Matlab求解微分方程
用Matlab解微分方程

用Matlab 软件求解微分方程1.解析解(1)一阶微分方程 求21y dxdy +=的通解:dsolve('Dy=1+y^2','x') 求y x dxdy -+=21的通解:dsolve('Dy=1+x^2-y','x') 求⎪⎩⎪⎨⎧=+=1)0(12y y dx dy 的特解:dsolve('Dy=1+y^2',’y(0)=1’,'x')(2)高阶微分方程 求解⎩⎨⎧-='==-+'+''.2)2(,2)2(,0)(222πππy y y n x y x y x 其中,21=n ,命令为: dsolve('x^2*D2y+x*Dy+(x^2-0.5^2)*y=0','y(pi/2)=2,Dy(pi/2)=-2/pi','x') 求042=-+'-'''x y y y 的通解,命令为:dsolve('D3y-2*Dy+y-4*x=0','x')输出为:ans=8+4*x+C1*exp(x)+C2*exp(-1/2*(5^(1/2)+1)*x)+C3*exp(1/2*(5^(1/2)-1)*x)(3)一阶微分方程组求⎩⎨⎧+-='+=').(3)(4)(),(4)(3)(x g x f x g x g x f x f 的通解:[f,g]=dsolve('Df=3*f+4*g','Dg=-4*f+3*g','x') 输出为: f =exp(3*x)*(cos(4*x)*C1+sin(4*x)*C2)g =-exp(3*x)*(sin(4*x)*C1-cos(4*x)*C2)若再加上初始条件1)0(,0)0(==g f ,则求特解:[f,g]=dsolve('Df=3*f+4*g','Dg=-4*f+3*g','f(0)=0,g(0)=1','x')输出为: f =exp(3*x)*sin(4*x)g =exp(3*x)*cos(4*x)2.数值解(1)一阶微分方程⎪⎩⎪⎨⎧=≤≤-=.1)0(,10,2y x y x y dxdy 现以步长h=0.1用“4阶龙格—库塔公式”求数值解: 先建立“函数M —文件”:function f=eqs1(x,y)f=y-2*x/y;再命令: 格式为:[自变量,因变量]=ode45(‘函数文件名’,节点数组,初始值) 命令为: [x,y]=ode45('eqs1',0:0.1:1,1)若还要画图,就继续命令: plot(x,y)(2)一阶微分方程组⎪⎩⎪⎨⎧==+-='≤≤-+='.3.0)0(,2.0)0(,2sin ,10,2cos 21212211y y y y x y x y y x y 只须向量化,即可用前面方法: function f=eqs2(x,y)f=[cos(x)+2*y(1)-y(2);sin(x)-y(1)+2*y(2)];将此函数文件,以文件名eqs2保存后,再下命令:[x,y]=ode45('eqs2',0:0.1:1,[0.2;0.3])(注:输出的y 是矩阵,第i 列为函数i y 的数值解)要画图,继续命令:hold on,plot(x,y(:,1)),plot(x,y(:,2)),hold off(3)高阶微分方程先化成一阶微分方程组,再用前面方法。
Matlab中微分方程求解

Matlab中微分方程求解2008年11月24日星期一 11:193 Matlab软件求解前面已经介绍了微分方程(组)的求解方法:解析解法、数值解法和图解法等等。
这些方法计算工作量大,需要借助于计算机实现。
下面简单介绍Matlab在此领域的应用。
3.1 解析解desolve(‘eqn1’,’eqn2’, ...) 求常微分方程(组)的解析解。
1. 微分方程例1:求解二阶微分方程x2y’’ + xy’ + (x2-n2)y = 0, y (p/2) = 2, y’(p /2) = - 2/p, n = 1/2.解析解:dsolve('D2y+(1/x)*Dy+(1-(1/2)^2/x^2)*y=0','y(pi/2)=2,Dy(pi/2)=-2/pi','x')ans = 2^(1/2)*pi^(1/2)*sin(x)/x^(1/2)pretty(ans)2.微分方程组例2:求解 d f/d x=3f+4g; d g/d x=-4f+3g。
通解: [f,g]=dsolve('Df=3*f+4*g','Dg=-4*f+3*g')f= exp(3*t)*cos(4*t)*C1+exp(3*t)*sin(4*t)*C2g=-exp(3*t)*sin(4*t)*C1+exp(3*t)*cos(4*t)*C2特解: [f,g]=dsolve('Df=3*f+4*g','Dg=4*f+3*g','f(0)=0,g(0)=1')f=exp(3*t)*sin(4*t)g=exp(3*t)*cos(4*t)3.2 数值解在微分方程(组)难以获得解析解的情况下,可以用Matlab方便地求出数值解。
格式为:[t,y] = ode23('F',TSPAN,Y0,OPTIONS,P1,P2,...)注意:微分方程组形式:y' = F(t, y),t为自变量,y为因变量(可以是多个,如微分方程组)。
第六章用MATLAB求解微分方程及微分方程组

运行结果:u = tan(t-c)
例 2 求微分方程的特解.
d 2 y dy 2 4 29 y 0 dx dx y (0) 0, y ' (0) 15
解 输入命令: y=dsolve('D2y+4*Dy+29*y=0','y(0)=0,Dy(0)=15','x') 运行结果为 : y =3e-2xsin(5x)
不同求解器Solver的特点
求解器 Solver ode23s
OD E类 型
刚 性
特点
说明
刚 ode23tb 性
一步法;2阶 当精度较低时, Rosebrock算法; 计算时间比 低精度 ode15s短 当精度较低时, 梯形算法;低精 计算时间比 度 ode15s短
d 2x dx 2 1000(1 x 2 ) x 0 例 4 dt dt x(0) 2; x' (0) 0 解: 令 y1=x,y2=y1’
y Me k1t 即
模型2:快速饮酒后,体液中酒精含量的变化率
dx k2 x k1Mek1t dt x(0) 0
用Matlab求解模型2:
syms x y k1 k2 M t x=dsolve('Dx+k2*x=k1*M*exp(-k1*t)','x(0)=0','t') 运行结果: M*k1/(-k1+k2)*exp(-k2*t+t*(-k1+k2))-exp(-k2*t)*M*k1/(-k1+k2) 即:
(1)
2. 由于弹头始终对准乙舰,故导弹的速度平行于乙舰与导弹头位置的差向量,
matlab数值求解常微分方程快速方法

MATLAB是一种用于科学计算和工程应用的高级编程语言和交互式环境。
它在数学建模、模拟和分析等方面有着广泛的应用。
在MATLAB 中,常微分方程的数值求解是一个常见的应用场景。
在实际工程问题中,通常需要对常微分方程进行数值求解来模拟系统的动态行为。
本文将介绍MATLAB中对常微分方程进行数值求解的快速方法。
1. 基本概念在MATLAB中,可以使用ode45函数来对常微分方程进行数值求解。
ode45是一种常用的Runge-Kutta法,它可以自适应地选取步长,并且具有较高的数值精度。
使用ode45函数可以方便地对各种类型的常微分方程进行求解,包括一阶、高阶、常系数和变系数的微分方程。
2. 函数调用要使用ode45函数进行常微分方程的数值求解,需要按照以下格式进行函数调用:[t, y] = ode45(odefun, tspan, y0)其中,odefun表示用于描述微分方程的函数,tspan表示求解的时间跨度,y0表示初值条件,t和y分别表示求解得到的时间序列和对应的解向量。
3. 示例演示为了更好地理解如何使用ode45函数进行常微分方程的数值求解,下面我们以一个具体的例子来进行演示。
考虑如下的一阶常微分方程:dy/dt = -2*y其中,y(0) = 1。
我们可以编写一个描述微分方程的函数odefun:function dydt = odefun(t, y)dydt = -2*y;按照上述的函数调用格式,使用ode45函数进行求解:tspan = [0 10];y0 = 1;[t, y] = ode45(odefun, tspan, y0);绘制出解曲线:plot(t, y);4. 高级用法除了基本的函数调用方式外,MATLAB中还提供了更多高级的方法来对常微分方程进行数值求解。
可以通过设定选项参数来控制数值求解的精度和稳定性,并且还可以对刚性微分方程进行求解。
5. 性能优化在实际工程应用中,常常需要对大规模的常微分方程进行数值求解。
matlab求解微分方程

Matlab求解微分方程教学目的:学会用MATLAB求简单微分方程的解析解、数值解,加深对微分方程概念和应用的理解;针对一些具体的问题,如追击问题,掌握利用软件求解微分方程的过程;了解微分方程模型解决问题思维方法及技巧;体会微分方程建摸的艺术性.1微分方程相关函数(命令)及简介因为没有一种算法可以有效地解决所有的ODE 问题,为此,Matlab 提供了多种求解器Solver,对于不同的ODE 问题,采用不同的Solver.阶常微分方程(组)的初值问题的解的 Matlab 的常用程序,其中:ode23 采用龙格-库塔2 阶算法,用3 阶公式作误差估计来调节步长,具有低等的精度.ode45 则采用龙格-库塔4 阶算法,用5 阶公式作误差估计来调节步长,具有中等的精度.2 求解微分方程的一些例子2.1 几个可以直接用 Matlab 求微分方程精确解的例子:例1:求解微分方程22x xe xy dxdy -=+,并加以验证. 求解本问题的Matlab 程序为:syms x y %line1y=dsolve('Dy+2*x*y=x*exp(-x^2)','x') %line2diff(y ,x)+2 *x*y-x*exp(-x^2) %line3simplify(diff(y ,x)+2*x*y-x*exp(-x^2)) %line4说明:(1) 行line1是用命令定义x,y 为符号变量.这里可以不写,但为确保正确性,建议写上;(2) 行line2是用命令求出的微分方程的解:1/2*exp(-x^2)*x^2+exp(-x^2)*C1(3) 行line3使用所求得的解.这里是将解代入原微分方程,结果应该为0,但这里给出:-x^3*exp(-x^2)-2*x*exp(-x^2)*C1+2*x*(1/2*exp(-x^2)*x^2+exp(-x^2)*C1)(4) 行line4 用 simplify() 函数对上式进行化简,结果为 0, 表明)(x y y =的确是微分方程的解.例2:求微分方程0'=-+x e y xy 在初始条件e y 2)1(=下的特解,并画出解函数的图形.求解本问题的 Matlab 程序为:syms x yy=dsolve('x*Dy+y-exp(x)=0','y(1)=2*exp(1)','x')ezplot(y)微分方程的特解为:y=1/x*exp(x)+1/x* exp (1) (Matlab 格式),即x e e y x+=,此函数的图形如图 1:图1 y 关于x 的函数图象2.2 用ode23、ode45等求解非刚性的标准形式的一阶常微分方程(组)的初值问题的数值解(近似解).例3:求解微分方程初值问题⎪⎩⎪⎨⎧=++-=1)0(2222y x x y dx dy 的数值解,求解范围为区间[0, 0.5].fun=inline('-2*y+2*x^2+2*x','x','y');[x,y]=ode23(fun,[0,0.5],1); x; yplot(x,y ,'o-')>> x'ans =0.0000 0.0400 0.0900 0.1400 0.1900 0.24000.2900 0.3400 0.3900 0.4400 0.4900 0.5000>> y'ans =1.0000 0.9247 0.8434 0.7754 0.7199 0.67640.6440 0.6222 0.6105 0.6084 0.6154 0.6179图形结果为图2.图2 y关于x的函数图像3 常微分在实际中的应用3.1 导弹追踪问题设位于坐标原点的甲舰向位于x轴上点A(1,0)处的乙舰发射导弹,导弹v沿平行于y轴的直线行驶,导弹的速度始终对准乙舰。
matlab微分方程组求解代码

一、概述Matlab是一款功能强大的数学软件,它可以对微分方程组进行求解并得到精确的数值解。
微分方程组是描述自然现象的数学模型,经常出现在物理、化学、生物等领域的科学研究中。
掌握如何使用Matlab 对微分方程组进行求解是非常重要的。
二、微分方程组求解基本原理微分方程组是由多个未知函数及其导数的方程组成。
通常情况下,微分方程组很难直接求解,需要借助数值方法进行近似求解。
Matlab 提供了丰富的工具和函数来解决微分方程组求解的问题,其中最常用的是ode45函数。
三、Matlab微分方程组求解代码示例以下是一个简单的二阶微分方程组的求解代码示例:```function dydt = myODE(t, y)dydt = zeros(2,1);dydt(1) = y(2);dydt(2) = -y(1) - 0.1*y(2);end[t, y] = ode45(myODE, [0 20], [1 0]);plot(t, y(:,1))```在这个示例中,我们首先定义了一个函数myODE来描述微分方程组的右端。
然后使用ode45函数对微分方程组进行求解,得到了微分方程组的数值解,并利用plot函数进行了可视化展示。
四、常见问题及解决方法在使用Matlab进行微分方程组求解时,可能会遇到一些常见问题,以下是一些常见问题及解决方法:1. 参数设置错误:在使用ode45函数时,需要正确设置求解的时间范围和初始条件,否则可能得到错误的结果。
可以通过仔细阅读ode45函数的文档来解决这个问题。
2. 数值稳定性:对于一些复杂的微分方程组,数值求解可能会遇到数值稳定性问题,导致结果不准确。
可以尝试调整ode45函数的参数或者使用其他数值解法来提高数值稳定性。
五、总结通过本文的介绍,我们了解了在Matlab中如何对微分方程组进行求解。
Matlab提供了丰富的工具和函数来解决微分方程组求解的问题,有效提高了微分方程组求解的效率和精度。
用MATLAB求解微分方程

1. 微分方程的解析解
求微分方程(组)的解析解命令:
dsolve(‘方程1’, ‘方程2’,…‘方程n’, ‘初始条件’, ‘自变量’)
结 果:u = tan(t-c)
解 输入命令:dsolve('Du=1+u^2','t')
STEP2
STEP1
解 输入命令: y=dsolve('D2y+4*Dy+29*y=0','y(0)=0,Dy(0)=15','x')
导弹追踪问题
设位于坐标原点的甲舰向位于x轴上点A(1, 0)处的乙舰发射导弹,导弹头始终对准乙舰.如果乙舰以最大的速度v0(是常数)沿平行于y轴的直线行驶,导弹的速度是5v0,求导弹运行的曲线方程.又乙舰行驶多远时,导弹将它击中? 解法一(解析法)
由(1),(2)消去t整理得模型:
解法二(数值解)
结 果 为:x = (c1-c2+c3+c2e -3t-c3e-3t)e2t y = -c1e-4t+c2e-4t+c2e-3t-c3e-3t+c1-c2+c3)e2t z = (-c1e-4t+c2e-4t+c1-c2+c3)e2t
2、取t0=0,tf=12,输入命令: [T,Y]=ode45('rigid',[0 12],[0 1 1]); plot(T,Y(:,1),'-',T,Y(:,2),'*',T,Y(:,3),'+')
3、结果如图
图中,y1的图形为实线,y2的图形为“*”线,y3的图形为“+”线.
matlab解带参数的微分方程

matlab解带参数的微分方程微分方程是描述物理和数学问题的重要方程之一。
它通常用于描述系统随时间的变化,并且在工程、物理、生物和经济等领域中都有广泛的应用。
MATLAB是一种强大的数值计算软件,可以用于解决微分方程的数值近似解。
在MATLAB中,可以使用ode45函数来求解带参数的微分方程。
ode45函数是一种常用的数值求解微分方程的方法,它使用了龙格-库塔(Runge-Kutta)方法,并具有自适应步长控制和误差控制的功能,因此能够较准确地求解微分方程。
首先,我们需要定义一个匿名函数来表示微分方程。
假设我们要求解的微分方程是dy/dt = f(t, y, p),其中y是未知函数的值,t 是自变量的值,p是参数。
可以使用如下方式定义这个函数:```MATLABfunction dydt = myODE(t, y, p)dydt = f(t, y, p); % f是一个给定的函数,用于计算dy/dtend```然后,我们可以使用ode45函数来求解微分方程。
其中,tspan表示求解的时间区间,y0表示初始条件,p表示参数。
可以使用如下方式调用ode45函数:```MATLAB[t, y] = ode45(@(t, y) myODE(t, y, p), tspan, y0);```在这个例子中,@(t, y) myODE(t, y, p)是一个匿名函数,它将t 和y作为输入,调用myODE函数来计算dy/dt,然后返回结果。
ode45函数将返回一个时间向量t和一个与t对应的解向量y。
在解得微分方程后,可以使用plot函数将结果可视化。
例如,如果要绘制y关于t的图像,可以使用如下方式:```MATLABplot(t, y);xlabel('t');ylabel('y');title('Solution of the differential equation');```以上代码将绘制出y关于t的图像,并添加了合适的坐标轴标签和标题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验四 求微分方程的解一、问题背景与实验目的实际应用问题通过数学建模所归纳而得到的方程,绝大多数都是微分方程,真正能得到代数方程的机会很少.另一方面,能够求解的微分方程也是十分有限的,特别是高阶方程和偏微分方程(组).这就要求我们必须研究微分方程(组)的解法,既要研究微分方程(组)的解析解法(精确解),更要研究微分方程(组)的数值解法(近似解).对微分方程(组)的解析解法(精确解),Matlab 有专门的函数可以用,本实验将作一定的介绍.本实验将主要研究微分方程(组)的数值解法(近似解),重点介绍 Euler 折线法.二、相关函数(命令)及简介1.dsolve('equ1','equ2',…):Matlab 求微分方程的解析解.equ1、equ2、…为方程(或条件).写方程(或条件)时用 Dy 表示y 关于自变量的一阶导数,用用 D2y 表示 y 关于自变量的二阶导数,依此类推.2.simplify(s):对表达式 s 使用 maple 的化简规则进行化简. 例如: syms xsimplify(sin(x)^2 + cos(x)^2) ans=13.[r,how]=simple(s):由于 Matlab 提供了多种化简规则,simple 命令就是对表达式 s 用各种规则进行化简,然后用 r 返回最简形式,how 返回形成这种形式所用的规则.例如: syms x[r,how]=simple(cos(x)^2-sin(x)^2) r = cos(2*x) how = combine4.[T,Y] = solver(odefun,tspan,y 0) 求微分方程的数值解. 说明:(1) 其中的 solver 为命令 ode45、ode23、ode113、ode15s 、ode23s 、ode23t 、ode23tb 之一.(2) odefun 是显式常微分方程:⎪⎩⎪⎨⎧==00)(),(y t y y t f dt dy(3) 在积分区间 tspan =],[0f t t 上,从0t 到f t ,用初始条件0y 求解.(4) 要获得问题在其他指定时间点 ,210,,t t t 上的解,则令 tspan =],,,[,210f t t t t (要求是单调的). (5) 因为没有一种算法可以有效地解决所有的 ODE 问题,为此,Matlab 提供了多种求解器 Solver ,对于不同的ODE 问题,采用不同的Solver .(6) 要特别的是:ode23、ode45 是极其常用的用来求解非刚性的标准形式的一阶常微分方程(组)的初值问题的解的 Matlab 的常用程序,其中:ode23 采用龙格-库塔2 阶算法,用3 阶公式作误差估计来调节步长,具有低等的精度.ode45 则采用龙格-库塔4 阶算法,用5 阶公式作误差估计来调节步长,具有中等的精度.5.ezplot(x,y,[tmin,tmax]):符号函数的作图命令.x,y 为关于参数t 的符号函数,[tmin,tmax] 为 t 的取值范围.6.inline():建立一个内联函数.格式:inline('expr', 'var1', 'var2',…) ,注意括号里的表达式要加引号.例:Q = dblquad(inline('y*sin(x)'), pi, 2*pi, 0, pi)三、实验内容1. 几个可以直接用 Matlab 求微分方程精确解的例子:例1:求解微分方程22x xe xy dxdy-=+,并加以验证.求解本问题的Matlab 程序为:syms x y %line1 y=dsolve('Dy+2*x*y=x*exp(-x^2)','x') %line2diff(y,x)+2*x*y-x*exp(-x^2) %line3 simplify(diff(y,x)+2*x*y-x*exp(-x^2)) %line4 说明:(1) 行line1是用命令定义x,y 为符号变量.这里可以不写,但为确保正确性,建议写上;(2) 行line2是用命令求出的微分方程的解:1/2*exp(-x^2)*x^2+exp(-x^2)*C1(3) 行line3使用所求得的解.这里是将解代入原微分方程,结果应该为0,但这里给出:-x^3*exp(-x^2)-2*x*exp(-x^2)*C1+2*x*(1/2*exp(-x^2)*x^2+exp(-x^2)*C1)(4) 行line4 用 simplify() 函数对上式进行化简,结果为 0, 表明)(x y y =的确是微分方程的解.例2:求微分方程0'=-+x e y xy 在初始条件e y 2)1(=下的特解,并画出解函数的图形.求解本问题的 Matlab 程序为: syms x yy=dsolve('x*Dy+y-exp(x)=0','y(1)=2*exp(1)','x') ezplot(y)微分方程的特解为:y=1/x*exp(x)+1/x* exp (1) (Matlab 格式),即xe e y x+=,解函数的图形如图 1:图1例3:求微分方程组⎪⎪⎩⎪⎪⎨⎧=--=++035y x dtdy e y x dtdx t在初始条件0|,1|00====t t y x 下的特解,并画出解函数的图形.求解本问题的 Matlab 程序为: syms x y t[x,y]=dsolve('Dx+5*x+y=exp(t)','Dy-x-3*y=0','x(0)=1','y(0)=0','t') simple(x); simple(y);ezplot(x,y,[0,1.3]);axis auto微分方程的特解(式子特别长)以及解函数的图形均略. 2. 用ode23、ode45等求解非刚性的标准形式的一阶常微分方程(组)的初值问题的数值解(近似解).例4:求解微分方程初值问题⎪⎩⎪⎨⎧=++-=1)0(2222y xx y dx dy 的数值解,求解范围为区间[0, 0.5].fun=inline('-2*y+2*x^2+2*x','x','y'); [x,y]=ode23(fun,[0,0.5],1); x'; y';plot(x,y,'o-') >> x' ans =0.0000 0.0400 0.0900 0.1400 0.1900 0.2400 0.2900 0.3400 0.3900 0.4400 0.4900 0.5000 >> y' ans =1.0000 0.9247 0.8434 0.7754 0.7199 0.6764 0.6440 0.6222 0.6105 0.6084 0.6154 0.6179 图形结果为图 2.图2例 5:求解描述振荡器的经典的 Ver der Pol 微分方程.7,0)0(',1)0(,0)1(222====+--μμy y y dt dy y dty d 分析:令,,121dt dx x y x ==则.)1(,1221221x x x dtdx x dt dx --==μ 先编写函数文件verderpol.m :function xprime = verderpol(t,x) global mu;xprime = [x(2);mu*(1-x(1)^2)*x(2)-x(1)]; 再编写命令文件vdp1.m : global mu; mu = 7; y0=[1;0][t,x] = ode45('verderpol',[0,40],y0); x1=x(:,1);x2=x(:,2); plot(t,x1)图形结果为图3.图33. 用 Euler 折线法求解前面讲到过,能够求解的微分方程也是十分有限的.下面介绍用 Euler 折线法求微分方程的数值解(近似解)的方法.Euler 折线法求解的基本思想是将微分方程初值问题⎪⎩⎪⎨⎧==00)(),,(y x y y x f dxdy化成一个代数方程,即差分方程,主要步骤是用差商h x y h x y )()(-+替代微商dxdy,于是:⎪⎩⎪⎨⎧==-+)()),(,()()(00x y y x y x f h x y h x y k k k k 记)(,1k k k k x y y h x x =+=+,从而)(1h x y y k k +=+,则有1,,2,1,0).,(,),(1100-=⎪⎩⎪⎨⎧+=+==++n k y x hf y y h x x x y y k k k k k k 例 6:用 Euler 折线法求解微分方程初值问题⎪⎩⎪⎨⎧=+=1)0(,22y y x y dx dy 的数值解(步长h 取0.4),求解范围为区间[0,2].解:本问题的差分方程为1,,2,1,0).2),( ),(,,4.0,1,021100-=⎪⎪⎪⎩⎪⎪⎪⎨⎧+=+=+====++n k y x y y x f y x hf y y h x x h y x k k k k k k (其中: 相应的Matlab 程序见附录 1. 数据结果为:0 1.0000 0.4000 1.4000 0.8000 2.1233 1.2000 3.1145 1.6000 4.4593 2.0000 6.3074图形结果见图4:图4特别说明:本问题可进一步利用四阶 Runge-Kutta 法求解,读者可将两个结果在一个图中显示,并和精确值比较,看看哪个更“精确”?(相应的 Matlab 程序参见附录 2).四、自己动手1. 求微分方程0sin 2')1(2=-+-x xy y x 的通解.2. 求微分方程x e y y y x sin 5'2''=+-的通解.3. 求微分方程组⎪⎪⎩⎪⎪⎨⎧=-+=++00y x dtdy y x dtdx在初始条件0|,1|00====t t y x 下的特解,并画出解函数()y f x =的图形. 4. 分别用 ode23、ode45 求上述第 3 题中的微分方程初值问题的数值解(近似解),求解区间为[0,2]t ∈.利用画图来比较两种求解器之间的差异.5. 用 Euler 折线法求解微分方程初值问题⎪⎩⎪⎨⎧=-=1)0(,12'32y y x y y 的数值解(步长h 取0.1),求解范围为区间[0,2].6. 用四阶 Runge-Kutta 法求解微分方程初值问题⎩⎨⎧=-=1)0(,cos 'y x e y y x 的数值解(步长h 取0.1),求解范围为区间[0,3].四阶 Runge-Kutta 法的迭代公式为(Euler 折线法实为一阶 Runge-Kutta 法):1,,2,1,0),()2,2()2,2(),()22(6,),(342312143211100-=⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧++=++=++==++++=+==++n k hL y h x f L L h y h x f L L h y h x f L y x f L L L L L hy y h x x x y y k k k k k k k k k k k k 相应的 Matlab 程序参见附录 2.试用该方法求解第5题中的初值问题. 7. 用 ode45 方法求上述第 6 题的常微分方程初值问题的数值解(近似解),从而利用画图来比较两者间的差异.五、附录附录 1:(fulu1.m)clearf=sym('y+2*x/y^2'); a=0; b=2; h=0.4;n=(b-a)/h+1; x=0; y=1;szj=[x,y]; for i=1:n-1y=y+h*subs(f,{'x','y'},{x,y}); x=x+h;szj=[szj;x,y]; end szjplot(szj(:,1),szj(:,2))附录 2:(fulu2.m)clearf=sym('y-exp(x)*cos(x)'); a=0; b=3; h=0.1;n=(b-a)/h+1; x=0; y=1;szj=[x,y];for i=1:n-1l1=subs(f,{'x','y'},{x,y});l2=subs(f,{'x','y'},{x+h/2,y+l1*h/2});l3=subs(f,{'x','y'},{x+h/2,y+l2*h/2});l4=subs(f,{'x','y'},{x+h,y+l3*h});y=y+h*(l1+2*l2+2*l3+l4)/6;x=x+h;szj=[szj;x,y];endszjplot(szj(:,1),szj(:,2))。