TFT LCD操作原理(下).simple
tft-lcd工作原理

tft-lcd工作原理TFT-LCD工作原理TFT-LCD(Thin Film Transistor-Liquid Crystal Display)是一种液晶显示技术,广泛应用于平板电视、电子游戏机、智能手机和计算机显示器等设备中。
它通过利用液晶的光学特性和薄膜晶体管的电学特性来实现图像的显示。
TFT-LCD的工作原理可以分为两个主要步骤:电学控制和光学调制。
第一步电学控制,液晶显示屏由一系列的像素组成,每个像素由液晶分子和薄膜晶体管构成。
薄膜晶体管是一种电子开关,通过控制其通断状态来控制液晶分子的排列,从而实现像素的显示。
每个像素都有一个对应的薄膜晶体管,它们分别由一个源极、栅极和漏极组成。
当薄膜晶体管的栅极电压升高时,源极和漏极之间会形成一个导通通道,电流可以通过。
反之,当栅极电压降低时,通道将关闭,电流无法通过。
第二步光学调制,液晶分子的排列状态会影响光的传播和偏振方向。
液晶分子在电场的作用下可以呈现不同的排列方式,分别为平行排列和垂直排列。
当液晶分子呈现平行排列时,光线经过液晶层时会发生偏转,无法通过偏振器,像素呈现出黑色。
而当液晶分子呈现垂直排列时,光线能够通过液晶层和偏振器,像素呈现出亮色。
通过控制薄膜晶体管的通断状态,可以改变液晶分子的排列方式,从而控制像素的亮度和颜色。
在TFT-LCD中,每个像素都包含有红、绿、蓝三个亚像素,通过调节每个亚像素的亮度和颜色来显示出丰富多彩的图像。
这是通过在液晶层前面加入颜色滤光片实现的。
颜色滤光片分别为红、绿、蓝三个基色,与每个亚像素一一对应。
当液晶分子呈现垂直排列时,光线可以通过液晶层和颜色滤光片,从而显示出相应的颜色。
而当液晶分子呈现平行排列时,光线无法通过颜色滤光片,像素呈现出黑色。
TFT-LCD的工作原理是通过电学控制和光学调制来实现图像的显示。
电学控制通过控制薄膜晶体管的通断状态来改变液晶分子的排列方式,从而实现像素的亮度和颜色的控制。
tft lcd工作原理

tft lcd工作原理
TFT(薄膜晶体管)LCD(液晶显示器)是一种基于薄膜晶体
管技术的液晶显示器。
其工作原理如下:
1. 像素结构:TFT LCD由一系列的像素组成,每个像素都包
含了红、绿、蓝三个基色的液晶单元和一个薄膜晶体管。
液晶单元根据电压的变化来控制光的透过程度,从而实现颜色的显示。
薄膜晶体管则负责控制电流的开关。
每个像素中的液晶单元和薄膜晶体管都被附着在透明的玻璃基板上。
2. 薄膜晶体管的作用:薄膜晶体管是TFT LCD的核心部件,
它负责控制电流的开关。
当电流通过薄膜晶体管时,它会改变液晶单元的电场,从而改变其透光性质。
薄膜晶体管的开关控制是通过将其上的栅极电压调高或调低来实现的,进而控制液晶单元的透光程度。
3. 光的透过过程:当液晶单元处于关闭状态时,它不能透过光,显示为黑色。
当液晶单元处于开启状态时,根据电场的变化,液晶分子会重新排列,使光线通过透射,显示为不同的颜色和亮度。
4. 控制信号:为了控制TFT LCD的每个像素,需要向每个像
素提供控制信号。
这些控制信号是通过一些线路和电路驱动器传递的,以确保每个像素都能准确显示所需的颜色和亮度。
总结来说,TFT LCD的工作原理是通过控制薄膜晶体管来调
节液晶单元的透光性质,从而显示不同的颜色和亮度。
通过像
素的排列和控制信号的传递,TFT LCD可以呈现出清晰、亮丽的图像。
TFT-LCD(液晶显示器)工作原理ppt课件

3
液晶成像原理
液晶显示器正是由这样两
个相互垂直的极化滤光器构成,
所以在正常情况下应该阻断所有
试图穿透的光线。但是,由于两
个滤光器之间充满了扭曲液晶,
所以在光线穿出第一个滤光器后,
会被液晶分子扭转90度,最后从
第二个滤光器中穿出。另一方面,
若为液晶加一个电压,分子又会
重新排列并完全平行,使光线不
再扭转,所以正好被第二个滤光
5
TN、STN、TFT对比
6
TFT LCD概念
TFT (Thin Film Transistor) LCD-- 薄膜晶 体管液晶显示器。
液晶显示器需要电压控制来产生灰阶. 利 用薄膜晶体管来产生电压,以控制液晶转 向的显示器, 就叫做TFT LCD.
7
TFT LCD结构
8
TFT LCBiblioteka 等效电路器挡住。总之,加电将光线阻断,
不加电则使光线射出。
4
液晶显示器分类
静态驱动(Static) 单纯矩阵驱动(Simple Matrix)
扭转式向列型(Twisted Nematic)、超扭转 式向列型(Super Twisted Nematic)等 主动矩阵驱动(Active Matrix)
薄膜式晶体管型(Thin Film Transistor)、二 端子二极管型(Metal/Insulator/Metal) 目前电脑显示器主要采用TFT LCD,它具有高对 比度、色彩丰富、可全彩化、动态显示、视角 较广(80度以下)等特性
什么是液晶
液晶是介于固态和液态之间,不但具有固态晶体光学特性,又具 有液态流动特性。它的物理特性包括:黏性(visco-sity)、弹性 (elasticity)和极化性(polarizalility)。
TFT_LCD液晶显示器的驱动原理详解

TFT_LCD液晶显示器的驱动原理详解TFT液晶显示器是一种广泛应用于电子产品中的显示技术,它具有亮度高、色彩鲜艳、对比度高等特点。
其驱动原理涉及到液晶分子的操控和信号的产生,下面将详细介绍TFT_LCD液晶显示器的驱动原理。
TFT液晶显示器的基本构造是将两块玻璃基板之间夹上一层液晶材料并加上一层透明导电材料形成液晶屏幕。
液晶是一种具有各向异性的有机材料,其分子有两种排列方式:平行排列和垂直排列。
平行排列时液晶分子可以使光线通过,垂直排列时则阻止光线通过。
这种液晶分子的特性决定了TFT液晶显示器的驱动原理。
TFT液晶显示器的显示过程是通过将电信号施加到液晶分子上来实现的。
在TFT液晶显示器中,每个像素都有一个薄膜晶体管(TFT)作为驱动器,这个晶体管可以控制液晶分子的排列方式。
当电压施加到晶体管上时,晶体管会打开,液晶分子垂直排列,使得背光通过液晶层后被过滤器颜色选择,从而显示对应的颜色。
当电压不再施加到晶体管上时,晶体管关闭,液晶分子平行排列,背光被完全阻挡,形成黑色。
为了产生详细的图像,TFT液晶显示器采用了阵列式的组织结构。
在每个像素之间有三个基色滤光片,分别为红色、绿色和蓝色。
液晶层上的每个像素都与一个TFT晶体管和一个电容器相连。
当电压施加到TFT晶体管上时,电容器会积蓄电荷,触发液晶分子的排列,从而控制对应像素的颜色。
在驱动原理的实现过程中,TFT液晶显示器需要一个控制器来产生电信号。
控制器通过一个复杂的算法,将输入的图像数据转化为适合TFT液晶显示器的电信号,以实现图像的显示。
控制器还负责对TFT晶体管进行驱动,为每个像素提供适当的电压。
另外,TFT液晶显示器还需要背光模块来提供光源。
背光模块通常使用冷阴极荧光灯(CCFL)或者白色LED来产生光线。
背光通过液晶分子的排列方式来调节光的透过程度,从而形成不同的颜色。
为了提供更好的显示效果,在TFT液晶显示器中还需要增加背光的亮度和对比度的调节功能。
tft lcd技术原理

tft lcd技术原理TFT(LCD)技术原理是指薄膜晶体管液晶显示技术(TFT-LCD,Thin-Film Transistor Liquid Crystal Display)。
下面将详细介绍其工作原理。
TFT-LCD由液晶显示屏和后端驱动电路两部分组成。
液晶显示屏是由若干个液晶单元组成的,每个液晶单元由液晶分子、电极和偏振片构成。
液晶分子具有特殊的电光特性,可以根据电场的变化来控制光的通过程度,从而实现图像显示。
液晶单元中的液晶分子处于两种不同的排列状态:平行排列和垂直排列。
当液晶分子是平行排列时,光线经过液晶层时会发生旋光现象,没有电场作用下,光线通过液晶层时方向不会发生改变。
而当液晶分子是垂直排列时,光线经过液晶层时会被旋转90度,即偏振方向会发生变化。
TFT液晶显示屏利用切换液晶分子的排列状态来控制光的透过程度。
每个液晶单元都配备一个薄膜晶体管(TFT),TFT作为一个电子开关,可以控制电场的加与不加。
当电场加到液晶单元上时,液晶分子会在电场的作用下发生排列状态的改变。
TFT-LCD通过后端驱动电路对每个液晶单元的TFT进行精确的电压控制,从而控制光的透过程度。
后端驱动电路根据输入的视频信号和控制信号生成相应的电压信号,这些信号通过电极施加到TFT上,控制液晶分子的排列状态。
具体来说,当后端驱动电路向液晶单元的TFT施加正向电压时,电场作用下液晶分子垂直排列,光线被旋转90度,无法通过偏振片,显示为暗状态。
而当后端驱动电路向TFT施加负向电压时,电场作用下液晶分子平行排列,光线无需经过旋转,可以通过偏振片,显示为亮状态。
通过对每个液晶单元的TFT施加不同的电压,可以实现不同程度的光透过,从而形成图像。
多个液晶单元组合在一起,就可以形成液晶显示屏,可以显示出各种复杂的图像和视频。
总结来说,TFT-LCD技术利用电场控制液晶分子的排列状态,通过后端驱动电路对每个液晶单元的电压进行精确控制,从而实现图像的显示。
tft-lcd工作原理

tft-lcd工作原理TFT-LCD(薄膜晶体管液晶显示器)是一种常用于电子产品的显示技术,它在手机、电视、电脑等设备中广泛应用。
本文将从TFT-LCD 的工作原理入手,介绍其基本结构和工作过程。
TFT-LCD由多个液晶单元组成,每个液晶单元由一个薄膜晶体管(TFT)和一个液晶分子层构成。
薄膜晶体管是一种用于控制液晶分子的开关,液晶分子层则是用于调节光的通过状态。
整个液晶显示器由成千上万个液晶单元组成,每个液晶单元控制一个像素点的亮度和颜色。
液晶分子层是TFT-LCD的核心部分,它由两片平行的玻璃基板组成,中间夹着液晶分子。
液晶分子具有向不同方向旋转光线的特性,通过电压的作用,可以控制液晶分子的旋转角度,从而改变光的通过状态。
液晶分子层的两片玻璃基板上分别涂有透明导电层和栅极线,形成了每个液晶单元的电极。
TFT薄膜晶体管是控制液晶分子旋转的关键部件。
每个TFT晶体管由一个薄膜晶体管和一个电容器组成。
薄膜晶体管是一种用于放大电信号的开关,它由半导体材料制成。
当电流通过薄膜晶体管时,半导体材料中的电子会被激发,从而改变导电性能,控制电荷的流动。
电容器用于存储电荷,通过改变电容器的电荷状态,可以控制薄膜晶体管的开关状态。
TFT-LCD的工作过程可以分为两个阶段:光的控制和电信号的控制。
在光的控制阶段,背光源发出白光,经过液晶分子层后,根据电压的作用,液晶分子的旋转角度不同,光的透过率也不同,从而实现对光的控制。
在电信号的控制阶段,输入的电信号经过电路控制,通过薄膜晶体管控制对应液晶单元的电压,从而控制液晶分子的旋转角度,进而控制光的透过率。
TFT-LCD的优点在于色彩鲜艳、显示效果好、功耗低等。
与传统的CRT显示器相比,TFT-LCD具有更高的分辨率、更快的响应速度和更薄的厚度。
此外,TFT-LCD还具有广视角、抗干扰能力强等特点,使其在各种电子设备中得到广泛应用。
TFT-LCD是一种基于薄膜晶体管和液晶分子层的显示技术,通过控制液晶分子的旋转角度,实现光的控制,并通过薄膜晶体管控制电信号,实现对液晶分子的控制。
tft lcd 工作原理
tft lcd 工作原理
TFT LCD(薄膜晶体管液晶显示器)是一种常见的显示技术,广泛应用于电子设备中,例如平板电脑、智能手机和电视等。
下面是TFT LCD的工作原理:
1. 液晶层:TFT LCD最关键的部分是液晶层,液晶层由液晶
分子组成,液晶分子可以通过电场的作用改变其在空间中的排列方式。
2. 背光源:TFT LCD需要一个背光源,通常采用LED(Light Emitting Diode)作为背光源。
背光源会在显示器的后面提供
均匀的光源,通过液晶层透过背光源的光来显示图像。
3. 薄膜晶体管阵列:液晶层的每个像素点都包含一个对应的薄膜晶体管。
这些薄膜晶体管阵列是连接在导线网格上的,用于控制液晶层中液晶分子的排列方式。
4. 驱动电路:TFT LCD中的驱动电路负责控制薄膜晶体管阵列,通过在特定像素点上施加电压,改变液晶分子的排列方式。
这样,液晶层就可以根据不同的电压来控制光的透过程度,从而生成不同的颜色和亮度。
5. 控制器:TFT LCD还包含一个控制器,用于接收来自电子
设备的信号,并将其转化为正确的像素点显示在液晶屏上。
控制器通常采用计算机程序或者芯片实现。
总的来说,TFT LCD的工作原理是通过控制驱动电路中的薄
膜晶体管阵列,在液晶层中施加电场,进而控制液晶分子的排列方式,从而控制光的透过程度,最终显示出图像。
TFT LCD液晶显示器的工作原理(下)
TFT LCD液晶显示器的工作原理(下)tft-lcd液晶显示器的工作原理(下)tft-lcd液晶显示器的工作原理(下)谢崇凯偏光板(polarizer)我回忆起在高中时的物理课,当教到跟光有关的物理特性时,搞了好多的物理实验,目的就是为了必须证明光也就是一种波动。
而光波的前进方向,就是与电场及磁场互相横向的。
同时光波本身的电场与磁场分量,彼此也就是互相横向的。
也就是说前进方向与电场及磁场分量,彼此就是两两互相平行的.(恳请见到图7)而偏光板的促进作用就像栅栏通常,可以隔绝掉下来与栅栏横向的分量,只获准与栅栏平行的分量通过。
所以如果我们拎起至一片略偏光板对着光源看看,可以感觉像穿了太阳眼镜通常,光线显得昏暗。
但是如果把两片略偏光板迭在一起,那就不一样了。
当您转动两片的偏光板的相对角度,可以辨认出随着相对角度的相同,光线的亮度可以越来越暗。
当两片略偏光板的栅栏角度互相横向时,光线就全然无法通过了.(恳请见到图8)而液晶显示器就是利用这个特性去顺利完成的。
利用上下两片栅栏互相横向的偏光板之间,充满著液晶,再利用电场掌控液晶旋转,去发生改变光的前进方向,如此一来,相同的电场大小,就可以构成相同灰阶亮度了。
(恳请见到图9)上下两层玻璃与配向膜(alignmentfilm)这上下两层玻璃主要就是去卡住液晶用的。
在下面的那层玻璃短存有薄膜晶体管(thinfilmtransistor,tft),而上面的那层玻璃则张贴存有彩色滤光片(colorfilter)。
如果您注意到的话(恳请见到图3),这两片玻璃在碰触液晶的那一面,并不是光滑的,而是有锯齿状的沟槽。
这个沟槽的主要目的是希望长棒状的液晶分子,会沿着沟槽排列。
如此一来,液晶分子的排列才会整齐。
因为如果是光滑的平面,液晶分子的排列便会不整齐,造成光线的散射,形成漏光的现象。
其实这只是理论的说明,告诉我们需要把玻璃与液晶的接触面,做好处理,以便让液晶的排列有一定的顺序。
TFTLCD工作原理
TFTLCD工作原理
TFT LCD(Thin Film Transistor Liquid Crystal Display,薄膜晶
体管液晶显示器)是最常用的一种液晶显示器,具有体积小、重量轻、耗
电量低、响应速度快等优点,广泛的应用于电脑显示器、手机、电视机等。
TFT LCD 的工作原理如下:
TFTLCD显示器的基本结构是由像素组成的晶圆片上放置了微小的TFT (薄膜晶体管)驱动结构和液晶分子组成的LCD结构。
每个像素都有相应
的TFT结构,以驱动LCD中的液晶分子,完成显示的刷新和更新,从而实
现显示图像内容的转换。
TFT LCD 显示器的工作原理是将具有内含pixel的晶圆片上的每个
TFT晶体管做为一个晶体管四极管(包括电极、源极、漏极和控制极等),利用电压的变化调节液晶分子间的电容,从而影响液晶分子的排列和偏析
程度,从而有效地调节液晶分子的透射率,改变图像的亮度。
1.电信号处理:将接收到的电信号处理成TFT驱动所需的电压。
2.TFT驱动:通过TFT结构生成调整液晶分子电容偏移的电压,从而
改变像素亮度。
3.液晶显示:利用TFT结构调整液晶分子电容的偏移,从而调节液晶
电容释放的光,形成显示图像。
晶圆片上的TFT晶体管负责处理外界接收的信号。
TFTLCD液晶显示器显示原理
TFT-LCD 驅動原理簡介
‧ TFT LC Display:
Scan line
t Data line
t
路漫漫其修远兮, 吾将上下而求索
Pixel
Dot or Sub-pixel
TFT-LCD 驅動原理簡介
‧ LC polarity control(1/5):
Frame inversion +- +- +- ++- +- +- ++- +- +- ++- +- +- +-
LCD Module LCD Panel Center of the Screen
Photometer (TOPCON BM-5A)
Field of View = 2º 500 mm
Light Shield Room
路漫漫其修远兮, 吾将上下而求索
TFT-LCD 顯示器產品特性與規格
‧反應時間: signal
路漫漫其修远兮, 吾将上下而求索
TFT-LCD 驅動原理簡介
‧ LC polarity control(4/5):
Dot inversion +- +- +- ++- +- +- ++- +- +- ++- +- +- +-
- Higher power - Minimum flicker - Highest image quality -以60Hz(1024*768)更新頻率來說,亦即每16.67ms更改一次Frame的極性.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
TFT LCD液晶显示器的操作原理(下)上次跟大家介绍有关液晶的分类与液晶的特性, 这次跟大家介绍液晶显示器的基本原理. 上次跟大家介绍的液晶特性中, 最重要的就是液晶的介电系数与折射系数. 介电系数是液晶受电场的影响决定液晶分子转向的特性, 而折射系数则是光线穿透液晶时影响光线行进路线的重要参数. 而液晶显示器就是利用液晶本身的这些特性, 适当的利用电压, 来控制液晶分子的转动, 进而影响光线的行进方向, 来形成不同的灰阶, 作为显示影像的工具. 当然啦, 单靠液晶本身是无法当作显示器的, 还需要其它的材料来帮忙, 以下我们要来介绍有关液晶显示器的各项材料组成与其操作原理.偏光板(polarizer)我记得在高中时的物理课, 当教到跟光有关的物理特性时, 做了好多的物理实验, 目的是为了要证明光也是一种波动. 而光波的行进方向, 是与电场及磁场互相垂直的. 同时光波本身的电场与磁场分量, 彼此也是互相垂直的. 也就是说行进方向与电场及磁场分量, 彼此是两两互相平行的.(请见图1) 而偏光板的作用就像是栅栏一般, 会阻隔掉与栅栏垂直的分量, 只准许与栅栏平行的分量通过. 所以如果我们拿起一片偏光板对着光源看, 会感觉像是戴了太阳眼镜一般, 光线变得较暗. 但是如果把两片偏光板迭在一起, 那就不一样了. 当您旋转两片的偏光板的相对角度, 会发现随着相对角度的不同, 光线的亮度会越来越暗. 当两片偏光板的栅栏角度互相垂直时, 光线就完全无法通过了.(请见图2) 而液晶显示器就是利用这个特性来完成的. 利用上下两片栅栏互相垂直的偏光板之间, 充满液晶, 再利用电场控制液晶转动, 来改变光的行进方向, 如此一来, 不同的电场大小,就会形成不同灰阶亮度了.(请见图3)上下两层玻璃与配向膜(alignment film)这上下两层玻璃主要是来夹住液晶用的. 在下面的那层玻璃长有薄膜晶体管(Thin film transistor, TFT), 而上面的那层玻璃则贴有彩色滤光片(Color filter). 如果您注意到的话(请见图3), 这两片玻璃在接触液晶的那一面, 并不是光滑的, 而是有锯齿状的沟槽. 这个沟槽的主要目的是希望长棒状的液晶分子, 会沿着沟槽排列. 如此一来, 液晶分子的排列才会整齐. 因为如果是光滑的平面, 液晶分子的排列便会不整齐, 造成光线的散射, 形成漏光的现象. 其实这只是理论的说明, 告诉我们需要把玻璃与液晶的接触面, 做好处理, 以便让液晶的排列有一定的顺序. 但在实际的制造过程中, 并无法将玻璃作成有如此的槽状的分布, 一般会在玻璃的表面上涂布一层PI(polyimide), 然后再用布去做磨擦(rubbing)的动作, 好让PI的表面分子不再是杂散分布, 会依照固定而均一的方向排列. 而这一层PI 就叫做配向膜, 它的功用就像图3中玻璃的凹槽一样, 提供液晶分子呈均匀排列的接口条件, 让液晶依照预定的顺序排列.TN(Twisted Nematic) LCD从图4中我们可以知道, 当上下两块玻璃之间没有施加电压时, 液晶的排列会依照上下两块玻璃的配向膜而定. 对于TN型的液晶来说, 上下的配向膜的角度差恰为90度.(请见图3) 所以液晶分子的排列由上而下会自动旋转90度, 当入射的光线经过上面的偏光板时, 会只剩下单方向极化的光波. 通过液晶分子时, 由于液晶分子总共旋转了90度, 所以当光波到达下层偏光板时, 光波的极化方向恰好转了90度. 而下层的偏光板与上层偏光板, 角度也是恰好差异90度.(请见图3) 所以光线便可以顺利的通过, 但是如果我们对上下两块玻璃之间施加电压时, 由于TN型液晶多为介电系数异方性为正型的液晶(ε// >ε⊥,代表着平行方向的介电系数比垂直方向的介电系数大, 因此当液晶分子受电场影响时, 其排列方向会倾向平行于电场方向.), 所以我们从图4中便可以看到, 液晶分子的排列都变成站立着的. 此时通过上层偏光板的单方向的极化光波, 经过液晶分子时便不会改变极化方向, 因此就无法通过下层偏光板.Normally white及normally black所谓的NW(Normally white),是指当我们对液晶面板不施加电压时, 我们所看到的面板是透光的画面, 也就是亮的画面, 所以才叫做normally white. 而反过来, 当我们对液晶面板不施加电压时, 如果面板无法透光, 看起来是黑色的话, 就称之为NB(Normally black). 我们刚才所提到的图3及图4都是属于NW的配置, 另外从图5我们可以知道, 对TN型的LCD而言, 位于上下玻璃的配向膜都是互相垂直的, 而NB与NW的差别就只在于偏光板的相对位置不同而已. 对NB来说, 其上下偏光板的极性是互相平行的. 所以当NB不施加电压时, 光线会因为液晶将之旋转90度的极性而无法透光. 为什么会有NW与NB这两种不同的偏光板配置呢? 主要是为了不同的应用环境. 一般应用于桌上型计算机或是笔记型计算机, 大多为NW的配置. 那是因为, 如果你注意到一般计算机软件的使用环境, 你会发现整个屏幕大多是亮点, 也就是说计算机软件多为白底黑字的应用. 既然亮着的点占大多数, 使用NW当然比较方便. 也因为NW的亮点不需要加电压, 平均起来也会比较省电. 反过来说NB的应用环境就大多是属于显示屏为黑底的应用了.STN(Super Twisted Nematic)型LCDSTN LCD与TN型LCD在结构上是很相似的, 其主要的差别在于TN型的LCD,其液晶分子的排列, 由上到下旋转的角度总共为90度. 而STN型LCD的液晶分子排列, 其旋转的角度会大于180度, 一般为270度.(请见图6) 正因为其旋转的角度不一样, 其特性也就跟着不一样. 我们从图7中TN型与STN型LCD的电压对穿透率曲线可以知道, 当电压比较低时, 光线的穿透率很高. 电压很高时, 光线的穿透率很低. 所以它们是属于Normal White的偏光板配置. 而电压在中间位置的时候, TN型LCD的变化曲线比较平缓, 而STN型LCD的变化曲线则较为陡峭. 因此在TN型的LCD中, 当穿透率由90%变化到10%时, 相对应的电压差就比STN型的LCD来的较大. 我们前面曾提到, 在液晶显示器中, 是利用电压来控制灰阶的变化. 而在此TN与STN的不同特性, 便造成TN型的LCD,先天上它的灰阶变化就比STN型的LCD来的多. 所以一般TN型的LCD多为6~8 bits 的变化, 也就是64~256个灰阶的变化. 而STN型的LCD最多为4 bits的变化也就只有16阶的灰阶变化. 除此之外STN与TN型的LCD还有一个不一样的地方就是反应时间(response time) 一般STN型的LCD其反应时间多在100ms以上而TN型的LCD其反应时间多为30~50ms 当所显示的影像变动快速时对STN型的LCD而言就容易会有残影的现象发生TFT LCD(Thin film transistor liquid crystal display)TFT LCD的中文翻译名称就叫做薄膜晶体管液晶显示器, 我们从一开始就提到液晶显示器需要电压控制来产生灰阶. 而利用薄膜晶体管来产生电压,以控制液晶转向的显示器, 就叫做TFT LCD. 从图8的切面结构图来看, 在上下两层玻璃间, 夹着液晶, 便会形成平行板电容器, 我们称之为C LC(capacitor of liquid crystal). 它的大小约为0.1pF, 但是实际应用上, 这个电容并无法将电压保持到下一次再更新画面数据的时候. 也就是说当TFT对这个电容充好电时, 它并无法将电压保持住, 直到下一次TFT再对此点充电的时候.(以一般60Hz的画面更新频率, 需要保持约16ms的时间.) 这样一来, 电压有了变化, 所显示的灰阶就会不正确. 因此一般在面板的设计上, 会再加一个储存电容C S(storage capacitor 大约为0.5pF), 以便让充好电的电压能保持到下一次更新画面的时候. 不过正确的来说, 长在玻璃上的TFT本身,只是一个使用晶体管制作的开关. 它主要的工作是决定LCD source driver上的电压是不是要充到这个点来. 至于这个点要充到多高的电压, 以便显示出怎样的灰阶. 都是由外面的LCD source driver来决定的.彩色滤光片(color filter, CF)如果你有机会, 拿着放大镜, 靠近液晶显示器的话. 你会发现如图9中所显示的样子. 我们知道红色, 蓝色以及绿色, 是所谓的三原色. 也就是说利用这三种颜色, 便可以混合出各种不同的颜色. 很多平面显示器就是利用这个原理来显示出色彩. 我们把RGB三种颜色, 分成独立的三个点, 各自拥有不同的灰阶变化, 然后把邻近的三个RGB显示的点, 当作一个显示的基本单位, 也就是pixel. 那这一个pixel,就可以拥有不同的色彩变化了. 然后对于一个需要分辨率为1024*768的显示画面, 我们只要让这个平面显示器的组成有1024*768个pixel, 便可以正确的显示这一个画面. 在图9中,每一个RGB的点之间的黑色部分, 就叫做Black matrix. 我们回过头来看图8就可以发现, black matrix主要是用来遮住不打算透光的部分. 比如像是一些ITO的走线, 或是Cr/Al的走线, 或者是TFT的部分. 这也就是为什么我们在图9中, 每一个RGB的亮点看起来, 并不是矩形, 在其左上角也有一块被black matrix遮住的部分, 这一块黑色缺角的部份就是TFT的所在位置.图10是常见的彩色滤光片的排列方式. 条状排列(stripe)最常使用于OA的产品, 也就是我们常见的笔记型计算机,或是桌上型计算机等等. 为什么这种应用要用条状排列的方式呢? 原因是现在的软件, 多半都是窗口化的接口. 也就是说, 我们所看到的屏幕内容,就是一大堆大小不等的方框所组成的. 而条状排列,恰好可以使这些方框边缘, 看起来更笔直, 而不会有一条直线, 看起来会有毛边或是锯齿状的感觉. 但是如果是应用在A V产品上, 就不一样了. 因为电视信号多半是人物, 人物的线条不是笔直的, 其轮廓大部分是不规则的曲线. 因此一开始, 使用于A V产品都是使用马赛克排列(mosaic,或是称为对角形排列). 不过最近的A V 产品, 多已改进到使用三角形排列(triangle,或是称为delta排列). 除了上述的排列方式之外, 还有一种排列, 叫做正方形排列. 它跟前面几个不一样的地方在于, 它并不是以三个点来当作一个pixel,而是以四个点来当作一个pixel. 而四个点组合起来刚好形成一个正方形.背光板(back light, BL)在一般的CRT屏幕, 是利用高速的电子枪发射出电子, 打击在银光幕上的荧光粉, 藉以产生亮光, 来显示出画面. 然而液晶显示器本身, 仅能控制光线通过的亮度, 本身并无发光的功能. 因此,液晶显示器就必须加上一个背光板, 来提供一个高亮度,而且亮度分布均匀的光源. 我们在图8中可以看到, 组成背光板的主要零件有灯管(冷阴极管), 反射板, 导光板, prism sheet, 扩散板等等. 灯管是主要的发光零件, 藉由导光板, 将光线分布到各处. 而反射板则将光线限制住都只往TFT LCD的方向前进. 最后藉由prism sheet及扩散板的帮忙, 将光线均匀的分布到各个区域去, 提供给TFT LCD一个明亮的光源. 而TFT LCD则藉由电压控制液晶的转动, 控制通过光线的亮度, 藉以形成不同的灰阶.框胶(Sealant)及spacer在图8中另外还有框胶与spacer两种结构成分. 其中框胶的用途,就是要让液晶面板中的上下两层玻璃, 能够紧密黏住, 并且提供面板中的液晶分子与外界的阻隔,所以框胶正如其名,是围绕于面板四周, 将液晶分子框限于面板之内. 而spacer主要是提供上下两层玻璃的支撑, 它必须均匀的分布在玻璃基板上, 不然一但分布不均造成部分spacer聚集在一起, 反而会阻碍光线通过, 也无法维持上下两片玻璃的适当间隙(gap), 会成电场分布不均的现象, 进而影响液晶的灰阶表现.开口率(Aperture ratio)液晶显示器中有一个很重要的规格就是亮度, 而决定亮度最重要的因素就是开口率. 开口率是什么呢? 简单的来说就是光线能透过的有效区域比例. 我们来看看图11, 图11的左边是一个液晶显示器从正上方或是正下方看过去的结构图. 当光线经由背光板发射出来时, 并不是所有的光线都能穿过面板, 像是给LCDsource驱动芯片及gate驱动芯片用的信号走线, 以及TFT本身, 还有储存电压用的储存电容等等. 这些地方除了不完全透光外, 也由于经过这些地方的光线并不受到电压的控制,而无法显示正确的灰阶, 所以都需利用black matrix加以遮蔽, 以免干扰到其它透光区域的正确亮度. 所以有效的透光区域, 就只剩下如同图11右边所显示的区域而已. 这一块有效的透光区域, 与全部面积的比例就称之为开口率.当光线从背光板发射出来, 会依序穿过偏光板, 玻璃, 液晶, 彩色滤光片等等.假设各个零件的穿透率如以下所示:偏光板: 50%(因为其只准许单方向的极化光波通过)玻璃:95%(需要计算上下两片)液晶:95%开口率:50%(有效透光区域只有一半)彩色滤光片:27%(假设材质本身的穿透率为80%,但由于滤光片本身涂有色彩, 只能容许该色彩的光波通过. 以RGB三原色来说, 只能容许三种其中一种通过. 所以仅剩下三分之一的亮度. 所以总共只能通过80%*33%=27%.)以上述的穿透率来计算, 从背光板出发的光线只会剩下6%, 实在是少的可怜.这也是为什么在TFT LCD的设计中, 要尽量提高开口率的原因. 只要提高开口率, 便可以增加亮度, 而同时背光板的亮度也不用那么高, 可以节省耗电及花费.参考数据:1.交通大学次微米人才培训课程, 平面显示器原理讲义.2.财团法人自强基金会电子工业人才培训课程, 液晶显示器显示原理讲义.。