气缸侧面,由正时齿轮直接驱动。由于此布置

必须使用气门挺杆来传递动力,往复运动的零件较多,惯性质量大,容易引起振动,所以现在已经基本不采用这种布置了。

如今比较常见的两种布置类型是:顶置气门,顶置凸轮轴(SOHC)和顶置气门,双顶置凸轮轴(DOHC)。

这两种顶置气门布置各有优势,单顶置凸轮轴(SOHC)的成本要低于双顶置凸轮轴(DOHC)。单顶置凸轮轴(SOHC)在低转速的马力较好,比较适合市区行车;而双顶置凸轮轴(DOHC)则在高转速时马力较佳,比较适合高速行驶。汽车厂商会根据发动机成本预算和车型受众对象的不同来选择相应布置,所以我们并不能单纯以发动机的排量大小、车型的分类或是车价的高低来简单界定单还是双顶置凸轮轴。

例如比亚迪F0,虽然是发动机只有1.0L排量微小型车,但使用的就是顶置气门,双顶置凸轮轴。而本田第八代雅阁中的2.0车型考虑到各方面因素,发动机所用的是顶置气门,单顶置凸轮轴也很正常。不过,就未来的发展趋势而言,顶置气门,双顶置凸轮轴将是更为主流的布置。

本田雅阁

第四种:顶置气门,四顶置凸轮轴。这是一种更高端的布置,一般用在采用V型或W型发动机的顶级跑车上面。像世爵C8就是典型的四顶置凸轮轴代表车型。

世爵C8

●缸径×行程(mm)

缸径、行程:

缸径是气缸的直径。行程是活塞运动行程上止点和下止点的距离。发动机工作时活塞在汽缸中往复运动,从汽缸的一端到另一端的距离叫做一个行程。也叫冲程。

缸径×行程:

缸径×行程﹙Bore×Stroke﹚所得到的乘积,就是单缸的排气量。再乘以汽缸数目,所得到的乘积,就是整具发动机的排气量。

四冲程发动机:

按发动机在一个工作循环期间活塞往复运动的行程数,分为四冲程和二冲程发动机。在一个工作循环中活塞往复四个行程的内燃,称作四冲程往复活塞式内燃机,完成进气、压缩、作功和排气四个过程叫一个工作循环。而活塞往复两个行程完成一个工作循环的则称作二冲程往复活塞式内燃机。

“大缸径×短行程”与“小缸径×长行程”:

在排气量不变的前提下“大缸径×短行程”的设计,缺点是在发动机室里会占掉比较大的地方。优点是行程短,发动机高度低,整车的重心低,对高速稳定度、操控表现都有助益。

相对的,“小缸径×长行程”的设计优点是发动机占用空间小,车头有机会设计得较短,把宝贵的空间让出来给乘客。缺点是发动机的高度会变高,车头降低风阻和流线造型的设计不容易实现。

“缸径×行程”与发动机性能的关系:

“小缸径×长行程”峰值扭力出现的转速会比较低,适于低转速马力发动机,起步加速快。这是因为活塞每在汽缸内跑一次的行程较长,因此产生的动力加速度较高,扭力也就容易变大!用最简单的解释,就好比拳击手,直拳比刺拳有力,勾拳又会比直拳有力,是因为出拳前行程较长的缘故。

反之,“大缸径×短行程”设计的发动机,因为活塞的每个行程较短,产生的动力加速度较低,因此必须靠多跑几次才能获得等量的力道输出,适于高转速马力发动机,更高的极限速度是它的专长。而想要起步加速快的话,就只能靠提高发动机转速来实现了。

● 排放水平

排放水平是指从发动机排出的废气中CO(一氧化碳)、HC+NOx(碳氢化合物和氮氧化物)、PM(微粒,碳烟)等有害气体不得高于国家规定的标准。从2004年1月1日起,北京对机动车的尾气排放标准由欧洲I号改为欧洲II号,到2008年,正式实施欧洲III号标准。

欧洲I号标准:

汽油车一氧化碳不得超过3.16克/公里,碳氢化合物不得超过1.13克/公里。柴油车的颗粒物标准不得超过0.18克/公里,耐久性要求为5万公里。

欧洲II号标准:

汽油车一氧化碳不超过2.2克/公里,碳氢化合物不超过0.5克/公里。柴油车一氧化碳不超过1.0克/公里,碳氢化合物不超过0.7克/公里,颗粒物不超过0.08克/公里。

欧洲III号标准(等同于国三):

汽车排放从欧Ⅱ到欧Ⅲ,不是像欧Ⅰ到欧Ⅱ那样简单,提升幅度大了很多。欧Ⅲ排放标准比欧Ⅱ在NEDC和燃油蒸发排放检测项目上的内容有所变化,欧Ⅲ标准中增加了低温HC/CO排放检测、车载诊断系统检测和在用车排放检测。从欧Ⅱ到欧Ⅲ执行不同的排放控制技术,欧Ⅱ排放标准只要求三元催化器及发动机改进措施两项,而欧Ⅲ排放则还包括改进的催化转化器涂层、催化剂加热及二次空气喷射。可以看出,欧Ⅲ排放控制技术要比欧Ⅱ复杂和困难得多。

三元催化器

欧洲Ⅳ号标准:

欧洲Ⅲ号标准污染物排放限值比Ⅱ号标准降低约30%,而Ⅳ号标准则降低60%。7辆执行欧Ⅱ标准的汽车,相当于1辆化油器车的污染物排放量;14辆执行欧Ⅲ标准的汽车,才相当于1辆化油器车的污染物排放量;而欧Ⅳ标准要求更高,更臻完美。

排放水平与标识:

排放水平达到欧Ⅱ与欧Ⅲ但是不带OBD的车辆,是二星绿色车标,达到欧Ⅲ标准带OBD的车辆发三星绿色车标,现在的新车上牌照都要求达到欧Ⅳ标准,是四星绿色车标。

北京地区从2008年1月1日起就已出台政策规定,所有新车上牌照必须要达到欧Ⅳ标

准。

● 燃料类型

汽油发动机与柴油发动机:

汽油发动机是以汽油作为燃料的发动机。优点是转速高,结构简单,质量轻,造价低廉,运转平稳,使用维修方便。缺点是热效率低于柴油机,油耗较高,点火系统比柴油机复杂,可靠性和维修的方便性也不如柴油机。

柴油发动机是燃烧柴油来获取能量释放的发动机。优点是功率大、经济性能好,适合于载货汽车的使用。缺点是成本较高,振动噪声大,冬季冷车时起动困难。

90号、93号、95号、97号、98号汽油:

汽油是由C4~C10各族烃类组成,外观为透明的液体。按研究法辛烷值分为90号、93号、95号三个牌号。目前市场上所见到的97号、98号汽油产品执行的产品标准均为企业标准。

标号代表辛烷值,辛烷值越高,抗爆性能就越好,燃烧完全、积炭少,具有较好的安定性,在贮运和使用过程中不易出现氧化变质,对发动机部件及储油容器无腐蚀性。

汽油选用的原则:

一般来说,压缩比为7—8的汽油机应选用90号汽油;压缩比在8以上的汽油机应选用93号或97号汽油。价格越昂贵的汽车发动机工艺越复杂,应使用标号97或更高的汽油。

需要说明的一点是,在某些特殊情况下,如在较高海拔行驶或是需要大负荷、大扭矩拖挂车辆货物的时候,发动机容易产生爆震,应选用较高辛烷值的汽油。

无铅汽油:

图解常见汽车发动机结构图

发动机作为汽车的动力源泉,就像人的心脏一样。不过不同人的心脏大小和构造差别不大,但是不同汽车的发动机的内部结构就有着千差万别,那不同的发动机的构造都有哪些不同?下面我们一起了解一下。 ●汽车动力的来源 汽车的动力源泉就是发动机,而发动机的动力则来源于气缸内部。发动机气缸就是一个把燃料的内能转化为动能的场所,可以简单理解为,燃料在汽缸内燃烧,产生巨大压力推动活塞上下运动,通过连杆把力传给曲轴,最终转化为旋转运动,再通过变速器和传动轴,把动力传递到驱动车轮上,从而推动汽车前进。 ●气缸数不能过多

一般的汽车都是以四缸和六缸发动机居多,既然发动机的动力主要是来源于气缸,那是不是气缸越多就越好呢?其实不然,随着汽缸数的增加,发动机的零部件也相应的增加,发动机的结构会更为复杂,这也降低发动机的可靠性,另外也会提高发动机制造成本和后期的维护费用。所以,汽车发动机的汽缸数都是根据发动机的用途和性能要求进行综合权衡后做出的选择。像V12型发动机、W12型发动机和W16型发动机只运用于少数的高性能汽车上。 ●V型发动机结构 其实V型发动机,简单理解就是将相邻气缸以一定的角度组合在一起,从侧面看像V字型,就是V型发动机。V型发动机相对于直列发动机而言,它的高度和长度有所减少,这样可以使得发动机盖更低一些,满足空气动力学的要求。而V型发动机的气缸是成一个角度对向布置的,可以抵消一部分的震动,但是不

好的是必须要使用两个气缸盖,结构相对复杂。虽然发动机的高度减低了,但是它的宽度也相应增加,这样对于固定空间的发动机舱,安装其他装置就不容易了。 ●W型发动机结构 将V型发动机两侧的气缸再进行小角度的错开,就是W型发动机了。W型发动机相对于V型发动机,优点是曲轴可更短一些,重量也可轻化些,但是宽度也相应增大,发动机舱也会被塞得更满。缺点是W型发动机结构上被分割成两个部分,结构更为复杂,在运作时会产生很大的震动,所以只有在少数的车上应用。 ●水平对置发动机结构

汽车发动机型号解释

发动机型号解释 1、 玉柴发动机 序号 代表含义以下内容来源:https://www.360docs.net/doc/3017511876.html,/,转载请注明出处 1表示厂家代号 2表示缸数;6表示6缸,4表示4缸 3表示发动机系列,玉柴有J、A、L、M系列等,同一系列发动机排量,缸 径等参数相同,上图中表示J系列发动机,排量6.5L。 4表示发动机马力,此参数乘以10表示发动机实际马力,如图示为180马力5表示发动机技术路线,30表示高压共轨,31表示单体泵,33表示EGR

2、 锡柴发动机序号 代表含义1 表示厂家代号 2 表示缸数;6表示6 缸,4表示4缸3 表示发动机系列,锡柴有DF3、SF2、SL1、DL1,DL2,DN1系列等,同一系列发动机排量,缸径等参数相同,上图中表示 DF3系列发动机,排量6.74L。4 表示发动机马力,如图示为 180马力。5 表示发动机的排放标准。6 表示发动机技术路线,无表示高压共轨,U 表示单体泵,F 表示EGR

序号 代表含义1 表示厂家代号 2 表示发动机排量;10表示9.726L 排量,12表示11.596L 排量3 表示发动机马力,此参数发动机的实际马力。4 表示发动机类型,N 表示发动机为降转速提扭矩发动机,无此位表示正常类型发动机 5表示发动机的技术路线,无此位表示共轨发动机,无第四位参数,E31表示外置式 EGR 发动机,E32表示内置式EGR 发动机

序号 代表含义1 表示厂家代号(仅限于国三机型)2 表示发动机系列;615表示9.726L 排量3 表示与发动机马力有关的参数,次参数和发动机马力无具体的转化关系5表示发动机的技术路线,无此位或C 表示共轨发动机,E 表示EGR 发动机序号 代表含义1 表示厂家代号 2 表示发动机排量;10表示9.726L 排量,12 表示11.596L 排量3 表示发动机马力,此参数乘以10表示发动机实际马力,上面所示表示 340马力5表示发动机的技术路线,无此位或 C 表示共轨发动机,E 表示EGR 发动机

汽车构造原理图解

汽车构造(发动机,底盘,车身,电气设备) 1. 发动机:发动机2大机构5大系:曲柄连杆机构;配气机构;燃料供给系;冷却系;润滑系;点火系;起动系。 2. 底盘:底盘作用是支承、安装汽车发动机及其各部件、总成,形成汽车的整体造型,并接受发动机的动力,使汽车产生运动,保证正常行驶。底盘由传动系、行驶系、转向系和制动系四部分组成。 3. 车身:车身安装在底盘的车架上,用以驾驶员、旅客乘坐或装载货物。轿车、客车的车身一般是整体结构,货车车身一般是由驾驶室和货箱两部分组成。 4. 电气设备:电气设备由电源和用电设备两大部分组成。电源包括蓄电池和发电机;用电设备包括发动机的起动系、汽油机的点火系和其它用电装置。 性能参数 1. 整车装备质量(kg):汽车完全装备好的质量,包括润滑油、燃料、随车工具、备胎等所有装置的质量。 2. 最大总质量(kg):汽车满载时的总质量。 3. 最大装载质量(kg):汽车在道路上行驶时的最大装载质量。 4. 最大轴载质量(kg):汽车单轴所承载的最大总质量。与道路通过性有关。 5. 车长(mm):汽车长度方向两极端点间的距离。 6. 车宽(mm):汽车宽度方向两极端点间的距离。 7. 车高(mm):汽车最高点至地面间的距离。 8. 轴距(mm):汽车前轴中心至后轴中心的距离。 9. 轮距(mm):同一车轿左右轮胎胎面中心线间的距离。 10. 前悬(mm):汽车最前端至前轴中心的距离。 11. 后悬(mm):汽车最后端至后轴中心的距离。 12. 最小离地间隙(mm):汽车满载时,最低点至地面的距离。 13. 接近角(°):汽车前端突出点向前轮引的切线与地面的夹角。 14. 离去角(°):汽车后端突出点向后轮引的切线与地面的夹角。 15. 转弯半径(mm):汽车转向时,汽车外侧转向轮的中心平面在车辆支承平面上的轨迹圆半径。转向盘转到极限位置时的转弯半径为最小转弯半径。 16. 最高车速(km/h):汽车在平直道路上行驶时能达到的最大速度。 17. 最大爬坡度(%):汽车满载时的最大爬坡能力。 18. 平均燃料消耗量(L/100km):汽车在道路上行驶时每百公里平均燃料消耗量。 19. 车轮数和驱动轮数(n×m):车轮数以轮毂数为计量依据,n代表汽车的车轮总数,m 代表驱动轮数。

优化汽车发动机性能

一、前言 20世纪90年代以来,汽车行业的竞争已从单一的性能竞争转向性能、环保、节能等多元综合竞争。仅就汽车发动机而言,为应对世界能源危机和减少对环境污染,其研究开发工作已侧重于降低油耗、减少排放、轻质及减少磨损等方面,在这些研究中优化技术将得到广泛的应用。汽车发动机与航空发动机同属热机范畴,二者在许多方面有相通之处。近年来,汽车发动机优化工作已具有一定基础,而针对航空航天发动机所建立及应用的优化技术则已取得较大的进展。将这些先进优化技术特别是多学科优化技术移植应用于汽车发动机优化设计可望提高汽车以节能与环保为中心的综合性能。作者就当前汽车发动机及航空航天发动机领域的优化技术的一些进展作一个简略的叙述,并对利用优化技术提高汽车发动机综合性能潜力进行一些探讨。二、发动机优化技术研究和应用现状目前各类发动机研发工作的共同重点包括降低油耗、减少排放、减轻质量以及减少磨损等,为了达到这些目标,在发动机设计中应用优化技术是一个重要的手段。当前发动机的优化工作主要在发动机结构、材料、燃料及燃烧、排放以及多学科优化等几个方面展开。(一)发动机结构及材料优化技术发动机结构优化主要是优化关键零部件的形状以改善发动机性能,此方面的研究有:将BP神经网络和遗传算法相结合用于航空发动机的结构优化以获得最优的推重比;通过优化固体火箭发动机的结构以获得最轻的结构质量和最大的装填密度;总结了国内外对航空发动机叶片-轮盘结构优化设计的研究现状,提出了一种将动态分析与结构形状优化设计相结合的新方法;阐述了CAD/CFD技术在汽车发动机设计开发中的重要性,给出了CAD/CFD技术在电喷汽油机进气歧管设计和柴油机螺旋气道设计的应用效果;将边界元法与罚函数优化方法相结合,研究了承受拉、压交变载荷的发动机连杆的形状优化;基于一种高效的有限元方法对三维复杂形状连杆进行优化设计;基于有限元分析和优化技术,提出了一种发动机曲轴的结构优化方法;对火箭发动机机匣进行优化,讨论了应力比及PV/W的优化选择问题等。为改进发动机结构及使发动机轻量化,对其材料进行优化设计是一种重要手段。近年来,包括新型复合材料如碳化硅、氮化硅、氧化锆、石墨及合成石墨等不断用于发动机结构。通过建立发动机复合材料叶片各截面应力应变解析式和最大应力准则,对叶片进行最大强度的优化分析。对固体火箭发动机的复合材料壳体进行优化设计,使得发动机结构在满足强度约束的要求下获得最小的质量。(二)发动机燃烧优化技术随着世界能源问题和环境污染问题的日趋严重,飞机及汽车作为污染环境和消耗能源的大户,备受人们的关注。发动机燃烧过程直接影响节能和环保,对发动机燃烧过程优化的研究越来越受到重视。目前主要是从喷射系统、进气管系、燃烧室形状等几方面对其进行优化设计。在发动机燃烧喷射系统方面,借助于先进电子控制技术,能准确地调节燃油供给,优化喷油定时和喷油次数,控制气缸内的混合状态、燃烧室内的燃油分布,降低排放污染。对新型脉动式电控燃油喷射系统的喷射定时问题,研究了发动机直接喷射技术的优化问题。采用了多目标设计方法,优化了发动机燃烧系统和配气机构匹配。在新型燃料发动机燃烧过程的优化研究中,在建立氢燃料发动机最优控制模型的基础上,提出了双模式控制方式;用计算机仿真分析手段对天然气汽车发动机的空燃比进行优化来改善发动机的性能。(三)发动机多学科优化技术发动机设计以结构、热力、燃烧、强度、振动、流体、传热等多个学科为基础,可变因素多,随机性大,是一个可变互耦系统的优化问题。多学科设计优化通过充分利用各个学科之间的相互作用所产生的协同效应,获得系统的整体最优解,因而在发动机设计图1 传统设计流程图上有很大的应用优势。 在航空发动机领域,多学科优化技术已被用于建立优化模型并开展了涡轮叶片设计、压气机叶片设计及发动机总体方案设计,将传统的优化设计方法(如图1所示)转变为图2所示多学科优化并行设计流程,综合考虑了气动、振动、强度和疲劳寿命等方面的要求,可缩短设计周期和提高优化效果。如:利用单级优化算法对航空发动机喷管进行了多学科优化设计;在内燃机的优化研究中引入了多学科鲁棒性设计优化方法来评价设计过程中的不确定性;采

发动机性能有关术语

发动机性能有关术语 Accelerator 加速踏板——一种控制装置,通常由脚操作,连接到节气门。Accelerator pump加速泵——化油器内的泵,当节气门位置变化时,为过渡工况提供额外的燃油。 Accessory drive 附件驱动——发动机罩下由驱动带驱动的附件——风扇、发动机、空调、动力转向、空气喷射泵。 Air/fuel mixture空气/燃油混合气——提供给发动机的空气和燃油混合气。Analyzer 分析仪——一种设备,如示波器,具有数据读取功能,帮助进行正确修理。 Automatic choke 自动阻风门——自动确定阻风门位置的系统。 Back pressure 背压——发动机曲轴箱内积累的多余压力;排气系统阻力。 Battery 蓄电池——以化学能形式存储电能的装置。 Battery cable 蓄电池电缆——连接到蓄电池正极(火线)和负极(地线)的粗导线。Battery charger 蓄电池充电器——用来给蓄电池充电和再充电的设备。 Bearing 轴承——具有内外座圈、一排或多排钢球的装置。 Catalytic converter催化转化器——一种汽车排气系统部件,用不锈钢制造,含有降低发动机排气内碳氢化合物、一氧化碳和氮氧化物的催化剂。Check valve 单向阀——允许液体或气体在一个方向流动而堵住另一个方向的装置。Coil 线圈——点火系统零件,为火花塞提供高电压。 Cold-cranking amperage冷起动电流——完全充电的蓄电池30s内,端电压不会降到 7.2V以下所能提供的电流。 Combustion chamber燃烧室——活塞在上止点位置时活塞上部区域,燃烧就在这里进行。Compression 压缩——将气体挤压到更小空间的过程。 Compression test压缩测试——控制起动阶段气缸所能产生压力的一种测量方式。Comouter 计算机——为了执行操作,能够按照指令进行工作和以期望的方式交换数据而不需要人工干预的系统。 Cooling system 冷却系统——散热器、软管、暖风散热器芯和冷却水套,带走发动机热量并散发到周围空气中。 Cruise control 巡航控制——在各种条件下自动维持预定车速的系统。 Customer complaint客户抱怨——客户提供的故障说明,通常是汽车驾驶员。Cylinder balance 气缸平衡——一种动态测试,每次使一个气缸不工作,比较各缸的动力损失,精确确定工作差的气缸。 Cylinder head 气缸盖——发动机的一部分,覆盖在缸体上。 Cylinder leakagetest气缸泄漏测试——当活塞在上止点位置,气门关闭时,确定气缸密封好坏的一种测试。 Deck 配合面——发动机缸体和缸盖的配合平面。 Dedicated ground专用接地——在汽车上有许多接地连接,有些是特定的部件或电路专用。 Diaphragm 膜片——柔性的类似橡胶的膜。 Digital ohmmeter数字欧姆表——一种向孤立电路提供少量的电流并以数字方式指示电阻值的设备。 Digital voltmeter数字电压表——以数字方式读取电路两点间电压的设备。

汽车详细参数内容

基本参数:360520122200128 车型名称: 厂商指导价:汽车的价格一般有出厂价、官方价、行情价。出厂价是给4S店的,普通人是拿不到的。官方价格是车厂给各地4S店定的标准售价,在销售过程中不能低于该价格,或者不能高于这个价格。行情报价是各地4S店及车厂根据销售情况,随着市场价格的波动进行适当调整的,可高可低,对于销售好的车进行加价处理,对于销售一般的车进行降价处理或者搞一些活动来增加销量。 厂商:自2002年之后,中国汽车行业开始进入爆发式增长阶段,特别是随着私人消费的兴起,轿车需求量开始迅速攀升,并成为推动中国汽车发展的一股重要力量。与此同时,中国在全球汽车产业中的地位也逐渐上升。 2011年,我国汽车市场实现了平稳增长,全年汽车销售超过1850万辆,再次刷新全球历史纪录。今天世界500强汽车企业,15家在中国建厂。在中国获得汽车生产许可的100多家企业中,前13位汽车骨干企业的生产集中度超过90%。主要的汽车生产商有广汽集团、东风集团、上汽集团、长安汽车、一汽、奇瑞、比亚迪、华晨等。 级别:由于在世界范围内并没有统一的汽车分类标准,汽车的级别分类的标准在各大汽车主要生产国都不一样。以我们日常接触最多的轿车来说,美国将轿车按照轴距分类,日本按照工作容积分类,德国按照车型生产平台进行分类,分成A、B、C、D类。而我国国标GB/T 3730.1—1988 规定了轿车按照工作容积级:轿车分类:微型轿车≤1.0;1.0<普及型轿车≤1.6;1.6<中级轿车≤2.5;2.5<中高级轿车≤4.0;高级轿车>4.0。而目前在我国各大厂商通用的分类标准综合是上述几个国家的标准,一般按照轴距,排量和平台分类如下:微型车(即A00级车) 一般是指轴距在2.2米或以下,排量在1.3L以下的车型。微型车主要的优点是外形尺寸比较小,适合在拥堵的城市道路中穿梭,而且在停车找位也有巨大的优势,同时,微型车通常价格比较低,维护费用和油耗都不高,是广大工薪阶层的首选用车。 市面上的微型车车型很多,常见的有九十年代热卖的奥拓,现在还是比较流行的奇瑞Q Q,比亚迪F0,吉利全球鹰熊猫,海马王子,长安奔奔,哈飞路宝等。 小型车(即A0级) 一般是指轴距在2.2至2.5之间。发动机排量在1.3至1.6之间。小型车同样以小巧见长,但它却能够提供比微型车更加宽敞的空间,而且舒适性和便利性都提高了不小。与此同时,小型车的价格也不高,维护费用和油耗都较低,也是工薪阶级上班通勤的好选择。 目前市面上热销的小型车大都都是合资品牌的车型,有广州本田飞度,上海大众POLO,长安福特嘉年华等。 紧凑型车(即A级车) 是最常见的家用车型级别,也是世界上销量最多的车型级别,轴距一般在2.5至2.7米,排量一般在1.6至2.0L。在国内,紧凑型车的售价覆盖了5万元至30万元区间,包括了自主品牌车型,合资车型和纯进口车型,是目前国内汽车销售的主力。 目前国内常见的紧凑型车有东风本田思域,一汽丰田卡罗拉(花冠),一汽大众速腾,上海大众朗逸等;国产品牌车型有长城C50,帝豪EC7等。 中型车(即B级车)

标况工况

气体的标准状态分三种: 1、1954年第十届国际计量大会(CGPM)协议的标准状态是:温度273.15K(0℃),压力101.325KPa。世界各国科技领域广泛采用这一标态。 2、国际标准化组织和美国国家标准规定以温度288.15K(15℃),压力101.325KPa作为计量气体体积流量的标态。 3、我国《天然气流量的标准孔板计算方法》规定以温度293.15K(20℃),压力101.325KPa 作为计量气体体积流量的标准状态。 气体状态方程:PV=nRT 工况与标况换算:P1*V1/T1=P2*V2/T2 对于气体来说不同的压力,其体积会差很大(气体很易压缩),当然体积流量会差很大,同径条件下不同工况下的流速自然也会差很大,比方同直径蒸汽管线对于10bar和3.5bar时最大流量是不同的。 工艺计算时用工况或用标况取决于你查的图表、用的常数,两种状态的计算都是可能出现的。比方在定义压缩机参数时,我们常用标况下的参数来给厂家提条件,同时我们也提供温度大气压力等参数供做工况下的校正,这么做的好处是我们可以用同一个状态来表明参数,就如同泵的性能曲线都是用清水来说的,没人会说汽油的性能曲线是什么,原油的性能曲线又是什么。 在很多计算中用的都是工况,比方计算流速时。 否把你所提问题的介质说下。 Qn=Zn/Zg * (Pg+Pa)/Pn * Tn/Tg * Qg Qn标况流量 Zn标况状态下的压缩因子 Zg 工况状态下的压缩因子 Pg相对压力,就是通常说的压力多少 Pa标准大气压 Pg+Pa工况下的绝对压力 Pn标况压力,通常为1标准大气压 Tn标况温度 Tg工况温度 Qg工况流量 带n的是标况参数,带g的是工况参数。 一般情况下也没那么复杂, 二者指的都是在一个大气压下,区别只是温度的不同: 标况是0摄氏度;工况是20摄氏度。

汽车性能指标及参数

厂商提供的汽车说明书,反映了汽车的基本性能和技术含量,读懂汽车说明书对选购汽车具有指导意义。一般的汽车说明书含有下列内容: (1)发动机的基本参数汽车发动机的基本参数主要包括发动机缸数、气缸的排列形式、气门数、排气量、最高输出功率和最大转矩。 ①缸数——汽车发动机常用缸数有3,4、5,6、8缸。排量1升以下的发动机常用3缸,2.5升以下一般为4缸发动机,3升左右的发动机一般为6缸,4升左右为8缸,5.5升以上用12缸发动机。一般来说,在同等缸径下,缸数越多,排量越大,功率越高;在同等排量下,缸数越多,缸径越小,转速可以提高,从而获得较大的提升功率。 ②气缸的排列形式——一般5缸以下的发动机的气缸多采用直列方式排列,少数6缸发动机也有直列方式排列的。直列发动机的气缸体成一字排开,缸体、缸盖和曲轴结构简单,制造成本低,低速转矩特性好,燃料消耗少,尺寸紧凑,应用比较广泛;缺点是功率较低。直列6缸的动平衡较好,振动相对较小。大多6到12缸发动机采用V形排列,v形即气缸分两列错开角度布置,形体紧凑,v形发动机长度和高度尺寸小\布置起来非常方便。V8发动机结构非常复杂,制造成本很高,所以使用的较少,而V12发动机则过大过重,只有极个别的高级轿车采用。 ③气门数——国产发动机大多采用每缸2气门,即一个进气门,一个排气门;国外轿车发动机普遍采用每缸4气门结构,即2个进气门,2个排气门,提高了进、排气的效率;国外有的公司开始采用每缸5气门结构,即3个进气门,2个排气门,主要作用是加大进气量,使燃烧更加彻底。气门数量并不是越多越好,5气门确实可以提高进气效率,但其结构极其复杂,加工困难,采用较少,国内生产的新捷达王就采用五气门发动机。 ④排气量——气缸工作容积是指活塞从上止点到下止点所扫过的气体容积,又称为单缸排量,它取决于缸径和活塞行程。发动机排量是各缸工作容积的总和,一般用于升( L)来表示。发动机排量是最重要的结构参数之一,它比缸径和缸数更能代表发动机的大小,发动机的许多指标都同排气量密切相关。 ⑤最高输出功率——最高输出功率一般用马力(hp )或千瓦(kW)来表示。发动机的输出功率同转速关系很大,随着转速的增加,发动机的功率也相应提高;但是到了一定的转速以后,功率反而呈下降趋势。一般在汽车使用说明中最高输出功率用每分钟转速来表示(r/min),如lOOhp/5000r/min,即代表在每分钟5000转时发动机最高输出功率为100马力。 ⑥最大转矩——它指发动机从曲轴端输出的力矩,转矩的表示方法是N·m/r/min,最大转矩一般出现在发动机的中、低转速范围,随着转速的提高,转矩反而会下降。当然,在选择时要权衡一下怎样合理使用、不浪费现有功能。比如,北京冬夏都有必要开空调,在选择发动机功率时就要考虑到不能太小;只是在城市环路上下班交通用车,就没有必要挑过大马力的发动机。因此要尽量做到经济、合理选配发动机。

汽车发动机可靠性试验方法 GBT 19055-2003

GB/T 19055-2003 前言 本标准与GB/T 18297-2001《汽车发动机性能试验方法》属于同一系列标准,系汽车发动机试验方法的重要组成部分。 本标准自实施之日起,代替QC/T 525-1999。 本标准的附录A为规范性附录。 本标准由中国汽车工业协会提出。 本标准由全国汽车标准化技术委员会归口。 本标准起草单位:东风汽车工程研究院。 本标准主要起草人:方达淳、吴新潮、饶如麟、鲍东辉、周明彪。 引言 本标准系在JBn 3744-84即QC/T 525-1999《汽车发动机可靠性试验方法》长期使用经验的基础上参考国外的先进技术,制定了本标准。 本标准对QC/T 525-1999的重大技术修改如下: ——拓展了标准适用范围,不仅适用于燃用汽、柴油的发动机,还适用于燃用天然气、液化石油气和醇类等燃料的发动机; ——修改了可靠性试验规范,对最大总质量小于3.5t的汽车用发动机采用更接近使用工况的交变负荷试验规范;对最大总质量在3.5t~12t之间的汽车用发动机采用混合负荷试验规范,以改进润滑状态;冷热冲击试验过去仅在压燃机上进行,现扩展到点燃机,并增加了“停车”工况,使零部件承受的温度变化率加大; ——修改了全负荷时最大活塞漏气量的限值,首次推出适用于不同转速范围的非增压机、增压机、增压中冷机的限值计算公式,使评定更为合理; ——为使汽车发动机满足国家排放标准对颗粒排放物限值的要求,修改了额定转速全负荷时机油/燃料消耗比的限值(由原来1.8%改为0.3%); ——增加“试验结果的整理”的内容,并单独列为一事,要求对整机性能稳定性、零部件损坏和磨损等进行更为规范和详尽的评定; ——增加“试验报告”的内容,并单独列为一章,明确试验报告主要内容,使试验报告更为规范。 ——增加了附录A《汽车发动机可靠性评定方法》,使评定更为准确和全面, ——鉴于汽车发动机排放污染物必须满足国家排放标准的要求,在认证时按排放标准进行专项考核,故本标准不再涉及。 汽车发动机可靠性试验方法 1 范围 本标准规定厂汽车发动机在台架上整机的一般可靠性试验方法,具中包括负荷试验规范(如交变负荷、混合负荷和全速全负荷)、冷热冲击试验规范及可靠性评定方法。 本标准适用于乘用车、商用车的水冷发动机,不适用于摩托车及拖拉机用发动机。该类发动机属往复式、转子式,不含自由活塞式。其中包括点燃机及压燃机;二冲程机及四冲程机;非增压机及增压机(机械

汽车发动机构造及原理

第1篇汽车发动机构造与原理 第1章发动机基本结构与工作原理 内容提要 1.四冲程汽油机基本结构与工作原理 2.四冲程柴油机基本结构与工作原理 3.二冲程汽油机基本结构与工作原理 4.发动机的分类 5.发动机的主要性能指标 发动机:将其它形式的能量转化为机械能的机器。 内燃机:将燃料在气缸内部燃烧产生的热能直接转化为机械能的动力机械。有活塞式和旋转式两大类。本书所提汽车发动机,如无特殊说明,都是指往复活塞式内燃机。 内燃机特点:单机功率范围大(0.6-16860kW)、热效率高(汽油机略高于0.3,柴油机达0.4左右)、体积小、质量轻、操作简单,便于移动和起动性能好等优点。被广泛应用于汽车、火车、工程机械、拖拉机、发电机、船舶、坦克、排灌机械和众多其它机械的动力。 1.1 四冲程发动机基 本结构及工作原理 1.1.1 四冲程汽油机基本结 构及工作原理 1.四冲程汽油机基本结构 (图1-2) 2.四冲程汽油机基本工 作原理(图1-2) 表1-1 四冲程汽油机工作过 程 图1-2 四冲程汽油机基本结构简图 1-气缸 2-活塞 3-连杆 4-曲轴 5-气缸盖 6-进气 门 7-进气道 8-电控喷油器 9-火花塞 10-排气门

3.工作过程分析 (1)四冲程发动机:活塞在上、下止点间往复移动四个行程(相当于曲轴旋转了两周),完成进气、压缩、作功、排气一个工作循环的发动机就称为四冲程发动机。 四个行程中,只有一个行程作功,造成曲轴转速不均匀,工作振动大。所以在曲轴后端安装了一个质量较大的飞轮,作功时飞轮吸收储存能量,其余三个行程则依靠飞轮惯性维持转动。 (2)冲程与活塞行程: 冲程:指发动机的类型; 行程S:指活塞在上、下两个止点之间距离; 气缸工作容积V s:一个活塞在一个行程中所扫过的容积。 式中V s——工作容积(m3); D——气缸直径(mm); S——活塞行程(mm)。 发动机的排量V st:一台发动机所有气缸工作容积之和。 式中V st——发动机的排量(L); i——气缸数。 (3)压缩行程的作用 一是提高进入气缸内混合气的压力和温度(压缩终了的气缸内气体压力可达0.6~1.2MPa,温度达600K~700K),为混合气迅速着火燃烧创造条件; 二是可以有效提高发动机的燃烧热效率η。由热力学第一定律 当混合气被压缩程度提高时,发动机混合气燃烧所达到的最高温度(T1)升高,而排气的温度(T2)降低,导致热效率提高。 1860年,法国人Lenoir(勒努瓦)研制成功的世界第一台内燃机,没有压缩行程,热效率仅4.5%;1876年,德国人奥托(Otto)制造出第一台四冲程内燃机,采用压缩行程,虽然压缩比只有2.5,但热效率却提高到12%,有力地证明了科学是第一生产力这个真理。 压缩比ε:气缸内气体被压缩的程度。 式中V a——气缸总容积(活塞处于下止点时,活塞顶部以上的气缸容积);

汽车发动机常见参数解析

对于多数车主而言,对车辆发动机是否有力、耐用、安静、省油等,都十分关心。然而打开发动机盖,林列于发动机舱内的发动机及其他机构,实在也让人眼花缭乱。大家都知道发动机的重要性,但却因为认识不够,关于发动机的知识也很少能有系统的按各机构、系统来了解,更不要说是每一个机构是如何运作的了。 空燃比(AFR——Air Fuel Ratio) 空燃比、容积效率、点火正时等参数在发动机的控制中十分重要,发动机要能发会最大性能及符合环保法规,这些参数必须正确的应用与设定。

空燃比是指燃料与空气的质量比,当我们说空燃比为13或13:1,即表示进入燃烧室的燃油质量是空气质量的13倍,空燃比数字越大,代表混合气越稀,数字越小则越浓。。依照汽油的燃烧化学式,燃油与空气的当量比为14.7左右,也就是当空燃比在14.7:1时,所有空气中的氧会与汽油完全反应。然而在发动机调校时,有一个调校项目叫做 LBT(Leanest Mixture That Gives Best Torque),就是在发动机能产生最大扭力下,给予最大 (最稀) 的空燃比,一般发动机在LBT时的空燃比都在12.5上下,原因是因为在这个空燃比下的混合气之燃烧速度最合适,能给予发动机最大的性能。然而当油门开启达到一定程度时,发动机会将空燃比设定小 (浓) 一些,以降低燃烧温度保护发动机及触媒转换器。 容积效率(VE——Volumetric Efficiency) 容积效率并不是某些人所谓「发动机马力除以排气量」,而是指在一大气压下,每一个进气行程中,被吸入汽缸之气体体积与该汽缸之排气量的比值。在一般发动机中,活塞自上死点移动至下死点所扫过的体积我们称为「排气量」,而排气量也等于发动机的进气量。

汽车发动机性能检测

实验一 汽车发动机性能检测 一、实验目的 1、 了解汽车发动机台架、测功机、油耗计的结构、工作原理及使用方法; 2、 了解测功机、油耗计的种类及测量原理; 3、 了解汽车发动机的检测内容和方法,掌握测试发动机转速特性的方法; 4、 掌握发动机各项参数的检测方法以及检测结果分析方法; 5、 分析实验中可能出现的问题,并作出预案,以备出现紧急情况时及时处置。 二、实验设备与工具 1、桑塔那AJR 型发动机1台 2、FC2000发动机自动测控系统 GW 电涡流测功机 FC2010A 测控仪自动控制单元 FC2110油门/励磁驱动单元 3、FC2210智能油耗仪 三、实验课时与分组 3学时、8~10人一组 四、FC2000发动机自动测控系统简介 FC2000发动机自动测控系统由GW 电涡流测功机、FC2010测控仪(包括FC2010A 测控仪自动控制单元、FC2110油门/励磁驱动单元等)、FC2020数据采集系统、FC2310角行程油门执行器、FC2000系统软件等组成。FC2010A 测控仪自动控制单元、FC2110油门/励磁驱动单元则是测控系统在主要控制元件。 FC2010A 测控仪自动控制单元控制面板见下图1所示。 图1 FC2010A 测控仪自动控制单元控制面板 FC2010发动机测控仪 长沙湘仪动力测试仪器有限公司 转速 r/min 转矩 N.m 功率 kW 油压 kPa 油门 % 水温 ℃ 油温 ℃ 电流 % 排温 ℃ 油耗 g/kw.h FUN CONTROL /P SET 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 M n P REM PRT M/n M/P n/M M/n 2 n/P P1/P 17

工况缩写

电厂工况缩写 2009-09-16 10:19:26| 分类:默认分类| 标签:|字号大中小订阅 BMCR 锅炉最大蒸发量,主要是在满足蒸汽参数,炉膛安全情况下的最大出力。在设计时往往在热力计算中输入该值,看看热力参数是否合理,来确定锅炉各受热面,含炉膛的面积,管子规格,材料等。 往往锅炉的实际最大蒸发量大于合同要求的蒸发量。一般锅炉厂都留有一定裕度。 锅炉BRL对应于汽机TRL工况,即ECR额定工况,目前上锅引进ALSTOM技术的超临界锅炉热力计算书和技术协议均用BRL表示额定工况,以前引进CE技术的常用ECR表示; VWO(汽机调门全开工况)来表示BMCR。 TRL 工况是指汽轮机的能力工况, TMCR是汽轮机的最大出力工况, VWO是阀门全开工况,THA是汽轮机额定出力工况。 把T换成B就是锅炉的。 汽轮机工况TMCR VWO TRL 2010-01-28 14:42:30| 分类:major&thesis | 标签:|字号大中小订阅 进口大容量火力发电设备技术谈判指南1996』--适合于300MW机组一.汽机1。额定功率(铭牌功率TRL)是指在额定的主蒸汽及再热蒸汽参数、背压11.8KPa绝对压力,补给水率3%以及回热系统正常投入条件下,考虑扣除非同轴励磁、润滑及密封油泵等所耗功率后,制造厂能保证在寿命期内任何时间都能安全连续地在额定功率因素、额定氢压(氢冷发电机)下发电机输出的功率。此时调节阀应仍有一定裕度,以保证满足一定调频等需要。在所述额定功率定义条件下的进汽量称为额定进汽量。2。最大连续功率(T -MCR)是指在1.额定功率条件下,但背压为考虑年平均水温等因素确定的背压,(设计背压)补给水率为0%的情况下,制作厂能保证在寿命期内安全连续在额定功率因素、额定氢压(氢冷发电机)下发电机输出的功率。该功率也可作为保证热耗率和汽耗率的功率。保证热耗率考核工况:系指在上述条件下,将出力为额定功率时的热耗率和汽耗率作为保证,此工况称为保证热耗率的考核工况。 3.阀门全开功率(VWO)是指汽轮机在调节阀全开时的进汽量以及所述T-MCR定义条件下发电机端输出的功率。一般在VWO下的进汽量至少应为额定进汽量的1.05倍。此流量应为保证值。上述所指是由主汽轮机机械驱动或由主汽轮机供汽给小汽轮机驱动的给水泵,所需功率不应计算在额定功率中,但进汽量是按汽动给水泵为基础的,如果采用电动给水泵时,所需功率应自额定功率中减除(但在考核热耗率和汽耗率时是否应计入所述给水泵耗工,可由买卖双方确定)。二.锅炉1.锅炉额定蒸发量,即是汽轮机在TRL工况下的进汽量。对应于:汽轮机额定功率TRL,指在额定进汽参数下,背压11.8KPa,3%的补给水量时,发电机端带额定电功率MVA。 2.锅炉额定蒸发量,也对应汽轮机TMCR工况。对应于:汽轮机最大连续出力TMCR,指在额定进汽参数下,背压4.9KPa,0%补给水量,汽轮机进汽量与TRL的进汽量相同时在发电机端所带的电功率MVA。3.锅炉最大连续出力(BMCR),即是汽轮机在VWO工况下的汽轮机最大进汽量。对应于:汽轮机阀门全开VWO工况,指在额定进汽参数下,背压4.9KPa,0%补给水量时汽轮机的最大进汽

汽车整车参数设计完整

城市微型轿车设计说明书 首先我要说明的是我确定的汽车形式:这款轿车,它是微型家用轿车,它的布置形式是发动机前置前轮驱动,车身形式为舱背式。 1 发动机选择 (1)发动机布置方式:前置 (2)发动机类型和排量:汽油机;排量为1.0L (3)发动机的最大功率P e max 和相应转速n p 的选择和计算 过给定范围,先确定转速 min /5000r n p = 再据公式: )76140 3600 ( 1 3 max max max V c V f m P a D a r a T e A g + = η 计算P e max 其中已知:h km V a /120max = h km V a /80= 35.0=c D 132.0)50(01.01[165.0=-?+?=V f a r i 接下来先确定m a )(940410465640650 kg n n m m a =?+?+=?+?+=α ii 确定整车轮廓,以求A 定轴距L=2100mm 轮距B=1250mm 总长 mm C L L a 338262 .02100≈== 总宽mm L B a a 138260195)3 (=±+= 总高 mm H a 1500= 以上数据主要根据书中提供的公式进行计算后得到,通过查询相关微型 轿车的尺寸资料后,再进一步做调整,最终得到以下数据: mm L a 3300= mm B a 1520= mm H a 1500= 28.25.152.1=?=A 由上述得到的所有数据再带入到已知的计算公式中计算 P e max =65.1kw

(4)计算最大转矩T e max 根据公式:m N n P T p e e ?=?? =? =2.1495000 1 .652.195499549max max α 发动机的主要参数已经得到,汽车的外型尺寸也已经大体知道,对于发动机的位置和尺寸能够在图上大概体现。详情请见所交的总体布置图。 发动机参数如下: 2 汽车尺寸参数 (1)外廓尺寸 经过调整取整 总长mm L a 3500= 总宽 mm B a 1600= 总高 mm H a 1500= (2)轴距L 和轮距B L=2100mm B=1250mm

汽车发动机构造及原理与维修课程标准(doc 43页)

汽车发动机构造及原理与维修课程标准(doc 43页)

汽车发动机构造及原理与维修课程标准 一、基本信息 课程编码编制人制订日期修订人修订日期审核组长审核日期 15 苏明睿2006-2-8 吕生凤2012-5-8 梁成泽2012-6-8 课程类型开课学期总学时学分适合专业 专业必修课第一270 16 汽车维修(中级)前导课程后续课程 二、课程性质和任务: (一)课程性质 本课程是汽车维修专业的专业课。主要内容包括发动机总体构造,发动机检测与维修基础知识,活塞连杆组,曲轴飞轮组,曲柄连杆机构的故障诊断与排除,配气机构的故障诊断与排除,汽油机燃油喷射装置,柴油机燃油供给系统,进排气系统,新型柴油机,润滑系,冷却系,发动机总成装配及竣工验收,发动机的检测与诊断等。 (二)课程任务 本课程的任务是使学生获得中级汽车维修工应具备的专业理论知识和技能。 三、课程目标 (一)知识目标 (1)了解汽车发动机各系统的部件及作用。 (2)熟悉汽车发动机各系统的主要部件构造及工作原理。 (3)基本掌握汽车发动机各系统的主要部件的拆装、调试和修理技能。 (4)基本掌握汽车发动机各系统故障排除的工艺过程及操作技能。 (二)能力目标 学习汽车发动机的构造、工作原理及维护与修理的有关理论知识。使学生掌握发动机的维护与修理的技能,重点掌握:曲柄连杆机构、配气机构、燃料供给系统、润滑系、冷却系、传统点火系统、起动系统等的构造和检修。 (三)素养目标 培养学生专业科学的工作习惯和职业素质,积累丰富制作经验,积累汽车发动机维修功底,使他们在汽车行业中做合格的人才。

四、课程内容、目标及课时安排 序号项目 名称 工作任务知识目标能力目标课时 1 发动机 概论 汽车发动机的分类1.掌握汽车发动机的分类 掌握汽车发动 机总体构造与主 要功能、熟悉发动 机的工作原理 12 汽车发动机总体构 造 1.掌握发动机总体构造与主要 功能 汽油机四冲程发动 机的工作原理 1.熟悉发动机的工作原理 2 曲柄连 杆机构 汽缸体的组成结构 与检测 1.了解机体组的基本组成 2.掌握机体组拆装和检测 掌握曲柄连 杆机构结构与原 理、诊断与排除常 见故障 24 活塞连杆组的组成 与拆装和检修 1.掌握活塞连杆组的构造 2.学会活塞连杆组拆装和检修 3 配气机 构 气门组的结构、 原理与检测 1.掌握气门组的结构 2.熟悉气门组的工作原理 3.学会气门组拆装和检测 掌握配气机 构与原理、诊断与 排除常见故障。 24 气门传动组的结 构、原理与检测 1.掌握气门传动组的结构 2.熟悉气门传动组的工作原理。 3.学会气门传动组拆装检测 4 燃料供 给系统 燃料供给系统的组 成和工作原理。 1.掌握燃料供给系统的组成。 2.熟悉燃料供给系统各元件的 安装位置。 3.学会燃料供给系统工作原理。 掌握燃料供给 系统结构与原理、 诊断与排除常见 故障 18 燃料供给系统系统 拆装和检测 4.熟悉燃料供给系统系统拆装。 2.学会燃料供给系统系统检测。 5 润滑系润滑系组成和检 测。 1.掌握润滑系组成和工作原理 2.学会润滑系主要部件的检测 掌握润滑系组成 和主要部件的检测。 12 6 冷却系冷却系组成和检 测。 1.掌握冷却系组成和工作原理 2.学会冷却系主要部件的检测 掌握冷却系 组成和主要部件 的检测。 12 7 传统点 火系统 传统点火系统 的结构、原理与 检测 1.掌握传统点火系统的结构 2.熟悉传统点火系统的工 作原理 3.学会检测传统点火系统 的主要元件 掌握传统点火系 统结构与原理、诊 断与排除常见故 障 18 8 起动系 统 起动系统的结 构、工作原理与 检测 1.掌握起动系统的结构、工作 原理 2.学会检测起动系统的检测 掌握起动系 统的结构、工作 原理与检测 18

教你从汽车发动机参数看汽车(教你看懂汽车配置表—发动机)

教你看懂汽车配置表:发动机参数部分 出处:宁夏汽车网作者:李女士时间:2013-02-19 本期将向大家介绍发动机相关参数中的玄机。 ●排量(单位:mL) 活塞从气缸的上止点移动到下止点所通过的空间容积称为气缸排量,由于汽车发动机通常都有若干个气缸,所以发动机的排量就是所有气缸排量之和。

排量可以说是发动机最重要的参数之一,它直接关系到发动机的很多技术指标。通常来说,在自然吸气和增压发动机的各自范畴内,排量和动力是成正比的,同时排量也和油耗以及碳排放成正比,不过这也不是绝对的。比如当今一台1.6L自然进气发动机已经可以与几年前的1.8L甚至2.0L发动机的动力相媲美,而燃油经济性则更加出色,这就是技术发展所带来的成果。 如果整体来看,现今增压技术的广泛应用使得小排量增压发动机做到了更优的动力性和更少的燃油消耗。总的来说,一台发动机的排量基本代表了一辆车的定位,同排量发动机之间由于技术方面的原因在动力性(功率、扭矩)和油耗方面会有一定的差异。 ●进气方式 进气方式主要有两种:自然进气和增压进气。由于自然进气发动机是利用气缸运行中所产生的负压将外部空气吸入,所以这种进气方式的发动机也称为自然吸气式发动机, 也可以表示为“NA”。 前面我们提到,由于发动机的排量在一定程度上是和油耗以及碳排放成正比关系的,所以为了在有限的排量内尽可能增加发动机的动力,同时油耗和碳排放还能保持在相对合理的范围内,所以就此引入了增压进气的方式。简单来说,这种进气方式就是在进气口前加装一个“增压风扇”,通过风扇的转动强制增加发动机的进气量。进气量增大后,发动机电脑便可以适当的多喷油来提高发动机的动力。当前增压进气的方式主要有涡轮增压和机械增压两种。 ◆涡轮增压 涡轮增压器实际上就是一个空气压缩机,它利用发动机排出的废气气流作为动力来推动涡轮增压器内的涡轮,涡轮又带动同轴的叶轮,叶轮来压缩由空气滤清器管道送来的新鲜空气,然后再送入气缸。

发动机各项参数说1

发动机各项参数说明扭矩:即扭力力矩,表示物体旋转的能力,用力乘力臂计算,国际单位为N·m(牛顿米),还经常用到磅英尺。力矩通过离合器、变速箱传至轮胎,这一过程中力和力臂都有所变化,但力矩是始终不变的,他直接受发动机影响,所以在标示最大扭矩的同时会给出相应的发动机转速。扭矩的大小直接影响到汽车的加速性能。功率:可以理解为Power(力量,而不是力force)。同样跑一百米,1秒跑完的功率要远大于5秒跑完的功率。除了通用计算公式P=W/T(功率=功/时间),还可以以功率=扭矩·转速计算。功率直接影响到汽车的极速。加速度:物体速度变化的快慢。公式为a=F/m(加速度=牵引力/质量)。质量(可广义理解为重量)是汽车加速的障碍,同样大小的力,作用在较清的物体上,加速度更大。这也就是为什么扭矩不很大的汽车仍然有较好的加速表现。如今各家车厂都在试图减轻车身重量,尤其是赛车。保时捷就是一例。要多大的力才能推动汽车?以911Carrera为例,0-100公里/小时加速5.0秒。换算成国际单位,加速度为5.56m/s2.,达到这样的加速度需5.56sX1370kg=7617.20N,即777.27千克物体产生的重力!此时驾驶员同样承受巨大的作用力,为389.20N,即39.71千克物体产生的重力!极速:极速直接受汽车功率和行驶阻力影响。V=P/f(速度=功率/阻力)。当汽车已极速行驶时收到多大的阻力?以911Carrera为例,极速285km/h,即79.17m/s。f=p/v=235000W/79.17m/s=2968.3N,即302.89千克物体产生的重力。空气动力学:阻力来自地面和空气,空气阻力成为限制汽车极速的无形屏障。速度增加一被,阻力变为原来的四倍。这一点用动量定理很容易证明。合外力冲量动量的变化。即m(质量)·v(速度)=f(合外力)·t(合外力作用时间)。当汽车以速度v行驶,每秒与质量为m的空气碰撞,空气相对汽车以v反向运动。当速度变为2v时,空气速度亦变为2v,每秒将与质量2m的空气碰撞。等式左边将变为4mv,t不变,故作用力变为4倍!如何减小空气阻力?流线型!没错!以下落的水滴最为流线。但这样又会出问题。当空气流过光滑的表面时流速会增加。根据伯努利定律,流体速度越快压强越小(这也就是为什么,当你把一张纸放在嘴下吹,纸片却上福同样汽车的喷油装置也应用了同样的道理)。当气流流过光滑的车尾时,压力就会减校理论上当“拉力”等于重力时,汽车就成飞机了,但在此之前,汽车以无法控制了!为了增大车尾的下压力,可以使车身尽量贴住地面,使底盘与地面之间产生低压区,吸主汽车,或者加扰流板或尾翼!扰流板或尾翼是不同的,Carrera2-Carrera4S用的都是扰流板,可以降低气流在车尾的速度,从而增加下压力。而尾翼就更为高级,利用气流直接产生下压力。尾翼在Turbo,GT1,GT2,GT3上应用!安全:汽车安全越来越受到重视!什么样的车才安全?根据动量和动能守恒定律m1v1=m2v2,质量(重量)越大的车碰撞时自身的速度变化越少。如果你开的不是卡车,或者你的“对手”是质量极大的一堵墙。那有怎么办?杯子摔到水泥地上碎了,但掉到地毯上却没事!动量定理m·v=f(冲击力)·t(冲击力作用时间),两次m·v相同,不同的是冲击力作用时间。时间越大冲击力越小,汽车在撞击时前引擎盖完全凹陷,看似很厉害,但大部分力都被吸收了,驾驶舱外有坚硬的壳,可以更好保护驾驶员!与此同时气囊和安全带也发挥极大的作用,减小对人体受到的冲击。所以一定要寄安全带,尤其在有气囊的车上!!!知道是谁最早发明自动变速箱吗?当然是保时捷!!!手动变速箱的变速器,对齿数不等的齿轮啮合传动就可以实现变速,小主大从,减速增矩,反之则加速减矩!传动比I=所有从动轮齿数乘积/所有主动轮齿数乘积设轴1以17齿带动43齿的轴2,轴2上的17齿带动轴3的43齿,则传动比I=43X43/17X17=6.4}一般最高当为直接档,即曲轴直接传动,此时I=1。自动变速箱以液力变矩器代替离合器,行星齿轮代替变速箱。名词解释:MPV:(Multi-PurposeVehicle)多功能车SUV:(SportsUtilityVehicle)运动多用途车RV:(RecreationnnalVehicle)休闲车 ?中国保时捷俱乐部--PORSCHECLUBCHINA ASR:(AccelerationSlideRejust)加速防化调节 ESP:(ElectronicStabilityProgram)电子稳定系统,和PSM相同功能,但没PSM那么高级EBC:(ElectronicBrakeControl)电子刹车控制CAD:(ComputerAidedDegine)计算机辅助设计EGR:(ExhaustGasRecirculation)废弃再循环 EDL:(ElectronicDifferentialLock)电子差速器锁止系统 1. 整车装备质量(kg):汽车完全装备好的质量,包括润滑油、燃料、随车工具、备胎等所有装置的质量。 2. 最大总质量(kg):汽车满载时的总质量。 3. 最大装载质量(kg):汽车在道路上行驶时的最大装载质量。

相关文档
最新文档