第五章-误差基础.教学文案

合集下载

第五章 测量误差的基本知识

第五章 测量误差的基本知识
容 = 3m 有时对精度要求较严,也可采用容 = 2m作为容许误 差。
在测量工作中,如某个误差超过了容许误差,则相应 观测值应舍去重测。
3.相对误差
绝对误差值与观测值之比,称为相对误差。在某 些测量工作中,有时用中误差还不能完全反映测量精度, 例如测量某两段距离,一段长200m,另一段长100m, 它们的测量中误差均为±0.2m,为此用观测值的中误差 与观测值之比,并将其分子化为1,即用1/K表示,称为 相对误差。
180°00ˊ00"
0
0
179°59ˊ57"
-3
9
180°00ˊ01"
+1
1
24
130
m2
2 3.6 10
两组观测值的误差绝对值相等 m1 < m2,第一组的观测成果的精度高于第二组观测成
果的精度
2.容许误差
容许误差又称极限误差。根据误差理论及实践证明, 在大量同精度观测的一组误差中,绝对值大于两倍中误差 的偶然误差,其出现的可能性约为5%;大于三倍中误差 的偶然误差,其出现的可能性仅有3‰,且认为是不大可 能出现的。因此一般取三倍中误差作为偶然误差的极限误 差。
全微分
dZ Kdx
得中误差式 mZ K 2mx2 Kmx
例:量得 1:1000 地形图上两点间长度l =168.5mm0.2mm,
计算该两点实地距离S及其中误差ms: 解:列函数式 S 1000 l
求全微分 dS 1000dl
mS 1000ml 1000 0.2 200mm 0.2m
测量误差=观测值-真值
观测误差来源于仪器误差、人的感官能力和外界环境 (如温度、湿度、风力、大折光等)的影响,这三方面的 客观条件统称观测条件。

第五章 测量误差的基本知识

第五章 测量误差的基本知识

2 ma
解:
α
D
+a
mS = ± 30 2 × 0.04 2 + 40 2 × 0.03 2
mS = ±1.7(m 2 )
1、求D 、 D=Lcos α = =165.50×cos15°30′ × ° =159.48m
2、求mD 、 (1)函数式 ) D=Lcosα (2)偏微分 )
中误差m ㎜,中误差 d=±0.2㎜,求实地距离 及其 ㎜ 求实地距离D及其 中误差。 中误差。 解: D=500d =
n-1 [ vv ] m=± n-1
例1:
l 1 2 3 4 5 85°42′49″ ° 85°42′40″ ° 85°42′42″ ° 85°42′46″ ° 85°42′48″ ° l0=85°42′40″ ° △l 9 0 2 6 8 25 v ﹣4 ﹢5 ﹢3 ﹣1 ﹣3 0 vv 16 25 9 1 9 60
V △l(㎜) (㎜) (㎜)
vv 4 25 256 441 9 121 856
m2 = n n
=
L = l0 +
[ vv ] 1 2 + m
∑∆ l 25" = 85°42' 40" + 5 5 =85°42′45″ °
二、求观测值的函数的中误差 S=ab (一)求偏微分 dS=b da+a db (二)以偶然误差代替微分元素
60 m=± 5 -1
m = ±3.9"
mD = 0.012 + 0.02 2 + 0.03 2
=±0.037(m) ± ( ) 六、线性函数的中误差 函数: 函数: z=k1x1+k2x2+…+knxn = + 偏微分: 偏微分: dz=k1 dx1+k2 dx2+…+kn dxn = + 中误差: 中误差:

第5章误差 测量学CAI课件

第5章误差 测量学CAI课件
二、观测值的中误差
m= [vv] n-1
三、算术平均值的中误差
m L= m/n = [vv]/n(n-1)
一、权 1、权的定义 2、权的表达式 Pi=/mi2 二、加权平均值及精度评定 1、加权平均值 L^ =(p1l1+p2l2+……+pnln)/(p1+p2+……pn)=[pl]/p 2、单位权中误差 =±[pvv]/(n-1)
3、绝对值相等的正负误差出现的次数大致相等;
4、当观测次数无限增多时,其算术平均值趋
近于零n,
i
[]
即Lim—i=1— = n n
Lim
n
—n—
=0
2
Y=f()= —1— e 22
2
——为观测值的标准差,可由f()的二阶导数等于
零求得:2=
Lim
n
[—n2]—
为方差。
衡量 精度的标准
1、中误差 m=±—[n—]
2、相对误差 K=
m D
3、允许误差 允=3m或2m
一、线性函数 Z=k1x1 k2x2 knxn m2z=k21m21+k22m22+……+k2nm2n 二、非线性函数
Z= ƒ(x1,x2,……,xn)
m2z=( _ƒx_1_) 2m21+……( ƒx)n 2m2n
一、求最或是值
L^ = —[Ln]
三:测量误差分类
系统误差 在相同的观测条件下作一系列的观测,
如果误差在大小、符号上表现出系统

性或按一定的规律变化,如:尺长误

差、 i角误差。
质 可 分
偶然误差 在相同的观测条件下作一系列的观测, 如果误差在大小、符号上表现出偶然

工程测量-第5章误差基础知识

工程测量-第5章误差基础知识

5.2.1、中误差 、
设对某一未知量进行了n次等精度观 设对某一未知量进行了 次等精度观 未知量的真值 真值为 ,其观测值为l 测,未知量的真值为X,其观测值为 1、 l2、……、ln,相应的真误差为: 相应的真误差 真误差为 、
郑州大学土木工程学院 宋建学
∆ 1 = l1 − X
∆ n = ln − X … …
K=
D往 − D返 D平均
从实质上看,上式的计算结果是“较差率” 而非“ 从实质上看,上式的计算结果是“较差率”,而非“相 对误差” 但工程中也常将它称为距离测量的相对误差。 对误差”,但工程中也常将它称为距离测量的相对误差。 特别需要指出的是, 特别需要指出的是,由于角度测量的误差与角度大 小无关,因此不能用相对误差来评定测角精度 不能用相对误差来评定测角精度。 小无关,因此不能用相对误差来评定测角精度。
郑州大学土木工程学院 宋建学
2
5.1 测量误差分类
测量误差( 仪器不可能绝 测量误差(error)的产生,主要是由于仪器不可能绝 )的产生,主要是由于仪器 的鉴别能力有限, 对准确,观测者的鉴别能力有限 观测是在一定的外界条 对准确,观测者的鉴别能力有限,观测是在一定的外界条 如风力,温度、气压、照度等) 进行的。通常把仪器 仪器、 件(如风力 ,温度、 气压、照度等)下进行的。通常把仪器、 观测者和外界条件三个方面综合起来 称为观测条件 三个方面综合起来, 观测条件。 观测者和外界条件三个方面综合起来, 称为观测条件。 观 测条件相同的各次观测,其误差出现的规律相同,称为等 测条件相同的各次观测,其误差出现的规律相同, 称为 等 精度观测( 精度观测 ( equal observations) , 观测条件不同的各次观 ) 测称为非等精度观测 非等精度观测。 测称为非等精度观测。 在观测结果中,有时还会出现错误 例如, 在观测结果中,有时还会出现错误。例如,读数错误 错误。 或记录错误等,统称为粗差 粗差。 或记录错误等,统称为粗差。粗差在观测结果中是不允许 出现的。为了杜绝粗差,除认真仔细作业外, 出现的。 为了杜绝粗差,除认真仔细作业外,还必须采取 检核措施 必要的检核措施。例如,对距离进行往、返测量, 必要的检核措施。例如,对距离进行往、返测量,对角度 进行多测回观测等,这是测量的基本原则。 进行多测回观测等,这是测量的基本原则。 观测误差按其自身规律性,可分为系统误差和偶然误差。 系统误差和偶然误差。 观测误差按其自身规律性,可分为系统误差和偶然误差

第5章 测量误差的基本知识

第5章 测量误差的基本知识

结论
在观测过程中,系统误差和偶然误差往往是同时存在 的。当观测值中有显著的系统误差时,偶然误差就居 于次要地位,观测误差呈现出系统误差的性质;反之, 呈现出偶然误差的性质。因此,对一组剔除了粗差的 观测值,首先应寻找、判断和排除系统误差,或将其 控制在允许的范围内,然后根据偶然误差的特性对该 组观测值进行数学处理,求出最接近未知量真值的估 值,称为最或是值;同时,评定观测结果质量的优劣, 即评定精度。这项工作在测量上称为测量平差,简称 平差。
2 相对误差
对于衡量精度来说,有时单靠中误差还不能完全表达观 测结果的质量。 例如,测得某两段距离,一段长200m,另一段长1000m, 观测值的中误差均为±0.2m 。从表面上看,似乎二者精 度相同,但就单位长度来说,二者的精度并不相同。这 时应采用另一种衡量精度的标准,即相对误差。 相对误差:是中误差与观测值之比,是个无量纲数,在 测量上通常将其分子化为1。即用K=1/N的形式来表示。 上例前者的相对中误差为0.2/200=1/1000,后者为 0.2/1000=1/5000。显然,相对中误差愈小(分母愈 大),说明观测结果的精度愈高,反之愈低。
解:水准测量每一站高差: hi ai bi (i 1,2....,n)
则每站高差中误差
m站 m读 m读 m读 2
2 2 2.8m m
观测n站所得总高差 h h1 h2 hn 则n站总高差h的总误差
2
2
m总 m站 n 2.8 nmm
2
第二组观测 观测值 l Δ 0 180°00ˊ00" +1 159°59ˊ59" -7 180°00ˊ07" -2 180°00ˊ02" -1 180°00ˊ01" 179°59ˊ59" 179°59ˊ52" 180°00ˊ00" 179°59ˊ57" 180°00ˊ01" +1 +8 0 +3 -1 24

第5章 误差基本知识

第5章 误差基本知识
②仪器构造本身也有一定误差。
例如:
水准仪的视准轴与水准轴不平行,则测量结果中含有i 角 误差或交叉误差。
水准尺的分划不均匀,必然产生水准尺的分划误差。
3
2、人的原因
观测者感官鉴别能力有一定的局限性。观测者的习惯 因素、工作态度、技术熟练程度等也会给观测者成果带来 不同程度的影响。
3、外界条件
例如:外界环境如温度、湿度、风力、大气折光等因素 的变化,均使观测结果产生误差。 例如:温度变化使钢尺产生伸缩阳光曝晒使水准气泡偏 移,大气折光使望远镜的瞄准产生偏差,风力过大使仪器安置 不稳定等。 人、仪器和外界环境通常称为观测条件; 观测条件相同的各次观测称为等精度观测; 观测条件不相同的各次观测称为不等精度观测。
⑤ 随着 n 的增大,m 将趋近于σ 。
17
必须指出: 同精度观测值对应着同一个误差分布,即对应着同一个标 准差,而标准差的估计值即为中误差。 同精度观测值具有相同的中误差。 例3: 设对某个三角形用两种不同的精度分别对它进行了10次 观测,求得每次观测所得的三角形内角和的真误差为
第一组: +3″, -2″, -4″,+2″,0″,-4″,+3″, +2″, -3″, -1″; 第二组: 0″, -1″, -7″,+2″,+1″,+1″,- 8″, 0″, +3″, -1″.
2
n
lim
n

n
13

从5-3式可以看出正态分布具有前述的偶然误差特性。即:
1.f(△)是偶函数。即绝对值相等的正误差与负误差求得 的f(△)相等,所以曲线对称于纵轴。这就是偶然误差的第三 特性。 • 2.△愈小,f(△)愈大。当△=0时,f(△)有最大值; 反之, △愈大,f(△)愈小。当n→±∞时,f(△) →0,这就是偶然误 差的第一和第二特性。 • 3.如果求f(△)二阶导数并令其等于零,可以求得曲线拐 点横坐标: △拐=± • 如果求f(△)在区间± 的积分,则误差出现在区间内 的相对次数是某个定值 ,所以当 愈小时,曲线将愈陡峭, 即误差分布比较密集;当 愈大时,曲线将愈平缓,即误差 分布比较分散。由此可见,参数 的值表征了误差扩散的特 征。

第5章 测量误差理论的基础知识

第五章 测量误差理论的基本知识
5.1 测量误差概述 5.2 衡量精度的指标 5.3 误差传播定律及其应用 5.4 等精度直接观测平差 5.5 不等精度观测的最或然值及其中误差
§5.1 测量误差概述
大量实践表明,当对某一未知量进行多次 观测时,无论观测仪器多么精密,观测进行得
多么仔细,观测值之间总是存在着差异。例如,
2 2 2 2 mZ A12 m12 A2 m2 An mn
§5.3.2 误差传播定律的应用
例1 量得某圆形建筑物得直径 D=34.50m, 其中误差mD 0.01m,
求建筑物得圆周长及其中误差。
解:圆周长:
P D 3.1416 34.50 108.38 中误差:
将以上各式两边平方、取平均,可得
Z 2 x12 x22 xn 2 n f2 f 2 ... f 2 xi x j 1 fi f j k 1 2 n k k k k i, j
i j
因 x 的观测值 l 彼此独立,则 xi x j 在 i j 时亦为偶 i i 然误差。根据偶然误差第4特性,上式末项当 k 时趋近于 零,故:
测量某一平面三角形的三个内角,其观测值之
和常常不等于理论值180°。这说明测量结果
不可避免地存在误差。
§5.1.1 测量误差的来源
测量工作是在一定条件下进行的,外界环境、观 测者的技术水平和仪器本身构造的不完善等原因,都 可能导致测量误差的产生。通常把测量仪器、观测者 的技术水平和外界环境三个方面综合起来,称为观测 条件。观测条件不理想和不断变化,是产生测量误差 的根本原因。通常把观测条件相同的各次观测,称为 等精度观测;观测条件不同的各次观测,称为不等精 度观测。

第五章 测量误差的基本知识

第七章测量误差基本知识内容:了解测量误差来源及产生的原因;掌握系统误差和偶然误差的特点及其处理方法;理解精度评定的指标(中误差、相对误差、容许误差)的概念;了解误差传播定律的应用。

重点:系统误差和偶然误差的特点及其处理方法。

难点:中误差、相对误差、容许误差的概念;误差传播定律的应用。

§ 5.1 测量误差的概念测量误差按其对测量结果影响的性质,可分为系统误差和偶然误差。

一、系统误差 (system error)1、定义:在相同观测条件下,对某量进行一系列观测,如误差出现符号和大小均相同或按一定的规律变化,这种误差称为系统误差。

2、特点:具有积累性,对测量结果的影响大,但可通过一般的改正或用一定的观测方法加以消除。

二、偶然误差 (accident error)1、定义:在相同观测条件下,对某量进行一系列观测,如误差出现符号和大小均不一定,这种误差称为偶然误差。

但具有一定的统计规律。

2、特点:(1)具有一定的范围。

(2)绝对值小的误差出现概率大。

(3)绝对值相等的正、负误差出现的概率相同。

(4)数学期限望等于零。

即:误差概率分布曲线呈正态分布,偶然误差要通过的一定的数学方法(测量平差)来处理。

此外,在测量工作中还要注意避免粗差 (gross error) (即:错误)的出现。

偶然误差分布频率直方图§ 5.2 衡量精度的指标测量上常见的精度指标有:中误差、相对误差、极限误差。

一、中误差方差:——某量的真误差, [] ——求和符号。

规律:标准差估值(中误差 m )绝对值愈小,观测精度愈高。

在测量中,n为有限值,计算中误差 m 的方法,有:1、用真误差( true error )来确定中误差——适用于观测量真值已知时。

真误差Δ——观测值与其真值之差,有:标准差中误差(标准差估值), n 为观测值个数。

[ 例题 ] :对 10 个三角形的内角进行了观测,根据观测值中的偶然误差(三角形的角度闭合差,即真误差),计算其中误差。

第五章误差理论基础


衡量精度的指标( ) 衡量精度的指标(2)
二、几种常用来衡量精度的指标 1、方差和中误差 方差和中误差:服从正态分布的随 方差和中误差 机变量的数字特征量。
f (∆ ) = 1 2π σ e
− 2σ ∆2
2
σ
=
2
= D
2 2 + ∞ − ∞
(∆ )
) f ( ∆ )d ∆
σ = lim
n→∞
[∆∆ ]
总之,从统计学的角度看,偶然误差是一个随 机变量,它服从数学期望为零的正态分布规律。 (如下页图形)
偶然误差的误差分布
f (∆ ) = 1 e 2π σ
− 2σ ∆2
2
衡量精度的指标( ) 衡量精度的指标(1)
一、精度的概念 精度的概念:精度是误差分布的密集离 精度的概念 散程度,也就是指离散度的大小。
P1 L 1 + P 2 L 2 + L + P n L n P1 + P 2 + L + P n
非等精度直接平差( ) 非等精度直接平差(2)
三、加权算术平均值的中误差 2 µ0 Pi = m x = ± 2 mi 四、单位权观测值的中误差
µ
[P ]
0
µ0 = ±
[P∆∆]
n
µ0 = ±
[Pvv]
第五章
5.1 5.2 5.3 5.4 5.5
测量误差的基本知识
内容提要
测量误差基本概念 衡量精度的指标 误差传播定律及基应用 等精度观测直接平差 非等精度观测直接平差
测量误差概述
什么是测量误差? 什么是测量误差? 真误差: 1、真误差:
∆ = li − X
2、似真误差(改正数): 似真误差(改正数)

第五章 测量误差


(2)水准路线高差的中误差
如果在这段水准路线当中一共观测了n站,则总高 差为: 设每站的高差中误差均为m站 ,则 mh = 取3倍中误差为限差,则普通水准路线的容许误差为: m容= 3
2.水平角观测的误差分析
用DJ6经纬仪进行测回法观测水平角,那么用盘左 盘右观测同一方向的中误差为±6” ,即 =±6”。 假设盘左瞄准A点时读数为A左,盘右瞄准A时读数 为A右,那么瞄准A方向一个测回的平均读数应为
求真误差的方差: 由方差的性质可得:
中误差为标准差σ的估计值,而标准差的平方就等 于方差,故
二、线性函数
1、倍数函数 设有函数 Z=Kx 式中 x—直接观测值,其中误差为mx; K—常数 Z—观测值x的函数 若对x作n次同精度观测,其真误差列为 设对应的函数的真误差列为 。 观测值与函数间的真误差关系式为:
三、非线性函数 设有非线性函数 z=f(x1、x2、…、xn) 式中,x1、x2、…、xn为独立观测值,其相应的中
误差分别为m1、m2、…、mn,对其全微分得到
四、误差传播定律的应用 1.水准测量的误差分析
(1)一个测站的高差中误差 每站的高差为:h=a-b;a、b为水准仪在前后水准 尺上的读数,读数的中误差m读,m读≈±3mm,则 每个测站的高差中误差为
二、中误差(均方差)
1.测量工作中,用标准差来衡量观测的精度,我 们称之为中误差,用m表示。 设在相同的观测条件下,对未知量进行重复独立 观测,观测值为:l1,l2,…,ln,其真误差为Δ 1,
Δ 2,…,Δ n ,则真误差的方差
式中当n→∞,E(Δ ) = 0 ,根据数学期望的定义 E(Δ 2)就是Δ 2的算术平均值。
将上式平方,得 按上式求和,并除以n,得
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

西南科技大学
环资学院测量工程系
图6-1 误差统计直方图
9
2020/7/1
◆从误差统计表和频率直方图中,可以归纳出偶然误 差的四个特性:
3.偶然误差的特性
(1)在一定的观测条件下,偶然误差的绝对值不会超过一定 的限值(有界性);
(2)绝对值小的误差比绝对值大的误差出现的机会多(趋向性); (3)绝对值相等的正误差和负误差出现的机会相等(对称性); (4)当观测次数无限增加时,偶然误差的算术平均值趋近于零
第五章-误差基础.
§6.1 测量误差概述
◆测量与观测值
◆观测与观测值的分类
● 观测条件 ● 等精度观测和不等精度观测 ● 直接观测和间接观测 ● 独立观测和非独立观测
西南科技大学
环资学院测量工程系
2
2020/7/1
§6.1 测量误差概述
◆ 测量误差及其来源
● 测量误差(真误差=观测值-真值)lX
● 测量误差的表现形式
l X (观测值与真值之差) ij li l j (观测值与观测值之差)
● 测量误差的来源
(1)仪器误差:仪器精度的局限、轴系残余误差等。 (2)人为误差:判断力和分辨率的限制、经验等。 (3)外界条件的影响:温度变化、风、大气折光等
西南科技大学
环资学院测量工程系
3
m1小于m2,说明第一组观测值的误差分布比较集中, 其精度较高;相对地,第二组观测值的误差分布比 较离散,其精度较低:
上式中, 2 称为方差:
表示的 x=
离散程度
2lim 2 1 2 2 2 nli[m 2]
n
n
n n
称为标准差:
lim[2]lim[ ]
n n
n n
西南科技大学
环资学院测量工程系
14
2020/7/1
测量工作中,用中误差作为衡量观测值精度的标准。
中误差:
观测次数无限多时,用标准差 表示偶然误差的离散情形:
西南科技大学
环资学院测量工程系
图6-1 误差统计直方图
11
2020/7/1
正态分布的特征
• 正态分布密度以 x 为对称轴,并在 x处
达到最大。
• 当 x时,f(x) 0,所以f(x)以x轴为渐近 线。
• 用求导方法可知,在 x处f(x)有两个拐
点。
• 对分布密度在某个区间内的积分就等于随机 变量在这个区间内取值的概率
(抵偿性):
li m 1 2 nli m 0
n
n
n n
特性(1)、(2)、(3)决定了特性(4),特性(4)具有实用意义。
西南科技大学
环资学院测量工程系
10
2020/7/1
偶然误差具有正态分布的特性
当观测次数n无限增多(n→∞)、误差区间d无限缩小 (d→0)时,各矩形的顶边就连成一条光滑的曲线, 这条曲线称为 “正态分布曲 线”,又称为 “高斯误差分 布曲线”。 所以偶然误差 具有正态分布 的特性。
西南科技大学
环资学院测量工程系
6
2020/7/1
§6.3 偶然误差的特性
举例: 在某测区,等精度观测了358个三角形的内
角之和,得到358个三角形闭合差i(偶然误 差,也即真误差) ,然后对三角形闭合差i 进行分析。
分析结果表明,当观测次数很多时,偶然 误差的出现,呈现出统计学上的规律性。而 且,观测次数越多,规律性越明显。
经纬仪视准轴误差C 操作时抵消(盘左盘右取平均)
…… ● 系统误差可以消除或减弱。
……
(计算改正、观测方法、仪器检校)
西南科技大学
环资学院测量工程系
4
2020/7/1
3.偶然误差——误差出现的大小、符号各不相同,
表面看无规律性。 例:估读数、气泡居中判断、瞄准、对中等误差,
导致观测值产生误差 。
4.几个概念:
§6.4 衡量精度的指标
1.方差与标准差
由正态分布密度函数
y
x
1
exa2
22
正态分布曲线(a=0)
2
式中 a、为常数;e=2.72828…
令:xa ,上式为:
x=
y f ()
1
2
e 22
2
西南科技大学
环资学院测量工程系Βιβλιοθήκη 132020/7/1
标准差 的数学意义
yf() 1 e222
2
y 较小 较大
lim []
n
n
观测次数n有限时,用中误差m表示偶然误差的离散情形:
m 21222n []
n
n
上式中,偶然误差为观测值 与真值X之差:
i= i - X
西南科技大学
环资学院测量工程系
15
2020/7/1
P123表5-2
西南科技大学
环资学院测量工程系
16
2020/7/1
m1=2.7是第一组观测值的中误差; m2=3.6是第二组观测值的中误差。
2020/7/1
§6.2 测量误差的种类
测量误差分为:粗差、系统误差和偶然误差
1.粗差(错误)——超限的误差
2.系统误差 —— 误差出现的大小、符号相同,或按
规律性变化,具有积累性。
例: 误差 钢尺尺长误差ld 钢尺温度误差lt 水准仪视准轴误差I
处理方法 计算改正 计算改正 操作时抵消(前后视等距)
• 例如一段距离采用往返丈量,如果往测属于必要观测,则返 测就属于多余观测;如对一个水平角观测了6个测回,如果第 一个测回属于必要观测,则其余5个测回就属于多余观测;
• 又例如一个平面三角形的水平角观测,其中两个角属于必要 观测,第三个角属于多余观测。
• 有了多余观测可以发现观测值中的错误,以便将其剔除或重 测。由于观测值中的偶然误差不可避免,有了多余观测,观测 值之间必然产生差值(不符值、闭合差)。根据差值的大小可 以评定测量的精度(精确程度),差值如果大到一定的程度, 就认为观测值中有错误(不属于偶然误差),称为误差超限。 差值如果不超限,则按偶然误差的规律加以处理,称为闭合 差的调整,以求得最可靠的数值。
西南科技大学
环资学院测量工程系
7
2020/7/1
西南科技大学
环资学院测量工程系
8
2020/7/1
用频率直方图表示的偶然误差统计:
频率直方图中,每一条形的面积表示误差出现在该区 间的频率k/n,而所有条形的总面积等于1。
频率直方图的中间高、两边低,并向横轴逐渐逼近, 对称于y轴。
各条形顶边中点 连线经光滑后的曲 线形状,表现出偶 然误差的普遍规律
● 准确度(测量成果与真值的差异) ● 精(密)度(观测值之间的离散程度)
● 最或是值(最接近真值的估值,最可靠值) ● 测量平差(求解最或是值并评定精度)
西南科技大学
环资学院测量工程系
5
2020/7/1
多余观测
• 为了防止错误的发生和提高观测成果的质量,在测 量工作中一般要进行多于必要的观测,称为多余观 测。
相关文档
最新文档