材料力学性能名词解释

合集下载

材料的力学性能有哪些

材料的力学性能有哪些

材料的力学性能有哪些
材料的力学性能是指材料在外力作用下所表现出的性能,包括材料的强度、韧性、硬度、塑性等。

这些性能对于材料的工程应用具有重要意义,下面将分别对材料的力学性能进行详细介绍。

首先,材料的强度是指材料抵抗外力破坏的能力。

强度高的材料能够承受更大
的外力而不会发生破坏,因此在工程结构中具有重要的应用价值。

材料的强度可以通过拉伸试验、压缩试验、弯曲试验等方法进行测试,常见的强度指标包括抗拉强度、抗压强度、屈服强度等。

其次,材料的韧性是指材料抵抗断裂的能力。

韧性高的材料能够在外力作用下
发生一定程度的变形而不会立即破坏,具有良好的抗冲击性和抗疲劳性。

材料的韧性可以通过冲击试验、断裂试验等方法进行测试,常见的韧性指标包括冲击韧性、断裂韧性等。

此外,材料的硬度是指材料抵抗局部变形的能力。

硬度高的材料能够抵抗划痕
和压痕,具有良好的耐磨性和耐腐蚀性。

材料的硬度可以通过洛氏硬度、巴氏硬度、维氏硬度等方法进行测试,常见的硬度指标包括洛氏硬度、巴氏硬度等。

最后,材料的塑性是指材料在外力作用下发生永久形变的能力。

具有良好塑性
的材料能够在加工过程中进行塑性变形,具有良好的可加工性和成形性。

材料的塑性可以通过拉伸试验、压缩试验等方法进行测试,常见的塑性指标包括延伸率、收缩率等。

综上所述,材料的力学性能包括强度、韧性、硬度、塑性等多个方面,这些性
能对于材料的工程应用具有重要的影响。

通过对材料的力学性能进行全面的测试和评价,可以为工程设计和材料选择提供重要的参考依据,保证工程结构的安全可靠性。

材料的力学性能

材料的力学性能

材料的力学性能
材料的力学性能是指材料在外力作用下所表现出的性能,主要包括强度、韧性、硬度、塑性等指标。

这些性能对于材料的选择、设计和应用具有重要意义。

下面将分别对材料的强度、韧性、硬度和塑性进行介绍。

首先,强度是材料抵抗破坏的能力,通常用抗拉强度、抗压强度、抗弯强度等
指标来表示。

强度高的材料具有较好的抗破坏能力,适用于承受大外力的场合。

例如,建筑结构中常使用高强度钢材,以保证结构的安全稳定。

其次,韧性是材料抵抗断裂的能力,也可以理解为材料的延展性。

韧性高的材
料在受到外力作用时能够延展变形而不断裂,具有较好的抗震抗冲击能力。

例如,汽车碰撞安全设计中常使用高韧性的材料,以保护乘车人员的安全。

再次,硬度是材料抵抗划伤和压痕的能力,通常用洛氏硬度、巴氏硬度等指标
来表示。

硬度高的材料具有较好的耐磨损性能,适用于制造耐磨损零部件。

例如,机械设备中常使用高硬度的合金材料来制造齿轮、轴承等零部件。

最后,塑性是材料在受力作用下发生塑性变形的能力,通常用延伸率、收缩率
等指标来表示。

具有良好塑性的材料能够在加工过程中较容易地进行成型和加工,适用于复杂零部件的制造。

例如,塑料制品的生产常使用具有良好塑性的材料,以满足复杂形状的加工需求。

综上所述,材料的力学性能是材料工程领域中的重要指标,对于材料的选择、
设计和应用具有重要意义。

强度、韧性、硬度和塑性是衡量材料力学性能的重要指标,不同的应用场合需要选择具有不同力学性能的材料,以满足工程需求。

因此,深入了解和掌握材料的力学性能,对于材料工程师和设计师来说是非常重要的。

材料力学性能名词解释部分

材料力学性能名词解释部分

力学性能指标及定义:脆性材料:弹性变形,然后断裂塑性材料:弹性变形,塑性变形低塑性变形材料:无颈缩高塑性材料:有颈缩弹性:是材料的可逆变形。

本质:晶体点阵内的原子具有抵抗相互分开、接近或剪切移动的性质。

弹性模量Ε:表明材料对弹性形变的抗力,代表了材料的刚度。

(斜率)弹性极限ζe:材料发生最大弹性形变时的应力值。

弹性比功W e:材料吸收变形功而又不发生永久变形的能力。

W e=1/2ζeεe=εe2/2Ε(面积)普弹形变(高分子):应力与应变的关系符合胡克定律,变形由分子链内部键长和键角发生变化产生。

高弹形变(高分子):分子链在外力作用下,原先卷曲的链沿受力方向逐渐伸展产生,伸展长度与应力不成线性关系。

弹性的不完整性:应变滞后于应力。

本质:组织的不均匀性,使材料受应力作用时各晶粒的应变不均匀或应变明显受时间的影响。

弹性后效:加载时应变落后于应力而和时间有关的现象称为正弹性后效;反之,卸载时应变落后于应力的现象称为反弹性后效。

弹性滞后:由于正反弹性后效使得应力-应变得到的封闭回线内耗:加载时消耗于材料的的变形功大于卸载时材料所放出的变形功,因而有部分变形功被材料所吸收,这被吸收的功为内耗。

(例子:①音响效果好的元件要求内耗小such as音叉、琴弦等②机件在运转时常伴有振动,需要良好的消振材料such as灰口铸铁)包申格效应:金属材料预先经少量塑性变形后再同向加载,弹性极限升高,反之降低的现象。

与位错运动所受阻力有关。

(例子:高速运转部件预先进行高速离心处理,有利于提高材料的抗变形能力。

)超弹性材料:材料在外力作用下产生远大于其弹性极限时的应变量,外力去除自动恢复其变形的现象。

脆性:弹性极限前断裂(断裂前不产生塑性变形的性质)韧性:断裂前单位体积材料所吸收的变性能和断裂能,即外力所作的功①弹性变形能②塑性变形能③断裂能塑性:材料在断裂前发生的永久型变形(不可逆变形)塑性变形:位错在外力的作用下发生滑移和孪生。

材料力学性能名词解释部分

材料力学性能名词解释部分

以下整理,仅供参考!!!试卷相关名词解释:(1) 河流花样:解理台阶沿裂纹前端滑动而相互汇合,同号台阶相互汇合长大,当汇合台阶高度足够大时,便成为河流花样。

是解理台阶的一种标志。

(从垂直于解理面的方向上观察台阶的存在,就看到“河流花样”)(2) 滞弹性:应变落后于应力而和时间有关的现象。

(金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象)(3) 过载损伤:金属在高于疲劳极限的应力水平下运转一定周次后,其疲劳极限或疲劳寿命减小,就造成了过载损伤。

(4) 热疲劳:凡是由于温度周期变化引起零件或构件的自由膨胀和收缩,而又因这种膨胀和收缩受到约束,产生了交变热应力。

由这种交变热应力引起的破坏就叫热疲劳。

(5)接触疲劳:两接触面做滚动或滚动加滑动摩擦时,在交变接触压应力长期作用下,材料表面因疲劳损伤,导致局部区域产生小片金属剥落而使材料损失的现象。

(6) 凿削式磨粒磨损:从表面上凿削下大颗粒金属,摩擦面有较深沟槽。

韧性材料——连续屑,脆性材料——断屑。

(7)粘着磨损:又称咬合磨损,在滑动摩擦条件下,当摩擦副相对滑动速度较小时发生的。

(8) 内部氢脆:内部氢脆:金属材料在冶炼与加工如酸洗、电镀、焊接、热处理等过程中吸收了大量的氢。

即材料在受载荷前其内部已有足够的氢引起氢脆,称为内部氢脆。

(9)氢致延滞断裂:高强度钢或α+β钛合金中,含有适量的处于固溶状态的氢,在低于屈服强度的应力持续作用下,经一段孕育期后,在金属内部特别是在三向拉应力区形成裂纹,裂纹逐步扩展,最后突然发生脆性断裂。

这种由于氢的作用而产生的延滞断裂现象称为氢滞延滞断裂。

(10)扩散蠕变:在高温条件下,晶体内空位将从受拉晶界向受压晶界迁移,原子则朝相反方向流动,致使晶体逐渐产生伸长的蠕变。

(11) 包申格效应:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。

什么是材料的力学性能

什么是材料的力学性能

什么是材料的力学性能
材料的力学性能是指材料在外力作用下所表现出的力学特性,包括强度、韧性、硬度、塑性等。

这些性能对材料的使用和应用起着至关重要的作用,因此对于材料的力学性能的了解和掌握是非常必要的。

首先,强度是材料抵抗外力破坏的能力。

通常来说,强度越高的材料,其抗破
坏能力越强。

在工程实践中,我们常常需要根据实际情况选择材料的强度,以确保其在使用过程中不会发生破坏。

其次,韧性是材料抵抗断裂的能力。

一个具有良好韧性的材料在受到外力作用
时能够延展变形而不会立即断裂,这对于一些需要承受冲击或挤压的材料来说尤为重要。

另外,硬度是材料抵抗划痕或穿刺的能力。

硬度高的材料通常具有较强的耐磨
性和耐划性,适合用于一些需要长时间使用的场合。

最后,塑性是材料在受到外力作用时能够发生形变而不会立即断裂的能力。


性好的材料在加工和成形过程中能够更容易地进行加工和成形,因此在一些需要进行复杂成型的场合使用较为广泛。

总的来说,材料的力学性能直接影响着材料的使用和应用。

在工程实践中,我
们需要根据材料的具体要求来选择具有相应力学性能的材料,以确保其在使用过程中能够发挥出最佳的性能。

因此,对于材料的力学性能的了解和掌握是非常必要的。

【精品】什么叫材料的力学性能?有哪些主要指标?

【精品】什么叫材料的力学性能?有哪些主要指标?

什么叫材料的力学性能?有哪些主要指标?小编希望什么叫材料的力学性能?有哪些主要指标?这篇文章对您有所帮助,如有必要请您下载收藏以便备查,接下来我们继续阅读。

材料在一定温度条件和外力作用下,抵抗变形和断裂的能力称为材料的力学性能。

锅炉、压力容器用材料的常规力学性能指标主要包括:强度、硬度、塑性和韧性等。

 (1)强度强度是指金属材料在外力作用下对变形或断裂的抗力。

强度指标是设计中决定许用应力的重要依据,常用的强度指标有屈服强度σS或σ0.2和抗拉强度σb,高温下工作时,还要考虑蠕变极限σn和持久强度σD。

 (2)塑性塑性是指金属材料在断裂前发生塑性变形的能力。

塑性指标包括:伸长率δ,即试样拉断后的相对伸长量;断面收缩率ψ,即试样拉断后,拉断处横截面积的相对缩小量;冷弯(角)α,即试件被弯曲到受拉面出现第一条裂纹时所测得的角度。

 (3)韧性韧性是指金属材料抵抗冲击负荷的能力。

韧性常用冲击功Ak和冲击韧性值αk表示。

Αk值或αk值除反映材料的抗冲击性能外,还对材料的一些缺陷很敏感,能灵敏地反映出材料品质、宏观缺陷和显微组织方面的微小变化。

而且Ak对材料的脆性转化情况十分敏感,低温冲击试验能检验钢的冷脆性。

 表示材料韧性的一个新的指标是断裂韧性δ,它是反映材料对裂纹扩展的抵抗能力。

 (4)硬度硬度是衡量材料软硬程度的一个性能指标。

硬度试验的方法较多,原理也不相同,测得的硬度值和含义也不完全一样。

最常用的是静负荷压入法硬度试验,即布氏硬度(HB)、洛氏硬度(HRA、HRB、HRC)、维氏硬度(HV),其值表示材料表面抵抗坚硬物体压入的能力。

而肖氏硬度(HS)则属于回跳法硬度试验,其值代表金属弹性变形功的大小。

因此,硬度不是一个单纯的物理量,而是反映材料的弹性、塑性、强度和韧性等的一种综合性能指标。

 小编寄语:我们每个人的生命只有一次,所以都要珍惜生命,不能拿生命开玩笑,一定要随时随地都要安全意识。

只有将安全牢牢的记在心中,平安才会伴随我们渡过美好的一生。

材料性能学名词解释大全

材料性能学名词解释大全

名词解释第一章:弹性比功:材料在弹性变形过程中吸收变形功的能力。

包申格效应:是指金属材料经预先加载产生少量塑性变形,而后再同向加载,规定残余伸长应力增加,反向加载,规定残余伸长应力降低的现象。

滞弹性:是材料在加速加载或者卸载后,随时间的延长而产生的附加应变的性能,是应变落后于应力的现象。

粘弹性:是指材料在外力的作用下,弹性和粘性两种变形机理同时存在的力学行为。

内耗:在非理想弹性变形过程中,一部分被材料所吸收的加载变形功。

塑性:材料断裂前产生塑性变形的能力。

韧性:是材料力学性能,是指材料断裂前吸取塑性变形攻和断裂功的能力。

银纹:是高分子材料在变形过程中产生的一种缺陷,由于它密度低,对光线反射高为银色。

超塑性:材料在一定条件下呈现非常大的伸长率(约1000%)而不发生缩颈和断裂的现象。

脆性断裂:是材料断裂前基本不产生明显的宏观塑性变形,没有明显预兆,而是突然发生的快速断裂过程。

韧性断裂:是指材料断裂前及断裂过程中产生明显宏观塑性变形的断裂过程。

解理断裂:在正应力作用下,由于原子间结合键的破坏引起的沿特定晶面发生的脆性穿晶断裂。

剪切断裂:是材料在切应力作用下沿滑移面滑移分离而造成的断裂。

河流花样:两相互平行但出于不同高度上的解理裂纹,通过次生解理或撕裂的方式相互连接形成台阶,同号台阶相遇变汇合长大,异号台阶相遇则相互抵消。

当台阶足够高时,便形成河流花样。

解理台阶:不能高度解理面之间存在的台阶韧窝:新的微孔在变形带内形核、长大、聚集,当其与已产生的裂纹连接时,裂纹便向前扩展形成纤维区,纤维区所在平面垂直于拉伸应力方向,纤维区的微观断口特征为韧窝。

2 材料的弹性模数主要取决因素:1)键合方式和原子结构2)晶体结构3)化学成分4)微观组织5)温度6)加载方式3决定金属材料屈服强度的因素1)晶体结构2)晶界与亚结构3)溶质元素4)第二相5)温度6)应变速率与应力状态4 金属的应变硬化的实际意义1)在加工方面:利用应变硬化和塑性变形的合理配合,可使金属进行均匀的塑性变形,保证冷变形工艺的顺利实施2)在材料应用方面:应变硬化可以使金属机件具有一定的抗偶然过载能力,保证机件的安全使用。

材料力学性能

材料力学性能

材料力学性能材料力学性能是指材料在受力作用下的表现,它是材料工程中最基本也是最重要的性能。

其特征可以通过材料的塑性、弹性、韧性、疲劳强度等描述。

一、塑性塑性是指材料在外力作用下,由于内部构造结构的变形而产生的变形能力。

材料受到足够大的外力时,会发生变形,并能保持变形状态。

当外力消失时,材料也可以恢复原来的形状。

塑性可以用弹性模量来衡量,单位为常用的GPa(千兆帕)或Mpa(兆帕)。

二、弹性弹性是指材料在外力作用下,由于内部构造结构的恢复能力而产生的恢复能力。

材料受到外力时,会发生变形,但当外力消失时,材料可以完全恢复原始形状。

弹性可以用弹性模量来衡量,单位为常用的GPa(千兆帕)或Mpa(兆帕)。

三、韧性韧性是指材料在受力作用下,由于内部构造结构的自我修复能力而产生的恢复能力。

当材料受到外力时,会发生变形,但当外力消失时,材料可以恢复部分原始形状。

韧性可以用韧性模量来衡量,单位为常用的GPa (千兆帕)或Mpa(兆帕)。

四、疲劳强度疲劳强度是指材料在受力作用下,由于内部构造结构的疲劳破坏而产生的抗疲劳能力。

当材料受到外力时,会逐渐发生疲劳破坏,最终导致破坏。

疲劳强度可以用抗疲劳模量来衡量,单位为常用的GPa(千兆帕)或Mpa(兆帕)。

五、吸能量吸能量是指材料在受力作用下,由于内部构造结构的吸收能力而产生的吸收能力。

当材料受到外力时,会吸收一定的能量,这就是材料的吸能量。

吸能量可以用吸能量模量来衡量,单位为J/m3。

材料力学性能是材料性能的基础,它可以直接反映出材料的物理性质,并且可以用来衡量材料的强度、硬度等性能。

正确理解材料力学性能,可以为材料工程应用提供重要参考。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

材料力学性能名词解释
名词解释
1,循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力
应力状态软性系数材料:最大切应力与最大正应力的比值,记为α。


2,缺口效应:缺口材料在静载荷作用下,缺口截面上的应力状态发生的变化。

3,缺口敏感度:金属材料的缺口敏感性指标,用缺口试样的抗拉强度与等截面尺寸光滑试样的抗拉强度的比值表示。

4,冲击吸收功:冲击弯曲试验中试样变形和断裂所消耗的功
5,过载损伤界:抗疲劳过载损伤的能力用过载损伤界表示。

6,应力腐蚀:材料或零件在应力和腐蚀环境的共同作用下引起的破坏
7,氢蚀:由于氢与金属中的第二相作用生成高压气体,使基体金属晶界结合力减弱而导
8,金属脆化。

氢蚀断裂的宏观断口形貌呈氧化色,颗粒状。

微观断口上晶界明显加宽,呈沿晶断裂。

9,磨损:机件表面相互接触并产生相对运动,表面逐渐有微小颗粒分离出来形成磨屑,使表面材料逐渐损失、造成表面损伤的现象。

10,耐磨性:耐磨性是材料抵抗磨损的性能。

论述
1,影响屈服强度的因素:
①内因:a金属的本性及晶格类型。

不同的金属其晶格类型,位错运动所受的阻力不同,故彼此的屈服强度不同。

b晶粒大小和亚结构晶粒尺寸↓→晶界↑→位错运动障碍数目↑→σs↑(细晶强化)
c溶质元素.溶质原子和溶剂原子直径不同→形成晶格畸变应力场→该应力场和位错应力场产生交互作用→位错运动受阻→σs↑(固溶强化)
d第二相的影响 1.第二相质点本身能否变形
2.第二相的强化效果还与其尺寸、形状、数量、分布以及第二相与基体的强度、塑性和应变硬化特性、两相之间的晶体学配合和界面能等因素有关
②外因:a温度,T↑→金属材料的屈服强度↓,但金属晶体结构不一样,其变化趋势不一样。

b应变速率,应变速率↑→金属材料的强度↑,但屈服强度随应变速率的变化比抗拉强度的变化要剧烈得多
c应力状态,切应力分量愈大→愈有利于塑性变形→屈服强度愈低
2,影响韧脆转变的因素:
①冶金因素:a晶体结构,体心立方金属及其合金存在低温脆性。

b化学成分,1)间隙溶质元素↑→韧脆转变温度↑
2置换型溶质元素一般也能提高韧脆转变温度,但Ni和一定量Mn例外。

3杂质元素S、P、As、Sn、Sb等使钢的韧性下降
c晶粒大小,细化晶粒提高韧性的原因有:晶界是裂纹扩展的阻力;晶界前塞积的位错数减少,有利于降低应力集中;晶界总面积增加,使晶界上杂质浓度减少,避免产生沿晶脆性断裂。

d纤维组织1)对低强度钢:按tk由高到低的顺序:珠光体→上贝氏体→铁素体→下贝氏体→回火马氏体
2)对中碳合金钢且强度相同,tk:下贝氏体<回火马氏体;贝氏体马氏体混合组织>回火马氏体
3)低碳合金钢的韧性:贝氏体马氏体混合组织>单一马氏体或单一贝氏体
4)马氏体钢的韧性:奥氏体的存在将显著改善韧性钢中夹杂物、碳化物等第二相质点对钢的韧性有重要影响,影响的程度与第二相质点的大小、形状、分布、第二相的性质及其与基体的结合力等性质有关。

3,影响韧度断裂的因素:
①内因:a化学成分:
细化晶粒的元素→强度↑、塑性↑→KIC↑;
强烈固溶强化的元素→塑性↓→KIC↓;
形成金属间化合物并呈第二相析出的元素→塑性↓→KIC↓;
b基体相结构和晶粒大小的影响:
基体相结构易于产生塑性变形→KIC↑,如对钢铁材料:面心立方的KIC高于体心立方的KIC。

晶粒大小对KIC的影响与对常规力学性能的影响不同,一般,晶粒细化→KIC↑,但某些情况下,粗晶粒的KIC反而较高。

c夹杂和第二相的影响
非金属夹杂物→KIC↓;
脆性第二相的体积分数↑→KIC↓;
韧性第二相形态和数量适当时→KIC↑;
钢中微量杂质元素(Sb、Sn、As等) →KIC↓
d显微组织的影响
板条马氏体>针状马氏体。

回火索氏体>回火托氏体>回火马氏体
下贝氏体>上贝氏体
马氏体组织中存在一定的残余奥氏体→KIC↑
②外因:a温度:一般大多数结构钢的断裂韧度随温度降低而下降,但随材料强度增加,KIC随温度变化的趋势趋于缓和。

b应变速率:应变速率↑→KIC↓,但当应变速率很大时,形变热量来不及传导,造成绝热状态,导致局部温度升高,KIC又回升。

相关文档
最新文档