电路原理(上)_ 相量法_

合集下载

【第8章】 相量法

【第8章】 相量法
实轴 +1
复数在复平面上可 以用向量表示。
0
a1
2. 复数的四种表示形式
⑴ 表达式 ① 代数形式 A= a1+ ja2 +j a2 A
② 极坐标形式
③ 三角函数式 ④ 指数形式
0 模 幅角 A a cos j + j a sin j
A aj
a φ
a1 +1
A ae jj
(由欧拉公式e jφ = cos φ + jsin φ得到) ⑵ 四种表达式关系
I e jy i I y I m m m i
复振幅与正弦量的一一对应关系: 复振幅的模是正弦量的最大值 复振幅的幅角为正弦量的初相位
jy i I Ie Iy i 复有效值
复有效值与正弦量的一一对应关系: 复有效值的模是正弦量的有效值 复有效值的幅角为正弦量的初相位
同样可以建立正弦电压与相量的对应关系:
φ =0,同相; i i1
0 i2
φ = (180o) ,反相; i i1 i2
wt
0 i i1
wt
φ = /2,正交;
i2
wt 因为规定了: |φ| (180°)。 0 所以,我们说i1 领先 i2 /2, 而不说i2落后i1 3 /2
注:我们此处比较的是两个电流的相位差,那么,我们是 否可以比较一个电压和一个电流的相位差?在今后的分析 中可以利用电压和电流的相位差来判断电路的性质。
线圈从中性面开始转过了ωt 时,导线切割磁 力线的速度是ωr SIN ωt
可见:交流电是电流的大小和方向都随时间做周期 性变化的电流。
交流电有许多优点: •交流电可以用变压器升高或降低电压, •交流电可以驱动结构简单,运行可靠的交流 感应电动机,交流电是廉价的动力或能量来源。

电路相量法讲义

电路相量法讲义

1. 正弦量与相量之间的联系和区别;
2. 元件电压相量和电流相量的关系、相量图。
. Im= 5∠45o A
45o
. Um= 100∠0o V
主要是相位关系 .
Z = U.m =20∠-45o W Im
与其它章节的联系 是学习第 9、10、11、12章的基础。 必须熟练掌握相量法的解析运算。
2024年7月17日星期三
qA
任意一个复数A=|A|ejqa乘以
ejq ,等于把A逆时针旋转q
qa
+1
角度,而模|A|保持不变。 o
ej
p
2
=j
-j p
e 2 = -j
e jp = -1
都是旋 转因子
A×j = jA,等于把 A 逆时针旋转90o。
A j
=
-jA,等于把
A
顺时针旋转90o。
2024年7月17日星期三
7
§8-2 正弦量
di dt
=wImcos(wt+fi
(2) i1(t) =10cos(100pt+30o)A
i2(t) =10cos(100pt-105o)A (2) j =30o-(-105o)=135o
(3) u1(t) =10cos(100pt+30o)V (3) w1≠w2,
u2(t) =10cos(200pt+45o)V 不能进行相位比较。
fi = 60o
由于最大值发生在计
o t1
t
时起点右侧 fi = - 60o
i(t) = 100cos(103t - 60o)
2. 当 103t = 60o = p3 时, 出现最大值
t1 =

电路原理-相量法

电路原理-相量法
周期电流、电压有效值(effective value)定义
物 理 意 义
直流I
Rห้องสมุดไป่ตู้
交流i
R
W RI T
2
W Ri (t )dt
2 0
T
电流有效 值定义为
1 T 2 I i (t )dt T 0
def
有效值也称均方根值 (root-mean-square)
1 同样,可定义电压有效值: U T
8.1 复数
1. 复数的表示形式
Im b 向量 0 a Re 0 F
F=a+jb
( j 1 为虚单位)
Im b F |F|

①代数形式 ②三角形式
F a jb F | F | (cos j sin )
F | F | e j
F | F |
a
Re
③指数形式
④极坐标形式
除法:模相除,角相减
(3.41 j3.657) (9.063 j 4.226)
12.47 j 0.569 12.48 2.61
③ 旋转因子
Im
复数 ejθ =cosθ +jsinθ =1∠θ
F• e j 相当于F逆时针旋转一个角度θ , ejθ 称为旋转因子。
j >0, u超前i,或i 落后u ,u 比i先到达最大值。 u, i u i
u i
j
O
t
j <0, i 超前 u,或u 滞后 i ,i 比 u 先到达最大值。
特殊相位关系:
①j = 0, 同相 u, i u i ②j = (180 ) ,反相 u, i u 0 u, i u i 0 i t

电路原理 第八章_相量法

电路原理 第八章_相量法

复数 复数

孙惠英 shy@
上页
下页
返回
第8章
4、正弦量的相量表示法(续)

已知正弦量 220√ 2 cos ( ω t-35° ) 有效值相量 最大值相量 220/ -35° — 220√ 2 /-35°
已知 相量 10/45° and 正弦量的角频率ω 相应的正弦量 — 10 √ 2 cos( ωt + 45° )
0 ωt1
ωt2
ωt
φ
图8-5 用旋转矢量表示的正弦量
孙惠英 shy@
上页
下页
返回
第8章
4、正弦量的相量表示法 F = ⎪F⎪e j(ω t + ϕ )
ejθ = cosθ + jsinθ
设:有一复数
欧拉公式
F = ⎪F⎪ej(ωt + ϕ ) = ⎪F⎪cos(ωt + ϕ) + j⎪F⎪sin(ωt +ϕ) Re [F] = ⎪F⎪cos(ωt + ϕ ) Im [F] = ⎪F⎪sin(ωt + ϕ )
返回
第8章
三、旋转因子
/ϕ 旋转因子: e jϕ = 1 — A = ⎪A⎪ejα Aejϕ = ⎪A⎪ejαejϕ = ⎪A⎪ej(α+ϕ ) ejπ/2 = j1 e-jπ/2 = − j1
+j
Aejϕ
ϕ α
0
A
+1
e-jπ = − 1
孙惠英 shy@
上页
下页
返回
第8章
ϕ 12 = ϕ 1- ϕ 2 —— u1 超前于 u2 的相角 ϕ 21 = ϕ 2- ϕ 1 —— u2 超前于 u1 的相角

相量法

相量法

ω = 0(直流), X L = 0, 短路 ; ; ω → ∞, X L → ∞, 开路
ω
相量表达式: 相量表达式
& & & U = jX L I = jωLI ,
& = jB U = j − 1 U = 1 U & & & I L jωL ωL
返 回 上 页 下 页
波形图及相量图: 波形图及相量图:
返 回 上 页 下 页
电感元件VCR的相量形式 2. 电感元件 的相量形式
时域形式: 时域形式:
已知 i(t ) = 2I cos(ω t +ψi )
i(t) + uL(t) •

L
di(t ) uL (t ) = L = − 2ωL I sin(ω t +Ψ ) i dt π = 2ω L I cos(ω t +Ψ + ) i 2
uL O
pL i
2π π
& UL
电压超前电 流900
& I
ωt
Ψi
功率: 功率:
pL = uLi = ULm Im cos(ωt +Ψ ) sin(ω t +Ψ ) i i = UL I sin 2(ω t +Ψ ) i
瞬时功率以2ω交变,有正有负,一周期内刚好互相抵消 瞬时功率以 ω交变,有正有负,
返 回 上 页 下 页
波形图及相量图: 波形图及相量图: pR uR i
& UR
URI
& I
Ψu=Ψi
同 相 位
O
ωt
瞬时功率: 瞬时功率:
pR = uRi = 2UR 2I cos2 (ω t +Ψ i )

电路(第五版).-邱关源原著-电路教案--第8章相量法

电路(第五版).-邱关源原著-电路教案--第8章相量法

电路(第五版).-邱关源原著-电路教案--第8章相量法第8章 相量法● 本章重点1、正弦量的两种表示形式;2、相量的概念;3、KVL 、KCL 及元件VCR 的相量形式。

● 本章难点1、 正确理解正弦量的两种表示形式的对应关系;2、 三种元件伏安关系的相量形式的正确理解。

● 教学方法本章是相量法的基础,对复数和正弦量两部分内容主要以自学为主,本章主要讲授相量法的概念、电路定律的相量形式以及元件V AR 的相量形式。

讲述中对重点内容不仅要讲把基本概念讲解透彻,而且要讲明正弦量的相量与正弦时间函数之间的对应关系;元件V AR 的相量形式与时域形式之间的对应关系,使学生加深对内容的理解并牢固掌握。

本章对元件的功率和能量这部分内容作了简单讲解,以便为下一章的学习打下基础。

本章共用4课时。

● 授课内容8.1复数1. 复数的三种表示bj a A += 直角坐标=θ∠r 极坐标 =θj re 指数形式θθθsin cos 22r b r a ab arctgb a r ==⇒=+=⇒直极极直θθsin cos jr r A += 三角表示形式欧拉公式:θθθsin cos j e j +=2. 复数的运算已知:11111θ∠=+=r jb a A ,22222θ∠=+=r jb a A求:212121,,A AA A A A ⋅±i()()212121b b j a a A A ±+±=±212121212121θθθθ+∠=+∠=⋅r r A A r r A A 8.2正弦量一、正弦量:随时间t 按照正弦规律变化的物理量,都称为正弦量,它们在某时刻的值称为该时刻的瞬时值,则正弦电压和电流分别用小写字母i 、u 表示。

周期量:时变电压和电流的波形周期性的重复出现。

周期T :每一个瞬时值重复出现的最小时间间隔,单位:秒(S ); 频率f : 是每秒中周期量变化的周期数,单位:赫兹(Hz )。

电路原理课件 第8章 相量法


三. 相位差 :
两个同频率正弦量相位角之差。
i(t) 0
Im um
设 u(t)=Umcos(w t+ u)
2
i(t)=Imcos(w t+ i)
0
wt
则 相位差j : j = (w t+ u)- (w t+ i)
u- i
同频率正弦量的相位差等于它们的初相之差。 不同频率的两个正弦量之间的相位差不再是一个常数,而是 随时间变动。
j u与i正交; j u与i反相;
2
§8 - 3相量法的基础
1. 正弦量的相量表示
复函数 F F ej(wt)
没有物理意义
F cos(wt ) j F sin(wt Ψ )
若对F取实部:
Re[F] F cos(ωt Ψ ) 是一个正弦量,有物理意义。
对于任意一个正弦时间函数都可以找到唯一的与其对应的 复指数函数:
F e j
4、极坐标形式:
F F ej
=|F|
二 复数运算
(1)加减运算——代数形式
+j F2
若 F1=a1+jb1
F2=a2+jb2 O
则 F1±F2= (a1±a2) +j (b1±b2)
F= F1 +F1
F1 +1
+j
O - F2
F2 F1
F= F1 - F2 +1
(2) 乘除运算——指数形式或极坐标形式
⑶∫i2dt。
解: ⑴设 i i1 i2 2I cos(wt i ), 其相量为 I=I/Ψi
I I1 I2 10/600A+22/-1500A=(5+j8.66)A+(-19.05-j11)A

电路_相量法


8
相量法的基础(****) §8 - 3 相量法的基础
§8 - 3 相量法的基础
一、相量定义: 相量定义:
表示正弦量的复常数称为相量。 表示正弦量的复常数称为相量。 例如: 例如: 正弦量 i = 220 2 cos(314t − 30 o )A
& = 220 e − j30o A 表示。 表示。 可用相量 I
& = Re[ 2 I e e jω t ] = Re[ 2 I e jω t ]
三、正弦量的运算: 正弦量的运算:
1、同频正弦量的代数和: 、同频正弦量的代数和: i1 = 2 I1 cos(ω t + ψ 1 )A, i2 = 2 I 2 cos(ω t + ψ 2 )A
& & & & i = i1 + i2 = Re[ 2 I1 e jω t ] + Re[ 2 I 2 e jω t ] = Re[ 2 ( I1 + I 2 )e jω t ]
2π ω = 2πf = T
额定值为有效值, 额定值为有效值, 耐压值为最大值。 耐压值为最大值。
热效应上与一个周期内的平均效应相等的直流值。 热效应上与一个周期内的平均效应相等的直流值。 ③有效值: 有效值: 周期电流的有效值: 周期电流的有效值: = I 正弦电流的有效值: 正弦电流的有效值:I =
& I =Ie
jψ i
& = ωI e jψ i +90o = ωI e jψ i ⋅e90o = jωI e jψ i = jωI & ∴Y
结论: 正弦量的微分为同频正弦量,对应的相量为原相量乘以 jω。 结论: 正弦量的微分为同频正弦量, 。 注意:不能说“ 的函数。 注意:不能说“相量的导数为相量乘 jω” 。 因为相量不是 t 的函数。 11

电路分析基础课件第6章 相量法


+j
设相量
相量 乘以 ,
将逆时针旋转 90, 得到
A
0ψ +1
相量 乘以

- A
将顺时针旋转 90,得到
应用举例
例: 6-5 在图示相量图中, 己知I1=10A, I2=5A, U=110V, f=50Hz,试分别写出 它们的 相量表达式和瞬时值表达式,并说明它们之间的相位关系。
解: 相量表达式为 I1 10 30 A I2 5 45 A
F2
(1) 加法运算:
F1 F2 (a1 a2 ) j(b1 b2 )
F1 +1
F1 F2 F2
(2) 减法运算:
作图方法:首尾相连
F1 F2 (a1 a2 ) j(b1 b2 )
平行四边形
(3) 乘法运算:
F1 F2 F1 F2 (1 2 )
试分别画出它们的波形图,求出它们的有效值、频率及相位差。
解:u 10 2sin(314t 30)
i、u
10 2cos(314t 120)
ui
i、u波形图如图所示。其有效值为
I 20 14.142Α 2
0 π 2π ωt
U 10V
i、u 的频率为 f ω 314 50Hz
2π 2 3.14
u、i 的相位差为:
ψu ψi 120 60 180
应用举例
例: 6-3已知正弦电压 u 311cos(314t 60)V,试求:(1)角频率ω、频率f、周期T、
最大值Um和初相位Ψu ;(2)在t=0和t=0.001s时,电压的瞬时值;(3)用交流电压 表去测量电压时,电压表的读数应为多少?

【电路理论电子教案】相量法

CH8 相量法本章介绍相量法。

主要内容有:复数,正弦量,相量法的基础,电路定律的相量形式。

§8-1 复数教学目的:复习复数的基本知识,为学习相量法做基础。

教学重点:复数;旋转因子。

教学难点:旋转因子。

教学方法:自学。

教学内容:一、复数的表示形式1.代数形式:F=a+jb 模:F =22b a + 复角:=θarctan ab 2.三角形式:F=F (cos θ+sin θ) 模:F 复角:θ 3.指数形式:F=F eθj 模:F 复角:θ4.极坐标形式:F=F ∠θ模:F 复角:θ二、复数的运算 教材P 175~1741.复数的加减 2.复数的乘除3.复数的有理化运算三、旋转因子 e θj 教材P 175§8-2 正旋量教学目的:复习正弦量的三要素,学习正弦量的有效值,以及同频正弦量的相位差。

教学重点:正弦量的三要素,同频正弦量的相位差。

教学难点:相位差的计算。

教学方法:课堂讲授。

教学内容:一、正旋量的三要素1.定义:教材P 1762.三要素:教材P 177~176 i ψ≤180ο3.ω、T 、f : 教材P 177二、正旋量的有效值1.有效值定义:根据焦耳-愣次定律,当周期电流信号i(t)流过R 时,一个T 内电阻所消耗的能量为:1ω=⎰T dt t p 0)(=⎰Tdt t Ri 02)(;直流电流I 流过电阻R 时,在相同时间T 内,该电阻消耗的能量为:2ω=⎰Tdt RI 02=RI 2T 。

如果上述两种情况中,电阻R 消耗的能量相同,即 1ω=2ω 则有RI 2T=⎰Tdt t Ri 02)( 即:I=⎰T dt t i T 02)(1。

2.有效值与最大值的关系:I m =2I三、同频正旋量的相位差1.相位差:同频正旋量的相位差等于它们的初相之差,与记时零点的选取、变化无关。

2.取值:12ψ≤π(设12ψ与U 1与U 2的相位差) (1)12ψ>0 U 1超前U 212ψ(U 2滞后U 112ψ) (2)12ψ<0 U 1滞后U 212ψ(U 2超前U 112ψ) (3)12ψ=0 U 1、U 2同相 (4)12ψ=π± U 1、U 2反相 (5)12ψ=±2πU 1、U 2正交 [例1]:已知u 1=2202cos(ωt-120°),u 2=2202cos(ωt+120°) ,求相位差。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2U 2
e
j t
)
Re(
2U1
e
j t
2U
2
e
j
t
)
Re[
2(U1U 2) e
j t ]
相量关系为:
U
U U1 U2
结论: 同频正弦量的加减运算变为对应相量的加减运算。
8
相量法的基础
电路 原理
i1 i2= i3
I1 I2 I3
例3 u1(t) 6 2cos(314t 30 ) V
u2(t) 4 2cos(314t 60 o) V
u 311.1cos(314t 67) V
试用相量表示i, u。

I 100 50A, U 220 67V
例2 已知I 60 30 A , f 50Hz , 试写出电流的瞬时值表达式。

i 60 2cos(314t 30) A
6
相量法的基础
相量图
在复平面上用矢量表示相量的图。
u(t) 2Ucos( t θ) U U
j t
Re 2Ie dt Re 2
I j t e
j
dij
dt
IIi

2
II idt j
i 2
11
相量法的基础
电路 原理
例4 用相量运算:
i(t)
+R
u(t)
L
-
C
i(t) 2I cos( t i)
u(t) Ri L di 1 idt dt C
| F |
a2 b2
b

θ
arctan( ) a
二. 复数运算
Im
b
F
|F|
O
a
Re
a | F | cos
b |F|sin
① 加减运算 —— 采用代数式
3
复数
若 F1=a1+jb1, F2=a2+jb2,则 F1± F2=(a1± a2)+j(b1± b2).
电路 原理
Im F2
F1+F2
Im
正弦量对应的 相量
i(t) 2I cos( t ) I I
注意: ① 相量的模表示正弦量的有效值。 ② 相量的幅角表示正弦量的初相位。
5
相量法的基础
电路 原理
同样可以建立正弦电压与相量的对应关系
u(t) 2U cos( t ) U U
例1 已知 i 141.4cos(314t 50) A
) j
2
2
2
F
F
Re
Im
F
O
Re
jF
7
复数
电路 原理
π
π j
ππ
jF
, e 2 cos( ) jsin( ) j
2
2
2
Im
F
j , e cos( ) jsin( )
1
O
F
Re jF
+j, –j, -1 都可以看成旋转因子
8
相量法的基础
1
相量法的基础
电路 原理
一. 问题的提出 电路方程是微分方程
tI 3
3
结论: 同频的正弦量相加仍得到同频的正弦量,所以,只需确定初相位和
有效值。因此采用
正弦量
复数
变换的思想
3
相量法的基础
电路 原理
二. 正弦量的相量表示
无物理意义
造一个复数函数 F(t) 2Ie j( t)
2Icos(t ) j 2Isin(t )
对 F(t) 取实部 Re[F(t)] 2Icos( t ) i(t)
结论:
是一个正弦量 有物 理意义
任意一个正弦时间函数都有唯一与其对应的复数函数。
j( t )
i 2Icos( t ) F(t) 2Ie
4
相量法的基础电路 原理Ft) 还可以写成复常数
F(t)
2Ie j e jt 2Ie jt
F(t) 包含了三要素:I、 、 复常数包含了两个要素:I 、
LC d2 uC RC duC uC u(t)
dt
dt
+R u
-
iL L
+
uC -C
两个正弦量的相加,如KCL、KVL方程运算:
i1 2I1 cos( t 1) i2 2I2 cos( t 2)
2
相量法的基础
电路 原理
u i1, i
i2
i1
角频率
i2
有效值 I1 O
I2
初相位 1
2
i1+i2i3 i3
+j
U
O 三. 相量法的应用
I
+1
① 同频率正弦量的加减
电路 原理
7
相量法的基础
电路 原理
u1(t)
2U1 cos( t 1) Re( 2U1 e
j t )
u2(t) 2U2 cos( t 2) Re( 2U 2 ej t )
u(t) u1(t) u2(t) Re( 2U1 e
j t ) Re(
10 j6.2820 j31.9
11.8132.1337.6557.61 39.4540.5
10.89 j2.86
=(3 34)(34)j
=9.2+7j ③ 旋转因子
复数
ej=cos +jsin =1∠
6
复数
电路 原理
Im F• ej
F• ej
旋转因子
O
jF
特殊旋转因子
π,
π j
e2
ππ cos( ) jsin(
复数
1
一. 复数的表示形式
F a jb
j 1 为虚数单位
F | F | e j
复数
电路 原理
Im
代数式
b
F
|F|
O 指数式
a
Re
三角函数式
F | F | (cos jsin )
F | F |
极坐标式
2
复数
电路 原理
几种表示法的转换关系:
F a jb
F | F | e j | F |
| F e |1 j(θ1 2 θ ) |F 2|
| F 1| θ1θ2 |F2 |
模相除 角相减
5
复数
电路 原理
例: 计算
1. 630 + 4 + 4j =6cos306j(sin30) 4 4j
=6 3 61 j44j
2
2
=3 3+3j44j
(10 j6.28)(20 j31.9)
2.
U1 630 V U2 460 V
U U1 U2 630 460
5.19 j3 2 j3.46 7.19 j6.46
9.6441.9 V
u(t) u1(t) u2(t) 9.64 2cos(314t 41.9 ) V
9
相量法的基础
电路 原理
借助相量图计算
U1 6 30 o V
F1+F2 F2
O 图解法
F1
Re
O
F1-F2
F1 Re
-F2
4
复数
②乘除运算 —— 采用极坐标式
若 F1=|F1|∠ 1 ,F2=|F2|∠ 2

F 1F2 F 1 ej1 F2 ej2 F 1 F e2 j(12)
F 1 F2 1 2
电路 原理
模相乘 角相加
F 1 | F |e1 jθ1 F2 | F |2e jθ2
U 2 4 60o V
+j
+j
U
U2
U1
60
30 41.9
O
+1
O
U
U2
U1
60
30 41.9
+1
首尾相接
10
相量法的基础
电路 原理
② 正弦量的微分、积分运算
i 2I cos( t i) I Ii
微分运算 积分运算
di dt
d dt
Re
2Ie j t
Re 2I j ej t
idt
相关文档
最新文档