数轴上两点间的距离
利用绝对值求数轴上两点间的距离(含答案)

利用绝对值求数轴上两点间的距离1.探究活动:【阅读】我们知道,|﹣5|表示数轴上表示﹣5的点到原点的距离,|a|表示数轴上表示a的点到原点的距离,这是绝对值的几何意义【探索】(1)数轴上表示﹣2和﹣5的两点之间的距离是,数轴上表示1和﹣3的两点之间的距离是;数轴上两个点A、B,分别用数a,b表示,那么A、B两点之间的距离为AB=(2)数轴上表示x和﹣1的两点A、B之间的距离是,如果|AB|=2,那么x的值为(3)利用数轴,找出所有符合条件的整数x,使x所表示的点到5和﹣2的距离之和为7.所有符合条件的整数x有.2.在数轴上,表示数x的点到原点的距离用|x|表示,如果表示数m的点和﹣5的点之间的距离是3,那么m =;|c﹣|+|c﹣4|+|c+1|的最小值是3.绝对值的几何意义可以借助数轴来认识,一个数的绝对值就是数轴上表示的点到原点的距离,如|a|表示数轴上a点到原点的距离,推广而之:|x﹣a|的几何意义是数轴上表示数a的点之间的距离,|x﹣a|+|x﹣b|的几何意义是数轴上表示数x的点到表示数a、b两点的距离之和.(1)已知|x﹣1|+|x﹣2|=4,求x的值;(2)|x﹣3|+|x﹣2|+|x+3|的和的最小值为.4.在学习绝对值后,我们知道,|a|表示数a在数轴上的对应点与原点的距离.如:|5|表示5在数轴上的对应点到原点的距离.而|5|=|5﹣0|,即|5﹣0|表示5、0在数轴上对应的两点之间的距离.类似的,有:|5﹣3|表示5、3在数轴上对应的两点之间的距离;|5+3|=|5﹣(﹣3)|,所以|5+3|表示5、﹣3在数轴上对应的两点之间的距离.一般地,点A、B在数轴上分别表示有理数a、b,那么A、B之间的距离可表示为|a﹣b|.请根据绝对值的意义并结合数轴解答下列问题:(1)数轴上表示2和3的两点之间的距离是;数轴上P、Q两点的距离为3,点P表示的数是2,则点Q表示的数是.(2)点A、B、C在数轴上分别表示有理数x、﹣3、1,那么A到B的距离与A到C的距离之和可表示为(用含绝对值的式子表示);满足|x﹣3|+|x+2|=7的x 的值为.(3)试求|x﹣1|+|x﹣2|+|x﹣3|+…+|x﹣100|的最小值.5.同学们都知道:|5|在数轴上表示数5的点与原点的距离,而|5﹣(﹣2)|表示5与﹣2之差的绝对值,实际上也可理解为5与﹣2两数在数轴上所对应的两点之间的距离.请你借助数轴进行以下探索:(1)则|5﹣1|表示的距离.(2)数轴上表示x与7的两点之间的距离可以表示为.(3)如果|x﹣2|=5,则x=.(4)同理|x+1|+|x﹣2|表示数轴上有理数x所对应的点到﹣1和2所对应的点的距离之和,请你找出所有符合条件的整数x,使得|x+1|+|x﹣2|=3,这样的整数是.(5)由以上探索猜想对于任何有理数x,|x+3|+|x﹣6|的最小值是.6.我们知道,在数轴上,|a|表示数a表示的点到原点的距离,这是绝对值的几何意义.进一步地,数轴上两个点A、B,分别用a,b表示,那么A、B两点间的距离为:AB=|a﹣b|.利用此结论,回答以下问题:(1)数轴上表示2和5的两点的距离是,数轴上表示﹣2和﹣5的两点之间的距离是,数轴上表示1和﹣3的两点之间的距离是;(2)若|a+1|=2,则a=;若|a+2|+|a ﹣1|=6,则a=;(3)当|a+2|+|a﹣1|取最小值时,此时a符合条件是;(4)当a=时,|a+5|+|a﹣1|+|a﹣3|的值最小,最小值是.7. (1)数轴上表示4和1的两点之间的距离是___;表示−3和2两点之间的距离是___;一般地,数轴上表示数m和数n的两点之间的距离等于|m−n|.如果表示数a和−2的两点之间的距离是3,那么a=___;(2)若数轴上表示数a的点位于−4与2之间,求|a+4|+|a−2|的值;(3)当a取何值时,|a+5|+|a−1|+|a−4|的值最小,最小值是多少?请说明理由8.根据阅读材料,回答下列问题:(1)数轴上表示2和5的两点之间的距离是,数轴上表示﹣2和﹣5是两点之间的距离是,数轴上表示1和﹣3的两点之间的距离是.(2)数轴上表示x和﹣1的两点A和B之间的距离是,如果|AB|=2,那么x=.(3)|x+2|可以理解为数轴上表示x和的两点之间的距离.(4)|x﹣2|+|x﹣3|可以理解为数轴上表示x的点到表示和这两点的距离之和.|x+2|+|x﹣1|可以理解为数轴上表示x的点到表示和这两点的距离之和.(5)|x﹣2|+|x﹣3|最小值是,|x+2|+|x ﹣1|的最小值是.利用绝对值求数轴上两点间的距离答案1.分析:(1)(2)直接根据数轴上A、B两点之间的距离|AB|=|a﹣b|.代入数值运用绝对值即可求任意两点间的距离.(3)利用数轴可知在点﹣2和5之间的所有整数的名字条件(包括﹣2和5).解:(1)数轴上表示﹣2和﹣5的两点之间的距离是3,数轴上表示1和﹣3的两点之间的距离是4;数轴上两个点A、B,分别用数a,b表示,那么A、B两点之间的距离为AB=|a﹣b|,故答案为3,4,|a﹣b|.(2)数轴上表示x和﹣1的两点A、B之间的距离是|x+1|,如果|AB|=2,那么x的值为﹣3或1,故答案为|x+1|,﹣3或1.(3)利用数轴,找出所有符合条件的整数x,使x所表示的点到5和﹣2的距离之和为7,所有符合条件的整数x有﹣2,﹣1,0,1,2,3,4,5.故答案为﹣2,﹣1,0,1,2,3,4,5.2.分析:根据数轴上两点间的距离,可得答案,根据线段上的点到线段两端点的距离相等,可得答案.解:由题意,得|m+5|=3,m+5=3或m+5=﹣3,解得m=﹣2,或m=﹣8;由线段上的点到线段两端点的距离相等,得c在﹣1与4的线段上时,|c﹣4|+|c+1|最小=5,当c≠时,|c﹣|>0,|c﹣|+|c﹣4|+|c+1|的最小值>5;当c=时,|c﹣|=0,|c﹣|+|c﹣4|+|c+1|的最小值=0+|c﹣4|+|c+1|=53.分析:(1)根据x的取值范围结合绝对值的意义分情况进行计算;(2)根据x的取值范围结合绝对值的意义分情况进行计算.解:(1)当x<1时,|x﹣1|+|x﹣2|=4,则1﹣x+2﹣x=4,解得:x=﹣,当1≤x<2时,原式=x﹣1+2﹣x=4,此时无解;当x≥2时,原式=x﹣1+x﹣2=4,解得:x=3.5;(2)当x≤﹣3时,|x+3|+|x﹣2|+|x﹣3|=﹣x﹣3﹣x+2﹣x+3=﹣3x+2,则﹣3x+2≥11;当﹣3<x≤2时,|x+3|+|x﹣2|+|x﹣3|=x+3﹣x+2﹣x+3=﹣x+8,则6≤﹣x+11<11;当2<x≤3时,|x+3|+|x﹣2|+|x﹣3|=x+3+x﹣2﹣x+3=x+4,则6<x+2≤7;当x>3时,|x+3|+|x﹣2|+|x﹣3|=x+3+x﹣2+x﹣3=3x﹣2,则3x﹣2>7.综上所述|x+3|+|x﹣2|+|x﹣3|的最小值为6.4.分析:(1)根据数轴上A、B两点之间的距离|AB|=|a﹣b|.代入数值运用绝对值即可求任意两点间的距离.(2)根据数轴上两点之间的距离公式可求A到B的距离与A到C的距离之和;满足|x﹣3|+|x+2|=7的x的值分三种情形讨论,转化为方程解决问题;(3)当绝对值的个数为奇数时,取得最小值x是其中间项,而当绝对值的个数为偶数时,则x取中间两项结果一样.从而得出对于|x﹣1|+|x﹣2|+|x﹣3|+…+|x﹣100|,当50≤x≤51时取得最小值.解:(1)数轴上表示2和3的两点之间的距离是3﹣2=1;数轴上P、Q两点的距离为3,点P表示的数是2,则点Q表示的数是2﹣3=﹣1或2+3=5;(2)A到B的距离与A到C的距离之和可表示为|x+3|+|x﹣1|,∵|x﹣3|+|x+2|=7,当x<﹣2时,3﹣x﹣x﹣2=7,x=﹣3,当﹣2≤x≤3时,x不存在.当x>3时,x﹣3+x+2=7,x=4.故满足|x﹣3|+|x+2|=7的x的值为﹣3或4.(3)|x﹣1|+|x﹣2|+|x﹣3|+…+|x﹣100|=(|x﹣1|+|x﹣100|)+(|x﹣2|+|x﹣99|)+…+(|x﹣50|+|x﹣51|)|x﹣1|+|x﹣100|表示数轴上数x的对应点到表示1、100两点的距离之和,当1≤x≤100时,|x﹣1|+|x﹣100|有最小值为|100﹣1|=99;|x﹣2|+|x﹣99|表示数轴上数x的对应点到表示2、99两点的距离之和,当2≤x≤99时,|x﹣2|+|x﹣99|有最小值为|99﹣2|=97;…|x﹣50|+|x ﹣51|表示数轴上数x的对应点到表示50、51两点的距离之和,当50≤x≤51时,|x﹣50|+|x﹣51|有最小值为|51﹣50|=1.所以,当50≤x≤51时,|x﹣1|+|x﹣2|+|x﹣3|+…+|x﹣100|有最小值为:99+97+95+…+3+1=(99+1)+(97+3)+…+(51+49)=100×25=2500.故答案为:1,﹣1或5;|x+3|+|x﹣1|,﹣3或4.5.分析:(1)根据数轴上两点之间的距离的表示方法即可得到结论;(2)根据数轴上两点之间的距离的表示方法即可得到结论;(3)利用绝对值求解即可;(4)利用绝对值及数轴求解即可;(5)根据数轴及绝对值,即可解答.解:(1)|5﹣1|表示数轴上表示5的点到表示1的点的距离;(2)数轴上表示x与7的两点之间的距离可以表示为|x﹣7|;(3)∵|x﹣2|=5,∴x﹣2=±5,解得:x=7或x=﹣3,∴x=7或﹣3;(4)∵|x+2|+|x﹣1|表示数轴上有理数x所对应的点到﹣2和1所对应的点的距离之和,|x+2|+|x﹣1|=3,∴这样的整数有﹣2、﹣1、0、1,(5)有最小值,理由是:∵|x+3|+|x﹣6|理解为:在数轴上表示x到﹣3和6的距离之和,∴当x在﹣3与6之间的线段上(即﹣3≤x≤6)时:即|x+3|+|x﹣6|的值有最小值,最小值为6+3=9;故答案为:数轴上表示5的点到表示1的点,|x﹣7|,7或﹣3,﹣2、﹣1、0、1;9.6.分析:利用AB=|a﹣b|,即可求出答案.解:(1)5﹣2=3,﹣2﹣(﹣5)=3,1﹣(﹣3)=4;(2)∵|a+1|=2,∴a+1=±2,∴a=﹣3或a=1,∵|a+2|+|a ﹣1|=6,当a<﹣2时,∴﹣(a+2)﹣(a﹣1)=6,∴a=﹣,当﹣2≤a≤1时,∴a+2﹣(a﹣1)=6,∴3=6,此时矛盾,当a>1时,∴a+2+a﹣1=6,∴a=,综上所述,a=﹣或a=;(3)当a在数轴上表示﹣2和1之间时,此时|a+2|+|a﹣1|的最小值为3,此时﹣2≤a≤1,(4)由于当﹣5≤a≤3时,此时|a+5|+|a﹣3|最小值为8,∴若要|a+5|+|a﹣1|+|a﹣3|的值最小,只需要|a﹣1|的值最小即可,此时a=1,|a﹣1|=0,∴|a+5|+|a﹣1|+|a﹣3|最小是为8,故答案为:(1)3,3,4;(2)﹣3或1,﹣或;(3)3,﹣2≤a≤1;(4)1,8.7.(1)根据数轴,观察两点之间的距离即可解决;(2)根据|a+4|+|a-2|表示数a的点到-4与2两点的距离的和.即可求解;(3)根据|a+5|+|a-1|+|a-4|表示一点到-5,1,4三点的距离的和.即可求解.解答:(1)3,5,1或−5;(2)因为|a+4|+|a−2|表示数轴上数a和−4,2之间距离的和。
专题——数轴上的动点问题

数轴上的动点问题动点问题处理策略1、数轴上两点间的距离,即为这两点所对应的坐标差的绝对值,也即用右边的数减去左边的数的差。
即数轴上两点间的距离=右边点表示的数-左边点表示的数。
2、如何表示运动过程中的数:点在数轴上运动时,由于数轴向右的方向为正方向,因此向右运动的速度看作正速度,而向左运动的速度看作负速度。
这样在起点的基础上加上点的运动路程就可以直接得到运动后点的坐标。
即一个点表示的数为a,向左运动b个单位后表示的数为a-b;向右运动b个单位后所表示的数为a+b。
(简单说成左减右加)3、分类讨论的思想:数轴是数形结合的产物,分析数轴上点的运动要结合图形进行分析,注意多种情况种的分类讨论4、绝对值策略:对于两个动点P,Q,若点P,Q的左右位置关系不明确或有多种情况,可用p,q两数差的绝对值表示P,Q两点距离,从而避免分复杂分类讨论类型一、数轴上两点距离的应用例1、已知数轴上A,B两点表示的数分别为-2和5,点P为数轴上一点(1)若点P到A,B两点的距离相等,求P点表示的数(2)若PA=2PB,求P点表示的数B的距离之和为13,求点P所表示的数。
(3)若点P到点A和点类型二、绝对值的处理策略例2、已知数轴上A,B两点表示的数分别为-8和20,点P,Q分别从A,B两点同时出发,P点运动速度为每秒3个单位,Q点运动速度为每秒1个单位,设运动时间为t秒(1)点P向右运动,Q点向左运动,当t为何值时,P,Q两点之间距离为8?(2)若P点和Q点都向右运动,多少秒后,P,Q两点之间距离为8?(3)在(2)的条件下,另一动点M同时从O点出发,以每秒2个单位的速度向右运动,多少秒后,点M到点P和点Q的距离相等?练、已知在数轴上有A,B两点,点A表示的数为-8,点B表示的数为4.动点P从数轴上点A出发,以每秒2个单位长度的速度运动,同时动点Q从点B出发,以每秒1个单位长度的速度,设运动时间为t秒。
(1)若点P向右运动,点Q向左运动,问多少秒后点P与Q相距2个单位长度?(2)若动点P、Q都向右运动,当点P与点Q重合时,P、Q两点停止运动.当t为何值时,2OP-OQ=4?类型三、小狗来回跑的问题例、数轴上,点A表示-3,点B表示12,A,B两点同时向负方向运动,速度分别为1个单位和4个单位每秒,同时另一动点C同时从B点位置出发向A运动,当遇到A后,立即返回向B点运动,遇到B点后立即返回向A点运动,如此往返,直到B追上A时,C立即停止运动.若点C一直以20单位长度/秒的速度匀速运动,那么点C从开始到停止运动,运动的路程是多少单位长度.练习、已知数轴上两点A、B对应的数分别为-1、3,点P为数轴上一动点,其对应的数为x.点A、点B分别以2个单位长度/分、1个单位长度/分的速度向右运动,同时点P以6个单位长度/分的速度从O点向左运动.当遇到A时,点P立即以同样的速度向右运动,并不停地往返于点A与点B之间,求当点A与点B重合时,点P所经过的总路程是多少?类型四、运动中的变与不变例3、数轴上A,B,C三点分别表示-1,1,5,点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和5个单位长度的速度向右运动,假设t秒钟过后,若点B与点C之间的距离表示为BC,点A与点B之间的距离表示为AB.(1)请问:BC-AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.(2)是否存在一个常数m使得m•BC-2AB不随运动时间t的改变而改变.若存在,请求出m和这个不变化的值;若不存在,请说明理由.练习、如图①,M、N、P是数轴上顺次三点,M、N之间的距离记为MN,M,P之间的距离记为MP.(1)若MP=3MN,求x的值;(2)在(1)的条件下,如图②,点M、N、P开始在数轴上运动,点M以每秒2个单位长度的速度向左运动,同时,点N和点P分别以每秒1个单位长度和4个单位长度的速度向右运动.设运动时间为t(t>0)秒,PN-MN的值是否随时间t的变化而改变?若改变,说明理由;若不变,求其值.为定值?若存在求出k值,并求出这个定值。
数轴与动点问题-(1)

2、M点在数轴上表示-4,N点离M的距离是3,那么N点 表示( C)
A-1
B -7
C -1或-7
D -1或1
3、在数轴上,A点和B点表示的数分别为-2和1,若使A 点表示的数是B点表示的数的3倍,应把A点( B)
A 向左移动5个单位 B 向右移动5个单位
练习:数轴上表示整数的点称为整点,某数轴的单位 长度是1cm,若在这个数轴上随意画一条长2015cm 的线段AB盖住的整点有 2015或2016 个
三:数轴上动点中的观察规律
例3.一只青蛙在数轴上左右跳动,最开始在原点,按如下指令运 动:第一次向右跳动一格到数1,第二次在第一次的基础上向左跳 两格,第三次在第二次的基础上向右跳三格,第四次在第三次的基 础上向左跳四格,依次类推, … (1)求它跳10次后,它的位置在数轴上表示的数是多少? (2)若她每调跳一个格用时1秒,它跳10次共用去多少时间?
(3)求代数式|x+1|+|x-2|的最小值,及取最小值时x的范围。
解:(3) ①当x≥2时,|x+1|+|x-2|=x+1+x-2=2x-1 所以x=2时,最小值是3
②当-1<x<2时, |x+1|+|x-2|=x+1+2-x=3 所以无论x为何值,代数式的值都为3
③当x<-1时,|x+1|+|x-2|=-x-1+2-x=1-2x 所以x=-1时,最小值是3
如:在数轴上点P表示的数为-1,则点P向左移动3个单位后表示
的数是 -4 ,如果向右移动7个单位后表示的数是 6 .
3、数轴是数形结合的产物,分析数轴上点的运动要结合 图形进行分析,点在数轴上运动形成的路径可看作数轴上 线段的和差关系。
数轴上的线段与动点问题

数轴上的线段与动点问题
一、与数轴上的动点问题相关的基本概念
数轴上的动点问题离不开数轴上两点之间的距离.主要涉及以下几个概念:
1.数轴上两点间的距离,即为这两点所对应的坐标差的绝对值d=|a-b|,也即用右边的数减去左边的数的差.即数轴上两点间的距离=右边点表示的数—左边点表示的数.
2.两点中点公式:线段AB中点坐标=(a+b)÷2.
3.点在数轴上运动时,由于数轴向右的方向为正方向,因此向右运动的速度看作正速度,而向左运动的速度看作负速度.这样在起点的基础上加上点的运动路程就可以直接得到运动后点的坐标.即一个点表示的数为a,向左运动b个单位后表示的数为a—b;向右运动b个单位后所表示的数为a+b.
4.数轴是数形结合的产物,分析数轴上点的运动要结合图形进行分析,点在数轴上运动形成的路径可看作数轴上线段的和差关系. 二、数轴上的动点问题基本解题思路和方法:
1、表示出题目中动点运动后的坐标(一般用含有时间t的式子表示).
2、根据两点间的距离公式表示出题目中相关线段长度(一般用含有时间t的式子表示).
3、根据题目问题中线段的等量关系(一般是和、差关系)列绝对值方程.
4、解绝对值方程并根据实际问题验算结果. 注:数轴上线段的
动点问题方法类似
1、已知数轴上A、B两点对应数为-
2、4,P为数轴上一动点,对应的数为x.
A B
-2 -1 0 1 2 3 4
(1)若P为AB线段的三等分点,求P对应的数;
(2)数轴上是否存在P,使P到A点、B点距离和为10,若存在,求出x;若不存在,
说明理由.
(3)若点A,点B和点P(点P在原点)同时向左运动,它们的速度分别为1,2,1个长度单位/分,则第几分钟时,P为AB的中点?。
数轴上动点问题(电子蚂蚁)

h f o一、与数轴上的动点问题相关的基本概念数轴上的动点问题离不开数轴上两点之间的距离。
主要涉及以下几个概念:1.数轴上两点间的距离,即为这两点所对应的坐标差的绝对值d=|a-b|也即用右边的数减去左边的数的差。
即数轴上两点间的距离=右边点表示的数—左边点表示的数。
两点中点公式:线段AB中点坐标=(a+b)÷22.点在数轴上运动时,由于数轴向右的方向为正方向,因此向右运动的速度看作正速度,而向作运动的速度看作负速度。
这样在起点的基础上加上点的运动路程就可以直接得到运动后点的坐标。
即一个点表示的数为a,向左运动b个单位后表示的数为a—b;向右运动b个单位后所表示的数为a+b。
3.数轴是数形结合的产物,分析数轴上点的运动要结合图形进行分析,点在数轴上运动形成的路径可看作数轴上线段的和差关系。
二、数轴上的动点问题基本解题思路和方法:1、表示出题目中动点运动后的坐标(一般用含有时间t的式子表示)。
2、根据两点间的距离公式表示出题目中相关线段长度(一般用含有时间t的式子表示)。
3、根据题目问题中线段的等量关系(一般是和、差关系)列绝对值方程。
4、解绝对值方程并根据实际问题验算结果。
(解绝对值方程通常用0点分类讨论方法)已知:b是最小的正整数,且a、b满足(c-5)2+|a+b|=0,请回答问题(1)请直接写出a、b、c的值.a=________,b=________,c=________(2)a、b、c所对应的点分别为A、B、C,点P为易动点,其对应的数为x,点P在0到2之间运动时(即0≤x≤2时),请化简式子:|x+1|-|x-1|+2|x+5|(3)(3)在(1)(2)的条件下,点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和p个单位长度的速度向右运动,假设t秒钟过后,若点B与点C之间的距离表示为BC,点A与点B之间的距离表示为AB.请问:BC-AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.r二、典例分析例1.已知数轴上有A、B、C三点,分别代表—24,—10,10,两只电子蚂蚁甲、乙分别从A、C两点同时相向而行,甲的速度为4个单位/秒。
借助方程求解数轴上动点问题(学生版)

借助方程求解数轴上动点问题数轴上的动点问题离不开数轴上两点之间的距离。
为了便于初一年级学生对这类问题的分析,不妨先明确以下几个问题:1.数轴上两点间的距离,即为这两点所对应的坐标差的绝对值,也即用右边的数减去左边的数的差。
即数轴上两点间的距离=右边点表示的数—左边点表示的数。
2.点在数轴上运动时,由于数轴向右的方向为正方向,因此向右运动的速度看作正速度,而向作运动的速度看作负速度。
这样在起点的基础上加上点的运动路程就可以直接得到运动后点的坐标。
即一个点表示的数为a,向左运动b个单位后表示的数为a—b;向右运动b个单位后所表示的数为a+b。
3.数轴是数形结合的产物,分析数轴上点的运动要结合图形进行分析,点在数轴上运动形成的路径可看作数轴上线段的和差关系。
例1.已知数轴上有A、B、C三点,分别代表—24,—10,10,两只电子蚂蚁甲、乙分别从A、C两点同时相向而行,甲的速度为4个单位/秒。
⑴问多少秒后,甲到A、B、C的距离和为40个单位?⑵若乙的速度为6个单位/秒,两只电子蚂蚁甲、乙分别从A、C两点同时相向而行,问甲、乙在数轴上的哪个点相遇?⑶在⑴⑵的条件下,当甲到A、B、C的距离和为40个单位时,甲调头返回。
问甲、乙还能在数轴上相遇吗?若能,求出相遇点;若不能,请说明理由。
例2.如图,已知A、B分别为数轴上两点,A点对应的数为—20,B点对应的数为100。
⑴求AB中点M对应的数;⑵现有一只电子蚂蚁P从B点出发,以6个单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A点出发,以4个单位/秒的速度向右运动,设两只电子蚂蚁在数轴上的C点相遇,求C点对应的数;⑶若当电子蚂蚁P从B点出发时,以6个单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A点出发,以4个单位/秒的速度也向左运动,设两只电子蚂蚁在数轴上的D点相遇,求D点对应的数。
例3.已知数轴上两点A、B对应的数分别为—1,3,点P为数轴上一动点,其对应的数为x。
七年级数学上册-动点问题专题讲解

七年级数学上册 动点问题专题讲解明确以下几个问题:1.数轴上两点间的距离,即为这两点所对应的坐标差的绝对值.......,也即用右边的数减去左边的数的差。
即数轴上两点间的距离......... =. 右边点表示的数....... -. 左边点表示的数.......。
2.点在数轴上运动时,由于数轴向右的方向为正方向,因此向右运动的速度看作正速度,而向作运动的速度看作负速度。
这样在起点的基础上加上点的运动路程就可以直接得到运动后点的坐标。
即一个点表示的数为a ,向左运动b 个单位后表示的数为a -b ;向右运动b 个单位后所表示的数为a+b 。
3.数轴是数形结合的产物,分析数轴上点的运动要结合图形进行分析,点在数轴上运动形成的路径可看作数轴上线段的和差关系。
基础题1.如图所示,数轴上一动点A 向左移动2个单位长度到达点B ,再向右移动5个单位长度到达点C 点. (1)求动点A 所走过的路程及A 、C 之间的距离. (2)若C 表示的数为1,则点A 表示的数为 .2.画个数轴,想一想(1)已知在数轴上表示3的点和表示8的点之间的距离为5个单位,有这样的关系5=8-3,那么在数轴上表示数4的点和表示-3的点之间的距离是________单位;(2)已知在数轴上到表示数-3的点和表示数5的点距离相等的点表示数1,有这样的关系1=-+,那么在数轴上到表示数a的点和表示数b的点之间距离相等的点表示的数是1(35)2__________________.(3)已知在数轴上表示数x的点到表示数-2的点的距离是到表示数6的点的距离的2倍,求数x.应用题1、已知数轴上有A、B、C三点,分别代表-24,-10,10,两只电子蚂蚁甲、乙分别从A、C两点同时出发相向而行,甲的速度为4个单位/秒。
⑴问多少秒后,甲到A、B、C的距离和为40个单位?⑵若乙的速度为6个单位/秒,两只电子蚂蚁甲、乙分别从A、C两点同时相向而行,问甲、乙在数轴上的哪个点相遇?⑶在⑴⑵的条件下,当甲到A、B、C的距离和为40个单位时,甲调头返回。
初中数学浙教版七年级上册1.2 数轴

a+(-b),向右运动b个单位后所表示的数为a+b。
例1、一只蚂蚁在数轴上从点-20出发,向右爬行5个 单位,到达点B,则点B所表示的数为___-1_5___.
变式1、一只蚂蚁在数轴上从点a出发,向右爬行5个 单位,到达点B,则点B所表示的数为__a_+_5___.
程是多少?
小球M所经过的路程只与运动时间和速度有关,与运动方向无关. 30×5=150
CA
B
-40 -20
40
变式1、如图,已知点A、B、C分别为数轴上三个点, 点A表示的数为-20,点B表示的数为40,点C表示的 数为-40,小球P从点C出发以4个单位/秒的速度向右 运动,求经过多少秒时,AP=2BP.
设P、Q运动t秒在C点相遇,
则此时P表示的数为40-6t,Q表示的数为-20-4t.由P、Q运动 到C所表示的数相同,得-20+4t=40-6t,t=6.
相遇C点表示的数为:-20+4t=4(或40-6t=4)
例2.如图,已知点A、B分别为数轴上两点,点 A表示的数为-20,点B表示的数为40。
QA
A
PQ
B
1、掌握数轴上两点之间的距
数轴上两点间的距离,即为这两点所表示的数差的绝对值, 也即用右边的数减去左边的数的差。即数轴上两点间的距离 =右 边点表示的数-左边点表示的数。
2、数轴上动点所表示的数
一个点表示的数为a,向左运动b个单位后表示的数为
a+(-b),向右运动b个单位后所表示的数为a+b。
P
B
-20
40
⑶若当电子蚂蚁P从B点出发时,以6个单位/秒的 速度向左运动,同时另一只电子蚂蚁Q恰好从A点 出发,以4个单位/秒的速度也向左运动,设两只 电子蚂蚁在数轴上的D点相遇,求D点表示的数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例1 求出下列每对数在数轴上的对应点之间的距离。
解:如图示
-4
-1.5
13Leabharlann -4 -3 -2 -1 0 1 2 3 4
(1)3 与 1 2 (2)3与-1.5 4.5
(3)1与-4 5 (4)4与-1.5 5.5
思考: (1)你能发现所得的距离与这两数的差有什么关系?
4
-1 0 1 2 3 有最小值,是4.
数轴上两点之间的距离等于对应两 数之差的绝对值。
“数轴”是数形结合的重要工具。 数轴上两点之间的距离是数轴和绝对值 的巧妙结合,是由“数”到“形”的转 化。
数轴上表示1和﹣3的两点之间的距离为 4
(2)数轴上表示x和2的两点之间的距离表示为 |x-2|
(3)若x表示一个有理数,则|x-1|+|x+3|有最小值吗? 若有,求出最小值;若没有,请 说明理由.
解:|x-1|+|x+3| =|x-1|+|x-(-3)| 它的几何意义: 在数轴上表示x的点与1和-3这两个点的距离和
数轴上两点之间的距离等于对应两数之差的绝对值。 (2)若点A表示数m,点B表示数n,则A、B之间
的距离是 |n-m| .
例2 点A、B在数轴上分别表示有理数a,b,A,B 两点之间的距离表示为AB,在数轴上A、B两 点之间的距离AB=|a-b|.
A
B
a0
b
回答下列问题:
(1)数轴上表示2和5两点之间的距离是 3