化学反应工程课件_催化剂与催化动力学基础

合集下载

化学反应工程课件

化学反应工程课件
第二章 反应动力学基础
天津大学化工学院 反应工程教学组
整理PPT课件
1
2.1 化学反应速率
定义:单位时间,单位体积反应物系中某一反应组分 的反应量。
AABB RR
rAV 1d dAn ,trBV 1d dBn ,trRV 1ddRnt
1. 对反应物dn/dt<0,对产物dn/dt>0
2. 按不同组分计算的反应速率数值上不等,因此
A
rB
B
rR R
r
r 1 dni 1 d iV dt V dt
恒容 rAV 1d(c dA V t)ddA ctc V 整A 理d Pd PT课V t件 过程
rA
dcA dt3
流动床反应器(定常态过程)
FA0
FA
M
Vr
FA
dVr
FA+dFA
连续反应器 反应速率
rA
dFkc A A c B B c R R kcA A cB B cR R
整理PPT课件
8
平衡时,r=0 kc AAc BBc RR kcA AcB BcR R
c c c AA BB RR ABR
k/k
cAAcBBcRR Kc
1
A AAB BBR RR
A B C
cA cB cR k/k
阿累尼乌斯方程 kAexp E/(R)T
指前因子
活化能
k又称为比反应速率,其意义是所有反应组分 的浓度均为1时的反应速率。它的因次与速率 方程的形式和反应速率及浓度的因次有关。
lnklnAERT
lnk1T
气相反应
kc整(R 理PPT)课 件T kp(R/T p )ky 12
●正逆反应活化能与反应热的关系

最新第11章反应动力学基础ppt课件

最新第11章反应动力学基础ppt课件
• 等分子反应:计量方程中计量系数的代数和等于零, 膨胀因子为0。
• 非等分子反应:计量系数的代数和非为零(可正、可
负),A物质膨胀因子如下 APQ AAB
膨胀因子的计算
• 例题:已知某反应反应计量式如下:A+2B=3C+4D B物质的膨胀系数
B342 122
D物质的膨胀系数
D344 121
计算膨胀因子的意义
A A B B P P Q Q
• 计量方程:表示参与反应的各组分量的变化,与反应
历程无关。 A M A B M B P M P Q M Q
• 计量方程中M表示各组分的摩尔质量
膨胀因子的计算
• 每消耗1mol的某反应物所引起的反应系统总物质的量
的变化量(δ)称为该反应物的膨胀因子。
A(nn0)nA 0nA
反应速率的定义
• 单位时间单位体积反应层中某组分的反应量或生成量
ri
1 V
dni dt
• 对于简单反应 A P
rA
dnA Vdt
rP
dnP Vdt
• rA 视为一整体
气-固相反应的反应速率
以固体催化剂的质量(m)、表面积(S)、颗粒体积(Vp)为
基准的反应速率
rA
dnA Vdt
m、S、Vp
(-rA)V=(-rAm)m= (-rAs)S= (-rAVp)Vp
rAm,rAs,rAVp
• 【例题11.3.1】某气固相催化反应在一定温度和浓度 条件原料A的反应速率为 rA m3.0 1 3 0 m/o s[g l催 ( 化 )。] 剂 已知催化剂填充层的填充密度为 = 1.20g/cm 3,填充层
空隙率 =0.40 。试分别计算以反应层体积和催化剂

化学反应工程(第三版)陈甘棠主编_第五章_催化剂与催化动力学基础

化学反应工程(第三版)陈甘棠主编_第五章_催化剂与催化动力学基础

Ki 称为吸附平衡常数,是i组分吸附速率常数与脱附速率常数之比。 式(5-28)即为过程的总速率方程。由该式的分母可知,反应物和产物 均被吸附。分母的方次表明该反应是在A、B两个活性中心之间进行的。
若控制步骤为可逆反应 过程总速率:
Aσ + Bσ
k1
k2
Rσ + Sσ
r k k A 1 A B 2 R S
第五章 催化剂与催化动力学基础
5.1 催化剂
能够改变化学反应速率而本身在反应前后不发生组成变化的物质。 (1)类型 金属(良导体)、金属氧化物和硫化物(半导体)以及盐类和 酸性催化剂(大多数是绝缘体) (2)载体 活性炭、硅胶、活性白土、硅藻土、沸石(分子筛)、骨架Ni、 活性Al2O3、 Fe等 (3)性能要求 活性好、选择性高、寿命长。 (4)结构
k k K K 1 A B
K
k1K A KB k2 KR KS
比较式(5-28)和式(5-30)可见,表面反应为控制步骤时,可逆反 应与不可逆反应速率式的分母相同,区别在于分子。可逆反应的分子上有两 项,不可逆反应只有一项。
A在吸附时解离 A + 2σ B + σ 2A1/2σ + Bσ Rσ Sσ 按上述方法可得到
几种常用催化剂的结构
无定形颗粒 球形 柱形 长柱形 三叶草形
环形
多孔柱形 车轮形
比表面积
破碎强度
压降
独石形
金属独石形
Foam
(5)制备方法
① 混合法
② 浸渍法 ③ 沉淀法或共沉淀法 ④ 共凝胶法 ⑤ 喷涂法及滚涂法 ⑥ 溶蚀法 ⑦ 热熔法
5.3 气固相催化反应动力学
气-固相反应速率的定义式

化学反应工程课件

化学反应工程课件

3、简化模型的要求:
(1)不失真; (2)能满足应用的要求;
(3)能适应当前实验条件,以便进行模型鉴别和参数估值; (4)能适应现有计算机的能力;
4 、基础数学模型
1)化学动力学模型:排除传递过程因素后描述化学反应速
率、物料温度和浓度的数学关系。传统上是物理化学的 研究领域,侧重于研究反应机理;化学反应工程侧 重于 表达三者的数学关系,而直接加以应用。
(3)反应过程的优化:投资少、效率高、生产强度大、产 品质量好。 设计最佳化——反应器体积最小,投资少。 操作最佳化——管理、控制最佳化,最佳操作参数。
(4)反应器的工程放大: 对现成的生产工艺,进行生产规模放大; 新产品研发:小试——中试——扩大试验;
反应过程开发放大方法
• 逐级经验放大法
• 相似放大法
1 、化学工程发展史及化学反应工程学科的形成
• 化学工程学科体系的基本内容:
化学工程共同的现象,可概括为“三传一反”,即动 量传递、热量传递、质量传递及化学反应,其学科形成了 以传递过程及化学反应工程为核心的学科体系(包括化工 热力学、化工单元过程、分离工程、化工系统工程等)
过程工程
• 过程工程(process engineering)的概念是对“化学工程” 概念的拓展。化学工程学在发展过程中不断向科技新领域 渗透拓展,应用对象已经涵盖了所有与物质的物理、化学 加工过程相联系的工业部门,这个部门称为“过程工业” (process industry),包括石油炼制、化学工业、能源 工业、航空、军事、冶金、环保工业、建材、印染、生物 技术、医药、食品、造纸等工业部门。
2 、化学反应器
在这类设备中发生了化学反应,通过化学反应改变了物 料的化学性质。 化工生产过程是由物理过程和化学反应过程组成的。化 工设备分为“物理型”和化学反应器两大类。在化学反应器 中发生化学反应,由原料转换成产物,是化工生产的核心设 备。

《化学反应工程》课件

《化学反应工程》课件

部分模化法
将反应器的一部分进行放大或缩小, 以研究其放大效应或缩小效应。
相似放大法
通过相似理论来预测大试实验结果, 需要保证相似条件得到满足。
04
流动与混合
流动模型与流型
1 2
层流模型
适用于低雷诺数的流体,流速较低,流体呈层状 流动。
湍流模型
适用于高雷诺数的流体,流速较高,流体呈湍流 状态。
3
过渡流模型
化学反应影响流动特性
化学反应释放的热量和产生的压力变化会影响流体的流动状 态。
流动与混合实验技术
实验设备
包括管式反应器、搅拌釜式反应器、喷射式反应器等。
实验方法
通过测量流体的流速、压力、温度等参数,分析流动与混合对化学反应的影响 。
05
传递过程与反应器的热力学基础
传递过程基础
传递过程定义
物质和能量的传递是自然界和工程领域中普遍存在的现象,传递 过程是研究物质和能量传递规律的科学。
通过调节进料浓度来控制反应物浓度,保证反应的稳定性和效率。
催化剂选择与优化
选择合适的催化剂并优化其用量,提高反应效率和选择性。
反应器放大与缩小
经验放大法
根据小试实验数据和经验公式,通过 比例放大来预测大试实验结果。
数学模拟放大法
通过建立数学模型来模拟反应过程, 并利用计算机技术进行放大和缩小实 验。
管式反应器
适用于连续操作和大量生产,传热效果好, 适用于高粘度液体和悬浮液。
流化床反应器
适用于固体颗粒的反应,传热效果好,适用 于大规模生产。
反应器设计基础
反应动力学
研究反应速率和反应机理,为反应器设计提 供基础数据。
热力学
研究反应过程中的能量变化和物质平衡,为 反应器设计提供热力学依据。

《催化反应动力学》课件

《催化反应动力学》课件

工业催化反应
石油化工
催化裂化、加氢裂化、烷基化等,提高油品质量 和产量。
精细化工
有机合成、高分子合成、药物合成等,生产高附 加值化学品。
环保领域
脱硫、脱硝、污水处理等,降低污染物排放,保 护环境。
环境催化反应
大气污染治理
催化燃烧、光催化分解等,降低空气中的有害气体和颗粒物。
水处理
催化氧化、光催化氧化等,去除水中的有害物质和重金属离子。
土壤修复
利用催化剂降解土壤中的有机污染物,降低污染风险。
新材料合成中的催化反应
高分子材料
利用催化合成技术,制备高性能高分子材料 。
纳米材料
通过催化反应控制纳米材料的形貌和尺寸, 制备具有特殊性能的纳米材料。
复合材料
利用催化反应将不同材料复合在一起,制备 具有优异性能的复合材料。
06
总结与展望
本章总结
实验步骤与操作
01
实验操作注意事项
02 1. 确保实验器材和试剂的清洁度,避免污 染。
03
2. 严格控制实验温度和压力,确保实验条 件的准确性。
04
3. 在实验过程中,密切关注反应情况,如 有异常及时处理。
数据处理与分析
01
数据处理方法
02 1. 将实验数据整理成表格,列出各物质浓度的变 化。
03 2. 根据反应动力学方程,计算反应速率常数、活 化能等参数。
《催化反应动力学》 PPT课件
目录
• 引言 • 催化反应动力学基础 • 催化反应动力学模型 • 催化反应动力学实验 • 催化反应动力学应用 • 总结与展望
01
引言
课程简介
催化反应动力学是化学工程学科中的一门重要 课程,主要研究催化剂对化学反应速率的影响 。

化学反应工程课件-PPT

化学反应工程课件-PPT

k/
k
K
1/ p
E
E
1
H
r
ln
k
ln
k
1
ln
K
p
d ln k dT
d ln k dT
1
d ln K p dT
1
H r 1R4T 2
E
E
1
H r
对于吸热反应,ΔHr>0 对于放热反应,ΔHr<0
EE
EE
●反应 速率与 温度的 关系
r k f (X A) k g(X A)
r
dk
dk
( T ) xA f ( X A ) dT g( X A ) dT
kcA0 (1 X A ) (cB0
B A
cA0 X A )
(2.48)
XA——t
● 变
AA BB PP
ci
ni V
XA

过 程
* rA kcAcB
1 V
dnA dt
kcA cB
30
AA BB PP
组分
A B
反应前(XA=0)
nA0
1 j A1 2 j A2 ij Ai 0 rj
1M A1 2M A2 iM Ai 0 rM
M
i ij r j (*) j 1
rj

i
●忽略次要反应,确定独立反应数M;
●测M个组分的 i
●对每个组分按(*)式,建立M个线 性方程;
●求解代数方程组,得 rj.
22
例:乙苯催化脱氢反应可以用下列方程式表示
不受其他反应的反应组分浓度的影响。
特殊 情况
●多相催化反应; ●变容气相反应.

化学反应工程第一章气固相催化反应本征及宏观动力学

化学反应工程第一章气固相催化反应本征及宏观动力学
•Solid catalyzed reactions Kinetics, rate equation
n 1-12 n 1-13 n 1-14 n 1-15
固体催化剂 吸附等温方程 均匀表面吸附动力学方程 不均匀表面吸附动力学方程
PPT文档演模板
化学反应工程第一章气固相催化反应 本征及宏观动力学
1-12 固体催化剂
速率常数与活化能及温度的关系
•速率常数
•活化能
PPT文档演模板
•温度
化学反应工程第一章气固相催化反应 本征及宏观动力学
1-9反应速率常数及温度对反应速率常数 影响的异常现象
•ln k •ln k
PPT文档演模板
•1/T
•1/T
化学反应工程第一章气固相催化反应 本征及宏观动力学
第四节 气-固相催化反应本征动力学方程
新途径,它涵盖了化学量测的全过程,包括采样理论与方法、
试验设计与化学化工过程优化控制、化学信号处理、分析信号
的校正与分辨、化学模式识别、化学过程和化学量测过程的计
算机模拟、化学定量构效关系、化学数据库、人工智能与化学
专家系统等,是一门内涵相当丰富的化学学科分支。
PPT文档演模板
化学反应工程第一章气固相催化反应 本征及宏观动力学
xA=(15mol-13mol)/15mol=0.133 第一个反应所消耗的乙烯=转化的乙烯×S
第二个反应所消耗的乙烯=转化的乙烯×(1-S)
PPT文档演模板
化学反应工程第一章气固相催化反应 本征及宏观动力学
•例题
•故有:2mol ×S ×0.5+2mol ×(1-S) ×3=7mol-4.76mol •S=0.752 •Y=第一个反应所消耗的乙烯÷加入的乙烯总量(15mol) •故Y=2 × 0.752÷15=0.100 •或Y= xA S=0.100
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

共沉淀法
• 多个组分同时沉淀(各组分比例较恒定, 分布也均匀)
合成甲醇 CuO-ZnO-Al2O3
Cu(NO3) 2 Zn (NO3) 2 Al (NO3) 3 溶液
Na2CO3
三元混合氧 化物沉淀
沉淀时沉淀剂的选择
• 易分解挥发除去(氨气,氨水,铵盐,碳 酸盐等)
• 形成的沉淀物便于过滤和洗涤(最好是晶 型沉淀,杂质少,易过滤洗涤)
ra rd
A 2 2A1
2
pA
1A
A
K A ka kd (吸附物发生解离)
吸附速率ra为:ka pA (1 A )2
脱附速率为rd:
kd
2 A
达到吸附平r衡a 时rd

ka
pA (1 A )2

k
d
2 Aห้องสมุดไป่ตู้
A

1
K A pA K A pA
活化还原
负载型金属催化剂
浸渍法的原理
• 活性组份在载体表面上的吸附 • 毛细管压力使液体渗透到载体空隙内部 • 提高浸渍量(可抽真空或提高浸渍液温度) • 活性组份在载体上的不均匀分布
浸渍法的优点
• 可用已成型的载体(如氧化铝,氧化硅, 活性炭,浮石,活性白土等)
• 负载组份利用率高,用量少(如贵金属)
• 沉淀剂的溶解度要大(这样被沉淀物吸附 的量就少)
• 沉淀物的溶解度应很小 • 沉淀剂无污染
共凝胶法
• 两种溶液混合而生成的凝胶
喷涂法和滚涂法
•将催化剂溶液用喷枪或其他手段喷射于载体上而制成 •的,或者将活性组分放在可摇动的容器中,再将载体 •加入,经过滚动,使活性组分黏附其上而制成
热熔法
将主催化剂及助催化剂组分放在电炉内熔融后, 再把它冷却和粉粹到需要的尺寸
对于多组分吸附,同理推导出:
i

过量浸渍法
• 将载体浸入过量的浸渍溶液中(浸渍液体 超过可吸收体积),待吸附平衡后,沥去 过剩溶液,干燥,活化后再得催化剂成品。
等体积浸渍法
• 将载体与正好可吸附量的浸渍溶液相混合, 浸渍溶液刚好浸渍载体颗粒而无过剩。
• 预先测定浸渍溶液的体积 • 多活性物质的浸渍 • 浸渍时间
多次浸渍法
• 重复多次的浸渍、干燥、焙烧可制得活性 物质含量较高的催化剂
pA
1A
A
K A ka kd
吸附速率为:
ra ka pA (1 A )
脱附速率r为d : kd A
达到吸附平衡ra 时 rd
ka pA (1 A ) kd A

A

K A pA 1 K A pA
当为低覆盖率时K ,A p A 1
A K A pA
三、催化剂的性能
1. 活性 催化剂用量少,转化物料量大; 对于强放热反应,过高的活性不好,容易导
致“飞温” 2. 选择性 选择性意义很大,催化剂的选择性比活性要
求更高 3 寿命 失活 局部高温:活性组分挥发、结晶变化、
比表面积 减小 中毒:被杂质所覆盖(S,Se、p、C)
5.2 催化剂的物理特性 5. 2.1.物理吸附和化学吸附 物理吸附——范德华力 化学吸附— —化学键力
第五章 催化剂与催化动力学基础
• 本章主要内容:
• 1 催化剂的概述(催化剂的组分,制备方法 及催化剂的性能)
• 2 催化剂的物理结构(催化剂表面的吸附特 征及规律;催化剂的比表面积和孔容及孔 径分布)
• 3 气-固相催化反应动力学(本征动力学和 宏观动力学、失活动力学)
• 4 非催化气固相反应动力学(略)
将催化剂的各个组分制成浆状,经过充分混 合后干燥而成 设备简单,操作方便,产品化学组成稳定 (球磨机、拌粉机) 分散性和均匀性较低
湿混法
• 固体磷酸催化剂(促进烯烃聚合、异构化、 水合、烯烃烷基化、醇类脱水)
100份 硅藻土
300份 磷酸 磷酸负载于
硅藻土
混合
石墨 30份
烘 干
成型、焙烧
固体 磷酸
• 可避免多组分浸渍化合物各组分竞争吸附
沉淀法和共沉淀法
在充分搅拌的条件下,向催化剂的盐类溶液中加入沉淀剂, 即生成催化剂的沉淀
金属盐溶液
NaOH(Na2CO3)
沉淀

洗涤 干燥 焙烧 研磨 成型

• 温度、溶液及沉淀剂浓度、Ph值、沉淀剂的种类、加催入化剂 的速度、搅拌速度和沉淀的放置时间都会影响生成的催 化剂颗粒的大小和粒径分布
第五章 催化剂与催化动力学基础
有关催化剂和催化作用的知识: (1)催化剂改变反应速率,在反应前后本身不发
生变化(定义); (2)催化剂又称为触媒; (3)催化剂既不是反应物也不是产物; (4)根据过渡状态理论,催化剂是靠降低反应的
活化能来加快化学反应速度的; (5)不能改变化学平衡和反应热; (6)催化剂具有选择性,只能加速某一种反应
干混法
• 锌锰系脱硫催化剂(合成氨厂的原料气净 化,脱除其中含有的有机硫化物)
锌-锰-镁 脱硫催化剂
碳酸锌
氧化镁 机混
二氧化锰
350 oC分解 焙
碳酸锌
烧 喷球
焙烧
脱硫 催化剂
浸渍法
• 将载体放进含有活性物质的液体中浸渍
载体(如Al2O3)的沉淀 洗涤干燥 载体的成型 用活性组份浸渍 干燥 焙烧分解
(1) langmuir吸附 假定:① 均匀表面 ② 单分子吸附
③ 被吸附分子间不相互影响,也不影响别的分子的吸 附 ④ 吸附机理相同。
表面覆盖率:固体表面被吸附分子覆盖的分率。 不同吸附物种的吸附分率与未被吸附的活性位分率之和
为1 在吸附的过程中,同时存在吸附和脱附,最后达到动态
平衡
A A
5.1 催化剂 一、 催化剂的组分
活性组分 助催化剂 载体 活性组分 活性组分的作用是催化作用,通常是金属或金属氧 化物,例如:铁、铜、铝及其氧化物 助催化剂
助催化剂本身基本没有活性,但能够提高催化剂的 活性、选
择性、稳定性和机械强度等 载体
载体的作用是承载活性组分和助催化剂,是负载活 性组分和
5.1 催化剂 二 、催化剂的制备 1 混合法
温度范围
低A
高A ka

kd
物理吸附的研究可以用于测定表面积及微孔尺寸,而化学吸附的研究用于测定活 化中心的面积,及阐明反应动力学规律
5.2.2.吸附等温线方程式 等温条件下,研究气体吸附量(表面覆盖率)与压力 的关系。
吸附模型有(1) langmuir型吸附;(2)Freundlich 型、(3)Temkin型和(4)BET型
相关文档
最新文档